
 

IterataelgReweightedLeastsquaresy
On Hw6 we developed a majorize minimize algorithm to solve
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We will now take a direct approach to solving this
problem using IterativeightedLeastwesIIRLs
Notation charge

Lef e Ay b and consider minimizing
N

HA b llp Heap Kelp

where p E fo 2 Note that
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where we substitute w lei IP 2 Taking the sun over i

and noting that we can instead minimize Help o r problem

be co es
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where wi le PI This is a weighted least squares

problem which we know how to solve This leads

to the following more general algorithm for robust

regression The superscriptdenotes the iteration



Algli I RLS for Lp minimization
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IRLSfersparseRegression
It is also possible to use IRIS to solve the follow

equality constrained sparse regression
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Since sparse regression
is often applied when A c 112 B

wide Neo the equality constraint can typically
be satisfied

in practice



To solve i using IRLS
we replace 11 11 with

XTWx for some diagonal WEIRD since
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In practice we add a bit of regularizationbysetting

wi fxe.EE i l D

for some small so This leads to theequality constered

problem
mu XTWxxcIRD 2
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The solution to 2 can be found using themethodologieswhich you may
should heve seen

in your undergraduate
calculus course First write

the Lagrangian as

2 x 1 x Wx ITAx b
From optimization theory we know that the optimal x and I
must satisfy

The LK.IS Ax b o c
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The second step is to solve for x using the second

equation above

2 W x Att s x W Atf

Why is W inertible Now plug this value of in to

the first equation above to get
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Finally substitute this value to solve for the optical x
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The resulting algorithm is given below



Alg2 IRIS for sparse regression
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CervesganceCriteria

How do we know when to stop the above algorithms
For Alg 1 a reasonable choice is when

HAxk bth se 13

for some small e lo te For Alg 2 we are enforcing

the Axle b constant so 13 B a bad choice

A better idea is to stop when

11xk xk II E
which is an indication that the algorithm has converged


