Alternating Direction Method of Multipliers
Last weak we saw that a problem of interest called the Lasso is writer as

$$
\begin{equation*}
\min _{\omega \in \mathbb{R}^{D}}\left\|X_{\omega-y}\right\|_{2}^{2}+\lambda\|\omega\|_{1} \tag{1}
\end{equation*}
$$

which has the more general form

$$
\begin{equation*}
\min _{\omega \in \mathbb{R}^{p}} f(\omega)+g(\omega), \tag{2}
\end{equation*}
$$

where $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$ ad $g: \mathbb{R}^{D} \rightarrow \mathbb{R}$ are convex functions.
It can be difficult ad slow to solve problems lite (2) using gradient descent. An alterative approach is to use the Alternation Direction Method of Multipliers (ADMM). ADMM applies to optimization foblens of the form

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{p}} \quad \delta(x)+g(y) \tag{3}
\end{equation*}
$$

"sobbed. be" $\quad y \in \mathbb{R}^{2}$
where $A \in \mathbb{R}^{r \times p}, B \in \mathbb{R}^{r \times q}, c \in \mathbb{R}^{r}$.

The ADMM algorithm proceeds by miminiziy the augmented Lagrangian

$$
Z_{\rho}(x, y, \lambda)=\underbrace{\left.f(x)+g^{\prime} y\right)+\lambda^{\top}\left(A x+B_{y}-c\right)}_{\text {Logrogion }}+\underbrace{\frac{\rho}{2}\left\|A x+B_{j}-c\right\|_{2}^{2}}_{\text {augmentation }}
$$

We wish to minimize $\mathcal{L}(x, y, \lambda)$ over the three variables x, y, ad λ. To do this, AD Mu takes an alternating approach (hence the name)

Initialize: $y_{0} \in \mathbb{R}^{a}, \lambda_{0} \in \mathbb{R}^{r}$
Iterate:

$$
\begin{aligned}
& \cdot x_{k+1}=\underset{x \in \mathbb{R}^{p}}{\arg } \exists_{\rho}^{\sim m}\left(x, y_{k}, \lambda_{k}\right) \\
& \cdot y_{k+1}=\underset{y \in \mathbb{R}^{q}}{\operatorname{ag}} J_{p}\left(x_{k+1}, y_{1}, \lambda_{k}\right) \\
& \cdot \lambda_{k+1}=\lambda^{k}+\rho\left(A x_{k+1}+B_{y_{k+1}}-c\right)
\end{aligned}
$$

To make solving for X_{t+1} ad j_{k+1} easier, we introduce the proximity or proximal operator

$$
\operatorname{prox}_{f}(v)=\underset{x}{\operatorname{argnin}} f(x)+\frac{1}{2}\|x-v\|_{2}^{2}
$$

To see where this cones in, note that

$$
\begin{aligned}
& \arg _{x}^{-\cdots} f(x)+g\left(y_{k}\right)+\lambda_{k}^{T}\left(A_{x}+B_{y_{k}}-c\right)+\frac{\sum}{2}\left\|A_{x}+B_{y_{k}}-c\right\|_{2}^{2} \\
& =\operatorname{ar} j_{x}^{u m} f(x)+\lambda_{k}^{\top} A x+\frac{\rho}{2}\left\|A x+B y_{k}-c\right\|_{2}^{2} \\
& =\operatorname{argung}_{x} f(x)+\frac{\rho}{2}\left\|A_{x}+B_{y_{k}}-c+\frac{1}{\rho} \lambda_{k}\right\|_{2}^{2}
\end{aligned}
$$

where the third line follows by completing the square.
Let

$$
u_{k}=\frac{1}{\rho} \lambda_{k}
$$

In the case where $A=I_{p}, B=-I_{q}$, and $c=0$, which is common, the iterations become

$$
\begin{aligned}
& \text { - } x_{k+1}=\operatorname{prox}_{f / p}\left(y_{k}-u_{k}\right) \\
& \cdot y_{k+1}=\operatorname{prox}_{\mathrm{g} / \mathrm{p}}\left(x_{k+1}+u_{k}\right) \\
& \text { - } \lambda_{k+1}=\lambda_{k}+x_{k+1}-y_{k+1}
\end{aligned}
$$

Solving the Lasso
The Lasso (1) almost fits the formulation (3) if we let $x=y$. To offer the solution to (i) using $A D \mu \mu$, we will apply a common technique called variable splitting, To do this, we rewrite the Lasso

$$
\operatorname{win}_{w \in \mathbb{R}^{D}} \frac{1}{2}\|X w-y\|_{2}^{2}+\lambda\|w\|_{1}
$$

as

$$
\begin{align*}
& \substack{w \in \mathbb{R}^{D} \\
z \in \mathbb{R}^{D}} \\
& \text { ST }\left\|X_{\omega-y}\right\|_{2}^{2}+\lambda\|z\|_{1} \tag{4}\\
& \omega-z=0
\end{align*}
$$

which fits the form of (3) but has the same solution as (1). We now determine the values of the proximal operators for f ad g.

