Ex 1-8: Sa PN.

Ex 9
a) The set is everfthy. A or is bat not in their intersection. So

$$
S=(A \cup B) \backslash(A \cap B)
$$

b) The set includes the parts of $A \cap$ is that are not : C

$$
S=(A \cap B) \backslash C
$$

c) Breaking the shaded region up. we have

So $\quad S=(A \cap B) \cup(A \cap C)$
d) Breaker the sets pi we have

So $\quad S=\left(A \cap B \cap C^{c}\right) \cup\left(C \cap(A \cup B)^{c}\right)$

Mag of these can be further simplified using set algebra. but this is typically done only if we know certain probabilities (eng., if we knew $P\left(A \cap B^{\prime}\right)$).

Ex 10
By the definition of a partition, we hove

$$
S=A_{1} \cup A_{2} \cup A_{3} \quad \text { and } \quad \begin{aligned}
& A_{1} \cap A_{2}=\varnothing \\
& A_{1} \cap A_{3}=\varnothing \\
& A_{2} \cap A_{3}=\varnothing
\end{aligned} .
$$

The following diagram mag be useful:

$$
\begin{aligned}
& \left|B \cap A_{1}\right|=10 \\
& \left|B \cap A_{2}\right|=20 \\
& \left|B \cap A_{3}\right|=15
\end{aligned}
$$

Since A_{1}, A_{2}, A_{3} are untruly disjoint, we have that

$$
|B|=\sum_{i=1}^{3}\left|A \wedge B_{i}\right|=10+20+15=45 .
$$

Ex 11
Note that a union corresponds to a "for somelany" statemat, so we have

$$
\bigcup_{n=1}^{\infty}\left[0, \frac{n-1}{n}\right)=\left\{x \in \mathbb{R}: 0 \leq x<\frac{n-1}{n} \text { for some } n+\mathbb{N}\right\}
$$

Since $n-1<n$, this set must not cotton angthiy greeter than or equal to 1. However. for any valw $x<1$, we ca find a large enough \sim so that $\frac{n-1}{\sim}>x$ (note that $\lim _{n \rightarrow \infty} \frac{n-1}{n}=1$). Therefore

$$
\bigcup_{n=1}^{\infty}\left[0, \frac{n-1}{n}\right)=[0,1] .
$$

Ex 12
Note that an intersection corresponds to a "for all" staterut. so

$$
\bigcap_{n=1}^{\infty}\left[0, \frac{1}{n}\right)=\left\{x \in \mathbb{R}: x<\frac{1}{n} \quad \forall n \in \mathbb{N}\right\}=\{0\}
$$

Clearly O is in this set. Why not anting else?
Tater some small value $\varepsilon>0$. Then there exists on n such that $\frac{1}{n}<\varepsilon$, meaning q cannot be in the set for any $\varepsilon>0$.

Ex 13
$A \cap B \in F$: Note $A \cap B=\left(A^{c} \cup B^{C}\right)^{c}$.
i) $A \in F \Rightarrow A^{c} \in F$
2) $B \in F \Rightarrow B^{c} \in F$
3) $A^{c}, B^{c} \subset F \Rightarrow A^{c} \cup B^{c} \in F$
4) $A^{c} \cup B^{c} \in F \Rightarrow\left(A^{c} \cup B^{c}\right)^{c} \in F$

A\BGF: Note $A \backslash B=A \cap B^{C}$

1) $B \in F \Rightarrow B^{c} \in F$
2) $A, B^{C} \in F \Rightarrow A \cap B^{c} \in F$ (by atoor)
$A \Delta B \in F$: Follows directly by $A) B \in \mathcal{F}$ ad fact that \mathcal{F} is closed under countable unions.

Ex 14
$P\left(A \cap B^{C}\right)$: Note that $P(A)=P(A \cap B)+P\left(A \cap B^{C}\right)$

The events $A \wedge B$ and $A \cap B^{c}$ are disjoint, so

$$
P(\Delta)=P(A \cap B)+P\left(A \cap B^{C}\right)
$$

Thus

$$
\begin{aligned}
P\left(A \cap B^{C}\right) & =P(A)-P(A \cap B) \\
& =P(A)-(P(A)+P(B)-P(A \cup B)) \\
& =P(A \cup B)-P(B)
\end{aligned}
$$

$P\left(B \cup\left(A \cap B^{C}\right)\right):$

$$
P\left(B \cup\left(A \cap B^{C}\right)\right)=P\left((B \cup A) \cap\left(B \cup B^{C}\right)\right)
$$

$$
=P((B \cup A) \cap \Omega)
$$

$$
=P(A \cup B)
$$

$$
\text { Ex } 15
$$

First note that $P\left(A^{c}\right) \leq \delta$ ad $P\left(B^{c}\right) \leq \delta$, since $P(A)=1-P\left(A^{c}\right)$. By the union bound,

$$
P\left(A^{c} \cup B^{c}\right) \leq 2 \delta
$$

Now apply DeMorgais law to see that

$$
\left(A^{c} \cup B^{c}\right)^{c}=A \cap B
$$

and therefore

$$
\begin{aligned}
P\left(\left(A^{c} \cup B^{c}\right)^{c}\right) & =1-P\left(A^{c} \cup B^{c}\right) \\
& \geq 1-2 \delta
\end{aligned}
$$

