
EE 519: Deep Learning Theory & Fundamentals Spring 2023

Homework 1
Due: April 21, 2023, 11:59PM PT

Student Name: Instructor Name: John Lipor

For this assignment, you will begin coding your own object-oriented deep learning library called MyTorch.
This library will have the below file structure, allowing you to call functions in a manner similar to PyTorch
(see included code). Your job is to complete the respective functions and test your deep learning library.

Note: This is a pure numpy implementation, so you may not import any additional libraries.

hw01files

mytorch

nn

activation.py

linear.py

loss.py

optim

sgd.py

models

mlp.py

Code: Please attach your code to the end of your final document. You do not need to link your code for
each problem within gradescope, only the outputs of the respective jupyter notebooks.
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Homework 1 2

Problem 1 linear.py (1 pt, 2 pts, 4 pts)

Your first task is to complete the function linear.py, which initializes a single linear layer with the given
input and output sizes, and performs the forward and backward operations. Recall that the forward pass of
a linear layer performs the operation

O = AW + 1NbT , (1)

where A ∈ RN×d is the input data matrix of N examples, W ∈ Rd×h is the weight matrix, b ∈ Rh is the
bias term, and 1N ∈ RN denotes the vector of all ones.

To perform backpropagation, we require the gradient of the loss with respect to the output O, which will
be implemented in a later problem. We then wish to output the gradients with respect to the parameters
W and b as well as the inputs A. Assuming we have access to ∂L/∂O, these gradients are defined by the
equations
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(a) Implement the init function, initializing W using a normal distribution with variance 0.01 and b to
be all zeros.

(b) Implement the forward method as defined by (1). This method receives the input data matrix A and
returns the output data matrix O.

(c) Implement the backward method as defined by (2). Note that you need to determine the gradients of
the output with respect to the various inputs yourself. This method receives ∂L/∂O as input, returns
∂L/∂A, and stores ∂L/∂W and ∂L/∂b to the linear object.

Turn in the output of the notebook LinearTester.ipynb. Note that you can easily save the output in pdf
form and attach to a LATEXdocument using the include command.
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Problem 2 loss.py (2 pts each)

Your next task is to implement both the mean squared error (MSE) and cross entropy losses as their own
classes in loss.py. Defining these classes allows us to treat losses as objects, which allows for storing and
passing gradients.

(a) Implement the forward method for the MSELoss class. This method takes as inputs the output matrix
O ∈ RN×q and returns the MSE with respect to the true targets Y ∈ RN×q. Note that the MSE is
normalized by dividing by Nq rather than just N .

(b) Implement the backward method for the MSELoss class. This method takes no input arguments and
uses the stored variables O and Y to compute and return ∂L/∂O.

(c) Implement the forward method for the CrossEntropyLoss class. This method takes as inputs the
output matrix O ∈ RN×q and returns the MSE with respect to the true targets Y ∈ RN×q. Note that
the cross entropy loss is normalized by dividing by N only.

(d) Implement the backward method for the CrossEntropyLoss class. This method takes no input argu-
ments and uses the stored variables O and Y to compute and return ∂L/∂O.

Turn in the output of the notebook LossTester.ipynb.



Homework 1 4

Problem 3 sgd.py (2 pts)

Now that we have the ability to pass gradients, we can use stochastic gradient descent (SGD) to optimize
the parameters of our linear layer. Your task is to implement the step method, which updates both the
weight matrix W and bias vector b. Note that the provided implementation allows for multiple layers, but
the update equation is the same for either case.
Turn in the output of the notebook SGDTester.ipynb.



Homework 1 5

Problem 4 activation.py (2 pts each)

At this point, we have implemented a single-layer neural network that can be used for either classification
or regression. You can (and probably should) test your network using the notebook TrainingTester.ipynb

to see how it performs on these tasks. To allow our network to learn nonlinear functions, we need to utilize
activation functions, which are implemented in activation.py.

Consider a multi-layer perceptrion (MLP) with a single hidden layer. Let H ∈ RN×h be the output of
hidden variables after the first linear layer. For an activation function ϕ : R → R, let A ∈ RN×h be the
output after applying ϕ element-wise to H.

(a) Implement the sigmoid activation function. Complete the forward method, which takes the hidden
variables H as input and outputs the the activation function applied element-wise to H. Next, complete
the backward method, which utilizes the stored variable H to compute the element-wise gradient of the
activation function with respect to H. Note that the gradient ∂A/∂H should have the same dimensions
as H.

(b) Implement the tanh activation function, completing both the forward and backward methods.

(c) Implement the ReLU activation function, completing both the forward and backward methods.

Turn in the output of the notebook ActivationTester.ipynb.



Homework 1 6

Problem 5 mlp.py (4 pts each)

Having put into place the tools for optimizing a linear layer, selecting the appropriate cost function, and
adding nonlinearities, we are now ready to implement a MLP with an arbitrary number of layers. In this
problem, we will complete the mlp.py file, implementing MLPs with 0, 1, and 4 hidden layers.

(a) Complete the class MLP0 to implement an MLP with 0 hidden layers. The class structure is as follows.

• init : Defines the list of layers in self.layers and activation functions in self.f. For the
MLP0, we have one linear layer and a single Identity activation function.

• forward: Performs a forward pass, first through the linear layer, then through the activation
function. The parameters follow the equations

H(1) = XW (1) + 1N (b(1))T

A(1) = ϕ
(
H(1)

)
(element wise)

• backward: Performs a backward pass through the network. This method takes the gradient
∂L/∂A(1) as input, then computes ∂A(1)/∂H(1) via the backward method for the corresponding
activation function. It then computes
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Noting that H(1) is the output of our single linear layer, it uses ∂L/∂H(1) to compute the gradients
of the loss with respect to W (1), b(1), and the inputs X. These gradients can be used with SGD or
passed to additional layers, as in parts (b) and (c) of this problem.

(b) Complete the class MLP1 to implement an MLP with 1 hidden layer. In this case, our forward equations
become
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)
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H(2) = A(1)W (2) + 1N (b(2))T

A(2) = ϕ
(
H(2)

)
(element wise).

(c) Follow the above sequence to complete the class MLP4.

Turn in the output of the notebook MLPTester.ipynb.
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Problem 6 TrainingTester.ipynb (0 pts)

Congratulations! If you’ve reached this point, you have coded a pure-numpy, object-oriented implementation
of an MLP with arbitrary number of layers and activation functions, capable exciting tasks such as regressing
synthetic data and classifying pictures of clothing! In TrainingTester.ipynb, I have implemented the
framework to allow for training neural networks with MyTorch using tools from the D2L library. Have a
look at the code in this notebook to observe what changes were required to utilize our library, as well as how
to perform the same tasks using PyTorch.

Turn in nothing.
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