$$
\begin{aligned}
& \operatorname{prox}_{f / \rho}(v)=\underset{w}{\arg -i n} \frac{1}{2}\left\|X_{w}-y\right\|_{2}^{2}+\frac{\rho}{2}\|w-v\|_{2}^{2} \\
& =\arg _{\omega} \omega \frac{1}{2}\left(\omega^{\top} x^{\top} x_{\omega}+y^{\top} y-2 y^{\top} x_{\omega}\right)+ \\
& \frac{f}{2}\left(w^{\top} w+v^{\top} v-2 w^{\top} v\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\underset{\omega}{\operatorname{argnim}} \omega^{\top} X^{\top} X_{\omega}+\rho \omega_{\omega}^{\top}-2 y^{\top} X_{\omega}-2 \rho \omega^{\top} v \\
& =\underset{\omega}{\arg \omega M} \omega^{\top}\left(X^{\top} X+\rho I\right) \omega-2\left(g^{\top} X+\rho v^{\top}\right) \omega \\
& =\left(X^{\top} X+\rho I\right)^{-1}\left(X^{\top} y+\rho v\right) \\
& \operatorname{prox} g / \ell(v)=\underset{z}{\operatorname{argnin} \lambda\|z\|_{1}+\frac{\rho}{2}\|z-v\|_{2}^{2}}
\end{aligned}
$$

To find the solution, consider first $z \in \mathbb{R}$. In this case

$$
\operatorname{proxg}_{\text {gp }}(v)=\underset{z \in \mathbb{R}}{\operatorname{argun}} \lambda|z|+\frac{\rho}{2}(z-v)^{2}
$$

Since 1.1 is rut differentiable, we again take the subgradient and set it to zero to wiminize. This becomes

$$
\begin{aligned}
& \partial\left(\lambda|z|+\frac{\rho}{2}(z-v)^{2}\right)=\partial \lambda|z|+\rho(z-v)=0 \\
& \Leftrightarrow(v-z)=\frac{1}{\rho} \partial \lambda|z|
\end{aligned}
$$

which breaks down into three cases, since

$$
\partial \lambda|z|= \begin{cases}\lambda & z>0 \\ -\lambda & z<0 \\ {[-\lambda, \lambda]} & z=0\end{cases}
$$

is the subdifferential of $\lambda|z|$. If $z>0$, then $\partial \lambda|z|=\lambda$ and we get $z=v-\frac{\lambda}{\rho}$. If $z<0, \partial \lambda|z|=-\lambda$ ad we get $z=v+\frac{\lambda}{\rho}$. Finally, if $z=0$, then $\partial \lambda(z)=0$, which holds for the rage $v \in\left[-\frac{\lambda}{\rho}, \frac{\lambda}{\rho}\right]$. Sum-sizing, we see that

$$
z=\left\{\begin{array}{cl}
v-\frac{\lambda}{\rho} & \text { if } v>\frac{\lambda}{\rho} \\
v+\frac{\lambda}{\rho} & \text { if } v<-\frac{A}{\rho} \\
0 & \text { if } v \in\left[-\frac{\lambda}{\rho}, \frac{\lambda}{\rho}\right]
\end{array}\right.
$$

which is known as the soft thresholdiag operator Sip (v).
To generalize to multiple dimensions, note that

$$
\lambda\|z\|_{1}+\frac{\rho}{2}\|z-v\|_{2}^{2}=\sum_{i=1}^{D}\left(\lambda\left|z_{i}\right|+\frac{c}{2}\left(z_{i}-v_{i}\right)^{2}\right)
$$

so we can solve the proximal operator for each element independently. This yields

$$
\operatorname{prox} g / \ell(v)=\left(S_{\lambda / p}\left(v_{i}\right)\right)_{i=1}^{D} \in \mathbb{R}^{D}
$$

which for convenience is sometimes writer as

$$
\operatorname{proxglp}(v)=S_{x p}(v) .
$$

ADMM for Lasso
Combining the palates above gives the follociy ADMM iteration for soluyg the Lasso.

$$
\begin{aligned}
\cdot \omega_{k+1} & =\operatorname{prox}_{f \rho \rho}\left(z_{k}-u_{k}\right) \\
& =\left(x^{\top} x+\rho I\right)^{-1}\left(x^{\top} y+\rho\left(z_{k}-u_{k}\right)\right) \\
-z_{k+1} & =\operatorname{proxg/\rho }\left(\omega_{k+1}+u_{k}\right) \\
& =S_{\lambda / \rho}\left(\omega_{k+1}+u_{k}\right) \\
-u_{k+1} & =u_{k}+\omega_{k+1}-z_{k+1}
\end{aligned}
$$

