
 

AcceleratedFirstorderMeth
Gradient descent GD and stochastic gradient descent SGD

are known as f.rs Q since they make use of

first order derivatives gradients only These
tend 1 be

cop tationallyefficient but
have some problems

1 Not as fast as secondorder
methods leg Newton'smethod

which alsomake use of the
Hessian

2 Choosy learningrate can bedifficult

3 SGD mayhavehigh
variance in its descent and in its

performance

A variety of methods have beendeveloped to address
these issues

Namely momentum
methods address the first adapt.vemethods

the second and ni bfhGD helps the third



Momentum
One problem with SGD is that it can oscillate aroundthe

optimal point making progress
slow For exaple consider thetwo

dimensional problembelow
where the concentricellipses are contour lines

andthe blue line indicates the path
followed by SGD

o.r.i.ru

One way to
handle this issue is by accounting for iron in

the movement which keeps the ball rolling in the samedirection

as if's already moving Sppose we wish to
rinnize

5 w ET Ji Ino

The SGD update is the

Ye u Iwa

Yet Uk Ye

To incorporate momentum we add a fraction of the previous update

vector yielding the update

ye rye MT Kh menataupdate

Wat wa Ye

where 8 is usually set to be are I 0 9 Theresulting stepbalances



the romulan and gradient terns

onomatum

superimposedgradient

dualI step

gradient

Mouton can be further improved by accounting for where the
ball will

go next i e if we know a hill 3 coming that will turn us
crowd

we may
want to slow down in advance This

leads to a different

update known as Nesterov accelerated gradient
descent NAG The

keyidea is that we first thinkof where our
momentum will take us

and then compute the gradient from there The
update is

ye rye MTTi Wa VYea Nesterov acceleration

Yet Wie Vie monatanstep update

lookahead

gradient
mutum

g

actual
step

The resulting step is faster and more stable in practice and c be

shown to converge quadratically to the optimum as opposed to linearly

like GD



Adaptivity
Moment methods yield

faster convergenceby changingthestep
direction

Now we'll consider
acceleration by charging the steep

size One

issue with this is that we may wish to take
a different step

size depending on the featureIdirasion Fo exople we may wish
to

have progress in
each dimension ever eat over time The first

algorithm to
handle this issue is known as Adagrade Let

gfi LFJilw.SI ER

be the ith coordinate of the gradient
vector at step k Adagrad

weights the step siee in this diversion by the accumulated gradient

using the update i

Yeti µ SIT regularization to a id
e jg

2
e dividingby zero

previous gradients

Wii wi vii

where Enn 106 avoidsderisionby zero The main drawback to Adagnd

is that all weights are strictly decaying which can lead to slow

Connergence
This issue is addressed by the Adadilaad

Rip algorithms we discuss the latter here since it's a bit

more popular in deep learning



Before proceeding first note that we can write the vectored

Adagrad update as
g

Ya M VIIgite IAdagrad update

Uk Wh Uk

where getC112 denotes the element wise square of the D dimensional

gradient vector The legidea behind RiesPrep fad
Adadelta is to

weight thestep sizes by a moving window
of previous gradients

Instead of maintaining this window explicitly RMSPrepdefies the

runnyaverage as

go o

gI r gait G 2 gi
where typically we set f 0.9 The Rrspropupdate is then

Ye u S
gite RnsProp update

wie We Ye

Finally methods such as Adam Ada
Max ad Nadav Corbie the ideas of

mounter and adaptivityto frther improve convergence speed



M.ui Batchs.co

As mentioned above SGD has drawbacks associated with its
stochastic

gradient gdate Namely
it may not

descendvery well and its oenall

variance is Aday the global optimum
can be high especially for

non convex problems like those associated with deep learning
Intuitively

think of SGD as montaining a noisy
estimate of the averagegradient

ga T Ji 1

where ie l N This is like estimating the rear from a single

Saple which we would never do in probabilityfestination theory In

contrast full GD sets

gie
VI Iwa

which goes a low mise estimate but at a high computational cost

A compromise
between these two is reini batch SGD which sets

GI E VI laid
ieB

where Bc LT u as a subset of M N samples blown and ly By

faking M large enough we reduce the noise in our gradient estate

while by keeping Mew
we avoid the issuesof computational complexity

associated with batch GD Typically we take M between so 256

All acceleration methods discussed a
bone can be applied in the mini batch

case as well


