Casider the Netflix problem, where we are given a collection of users, each of whom has rated some Subset of the available movies/shows on Nefflix.
If we barrage this information in a matrix, it ny look (ike this (obviously Netflix has more users ad movies than this).

	movie 1	movie 2	movie 3	movie 4
user 1	3	$?$	5	$?$
user 2	$?$	1	$?$	2
user 3	2	$?$	2	$?$
user 4	$?$	4	$?$	$?$
user S	S	$?$	$?$	4

Obviously, Netflix wishes to fill in these missing entries so it knows what movies to recommend to a giver uses. One method of filling. in these missing entries leverages low-sale structure in the matrix. This is called low-rank matrix completion (LRMC).

Observation Model
Assume $X \in \mathbb{R}^{\mu_{* N}}$ has raki $r \ll \min (\mu, N)$, so that

$$
X=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\top}
$$

Suppose we observe a subset of the entries in X, So we are given a matrix $Y \in \mathbb{R}^{\mu \times N}$ such that

$$
Y_{i j}=\left\{\begin{array}{ll}
x_{i j} & (i, j) \in \Omega \\
? & \text { otherwise }
\end{array}, \quad \Omega \subset\{1, \ldots, \mu\} \times\{1, \ldots, N\}\right.
$$

where Ω is a set of known sampling locations. We mog then ask

1) Ca we recover X from Y ?
2) How do we do it?
3) How well does it work?

Sappy Conditions
To answer the first question, assure we receive exact (noiseless) measurements. If X has rake r, we con unite

$$
X=\tilde{U}_{r} \tilde{V}_{r}^{\top}
$$

where \tilde{U}_{r} has size $\mu_{x r}$ ad \tilde{V}_{r} hes size N ar. In this light, the degrees of freedom in X are $M r+N r=(M+N) r$, which is typically much smaller then MN. Alternatively, suppose the first r columns are linearly independent, ad the next Nos columns are dependent enticely on the first r. This gives $M_{r}+(N-r) r=(M+N) r-r^{2}$ degrees of freedom.

If $M \approx N$, then the $D_{0} F \approx 2 N$, so we reed at least $O\left(N_{r}\right)$ samples to have an hope of recovery.

Q: If X is $N \times N$, approximately how my staples per column do we reed?

LRMC Problem Formulation.
How should we formulate the LRMC problem as an optimization problem? We have two goals for ag estimate \hat{x} :

1) $\hat{X}_{i j}=X_{i j}$ for $(i, j) \in \Omega \quad$ (observed entries match)
2) $\operatorname{rank}(\hat{X})=r$ (estimate is low-rak)

Let P_{Ω} be the orthogonal projection onto the space of matrices supported on Ω. Then we write

$$
P_{\Omega} X=\left\{\begin{array}{cc}
x_{i j} & (i, j) \in \Omega \\
0 & \text { otherwise }
\end{array}\right.
$$

An equality-constrained/busis pursuit-type optimization problem is then

$$
\begin{array}{ll}
\min & \|x\|_{x} \tag{1}\\
\text { si } & P_{\Omega}(X)=P_{\Omega}(y)
\end{array}
$$

Alternatively, if we believe ow r observations are corrupted by noise, we may choose to solve the Lasso-type/Tikhoou regularized probleor

$$
\min _{x} \frac{1}{2}\left\|\operatorname{Pr}(x)-P_{\Omega}(y)\right\|_{F}^{2}+\lambda\|x\|_{*} \quad \text { (2) }
$$

$\left[\begin{array}{l}\text { Note the similarity between (1-2) and ow r optimization] } \\ \text { problems for sparse regression. }\end{array}\right]$

Al jorithus for LRMC
We car solve the LRMC problem using both ADMM ad IRLS. The latter will appear in our lost demo. Defoe the (split) augmented Lagrajian to be

$$
\begin{aligned}
& z_{\rho}(x, z, L)=\lambda\|z\|_{*}+\frac{1}{2}\|P \operatorname{Pr}(X)-\operatorname{Pr}(y)\|_{F}^{2} \\
&+\langle L, x-z\rangle+\frac{f}{2}\|x-z\|_{F}^{2}
\end{aligned}
$$

where L is the matrix of Lagrage multipliers. The ADMM updates are given below. Their derivation is likely te be a homework problem. Note the similarity to the Lasso updates!

ADMM for LRMC

$$
\begin{aligned}
& X_{i j}^{(k+1)}=\left\{\begin{array}{lll}
\frac{1}{\rho+1} Y_{i j} & \text { if } & (i, j) \in \Omega \\
Z-L & \text { if }(i, j) \notin \Omega
\end{array}\right. \\
& Z^{(h+1)}=D_{\lambda p}(X+L) \\
& L^{(k+1)}=L+X-Z
\end{aligned}
$$

