Itentively Reweighted Least Squares
On HIWG, we doveloped a majorize-uninize objection to solve
with
$$||A_{x}-b||_{1} = \sum_{i=1}^{N} |a_{i}^{T}x-b_{i}||$$
.
We will now take a direct approach to solving this
problem using Iteratively Revergited Least Squares (IRLS).
(Notation dage)
Let $e = A_{x-b}$ and consider minimizing
 $||A_{x-b}||_{p} = ||e||_{p} = \left(\sum_{i=1}^{N} |e_{i}|^{p}\right)^{1/p}$
where $p \in (0, 2)$. Note that
 $||e_{i}||^{p} = |e_{i}||^{p-2} ||e_{i}||^{2}$

Where we substitute wi=leil^{P-2}. Taking the sum over i and noting that we can instead minimize llell^P, ous problem becomes

$$\sum_{x \in \mathbb{R}^{D}} \sum_{i=1}^{N} w_{i}^{2} |e_{i}|^{2} = \sum_{x \in \mathbb{R}^{D}} \sum_{i=1}^{N} w_{i}^{2} (a_{i}^{T} x - b_{i})^{2}$$

where $w_i = |e_i|^{\frac{p-2}{2}}$. This is a weighted least-squeses problem, which we know how to solve! This leads to the following, more general algorithm for robust regression. The superscript denotes the iteration

Alg I: IRLS for lp minimization

$$x^{\circ} = A^{+}b$$

while not converged
 $e^{k} = Ax^{k^{-}}b$
 $w_{i}^{k} = |e_{i}|^{\frac{p-2}{2}}$ for $i=1,...,N$ (element-wise)
 $W = \begin{bmatrix} w_{i}^{k} \\ & & \\ & & \\ \end{bmatrix} \in \mathbb{R}^{N\times N}$
 $X^{k} = \min |[W(Ax-b)|]_{2}^{2}$

Since spasse regression is often applied when AERN'D is wide (Nacid), the equality constraint can typically be satisfied in practice.

To solve (1) using IRLS, we replace lixth, with

$$xTWx dr son diagonal WeRPAD, since
$$\||x||_{P}^{P} = \sum_{i=1}^{D} |x_{i}|^{P} |x_{i}|^{P-2} = x^{r}Wx.$$
In practice, we add a bit of regularization by setting
 $w_{i} = (x_{i}^{2} + e)^{\frac{p-1}{2}}, i = 1, \dots, D$
for some shall $e > 0$. This leads to the equality constand
poblem
 $xeepe x^{r}Wx$ (2)
 $ST A x = b$.
The solution to (2) can be found using the method of
Lagrange multipliers, which you may (should?) have seen
in your undergraduate calculus course. First, write
the harrowing as
 $Z(x, A) = x^{r}Wx + A^{r}(Ax - b)$.
From optimization theory, we have that the optimal x and A
must satisfy
 $V_{X} J(x, A) = 2Wx + A^{r}A = 0 \in \mathbb{R}^{N}$
 $V_{X} J(x, A) = 2Wx + A^{r}A = 0 \in \mathbb{R}^{N}$$$

The second step is to solve for
$$\times$$
 using the second
equation above.
 $QW \times = -A^T I \iff X = -\frac{1}{2} W^{-1} A^T I$
(Why is W invertible?) Now plug this value of \times in to
the first equation above to get
 $A \times = b \iff A(-\frac{1}{2}W^{-1}A^T I) = b$
 $E = (-\frac{1}{2}AW^{-1}A^T) I = b$
 $E = (-\frac{1}{2}AW^{-1}A^T) I = b$.

the resulting algorithm is given below.

$$\begin{aligned}
x &= -\frac{1}{2} W^{-1} A^{T} A \\
&= -\frac{1}{2} W^{-1} A^{T} \left(-\frac{1}{2} A W^{-1} A^{T} \right)^{-1} b
\end{aligned}$$

$$\frac{AI_{1} 2: IRLS \text{ for Spasse regression}}{X^{\circ} = Zecos(D,1)}$$
while not converged
$$w_{i}^{k} = (I_{X_{i}}^{k}I_{i}^{2} + \epsilon_{i})^{\frac{p-2}{2}} \quad (=1,...,D)$$

$$W = \begin{bmatrix} W_{i}^{k} \\ \vdots \\ \vdots \\ w_{0}^{k} \end{bmatrix}$$

$$\chi^{k} = W^{-1}A^{T} (AW^{-1}A^{T})^{-1}B$$

Convergence Criteria How do we know when to step the above algorithms? For Alg I, a reasonable choice is when $\|(A \times k - b)\|_2 \le (3)$ for some small $\epsilon \sim 10^{-k}$. For Alg 2, we are enforcing the $A \times k = b$ constraint, so (3) is a bod choice. A better idea is to step when $\|(X^k - X^{k-1})\| \le \epsilon$ which is an indication that the algorithm has converged.