EE 510: Mathematical Foundations of Machine Learning

Winter 2020

Lecture Notes: Sparse Regression

Instructor Name: John Lipor

1 Introduction

Let's return to the matrix-vector version of least squares but keep the feature-label interpretation. In this case, we form **X** by letting the **rows** of **X** be the feature vectors $\mathbf{x}_1, \ldots, \mathbf{x}_N \in \mathbb{R}^D$ corresponding to the labels $y_1, \ldots, y_N \in \mathbb{R}$. Recall that our goal is to regress $\mathbf{y} \in \mathbb{R}^N$ via linear combinations of the columns of **X**, i.e., we want

 $\mathbf{X}\mathbf{w}\approx\mathbf{y},$

where $\mathbf{w} \in \mathbb{R}^{D}$. In a large number of applications, we wish to represent \mathbf{y} using the smallest number of columns of \mathbf{X} possible. For example, if the columns of \mathbf{X} are different features in a machine learning problem, then we may want to know the top few features that best predict our labels—a process known as feature selection.

1.1 Formulating sparse regression

We wish to encode the goal of minimizing the number of nonzero coefficients in \mathbf{w} into a mathematical optimization problem (and ideally a convex one). Recall from the low-rank approximation slides that we defined the ℓ_0 -"norm" of a vector $\|\mathbf{w}\|_0$ to be the number of nonzeros in that vector (norm is in quotes because it does not satisfy the definition of a norm). We can therefore encode our goal of sparse regression via the formulation

$$\min_{\mathbf{w}\in\mathbb{R}^D} \|\mathbf{X}\mathbf{w}-\mathbf{y}\|_2^2 \tag{1}$$

subject to
$$\|\mathbf{w}\|_0 \le s$$
 (2)

where $s \in \mathbb{N}$ is the number of nonzeros we allow in **w**. Unfortunately, solving (2) is **NP-hard**, which is a precise way of saying that solving it is computationally prohibitive. This is in part due to the fact that (2) is not a convex problem. One way to see this is to note that for every $s \in \mathbb{N}$, there exists a $\lambda \in \mathbb{R}$ such that solving (2) is equivalent to solving

$$\min_{\mathbf{w}\in\mathbb{R}^{D}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_{2}^{2} + \lambda \|\mathbf{w}\|_{0}.$$
(3)

Since $\|\cdot\|_0$ is not a convex function, the above is not a convex problem.

As we've learned, convex problems are much easier to deal with (typically through first-order methods). Our solution to the above problem is to find the convex problem whose solution approximates that of (3). Such a problem is called a **convex relaxation**. For reasons that you'll see in the homework, the natural convex relaxation of the ℓ_0 -"norm" is the ℓ_1 -norm (actually a norm), which is defined as

$$\|\mathbf{w}\|_1 = \sum_{i=1}^D |w_i|.$$

Using this, we form the convex relaxation of the problem (3) to be

$$\min_{\mathbf{w}\in\mathbb{R}^{D}}\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{w}\right\|_{1},\tag{4}$$

which is called the lasso (least absolute shrinkage and selection operator). Since (4) attempts to regress \mathbf{y} using a sparse vector \mathbf{w} , we refer to this problem as sparse regression. Further, we can interpret (4) in the context of empirical risk minimization, where the data-fit term (loss) is the usual least squares objective, and the regularizer is the ℓ_1 -norm (instead of ℓ_2 as in ridge regression).

1.2 What leads to sparsity?

Why does the lasso lead to solutions that are sparse? Let's consider the constrained form of (4)

$$\min_{\mathbf{w} \in \mathbb{D}^D} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2 \tag{5}$$

subject to
$$\|\mathbf{w}\|_1 \le s.$$
 (6)

The constraint $\|\mathbf{w}\|_1 \leq s$ means that the solution \mathbf{w}^* lies in the ℓ_1 -ball of radius s, i.e.,

$$\mathbf{w}^* \in \left\{ \mathbf{w} \in \mathbb{R}^D : \left\| \mathbf{w} \right\|_1 \le s \right\}$$

On the other hand, the set of solutions with equal regression error

$$\left\{ \mathbf{w} \in \mathbb{R}^D : \left\| \mathbf{X} \mathbf{w} - \mathbf{y} \right\|_2^2 = c \right\}$$

is an ellipse for each $c \in \mathbb{R}$. The solution to (4) occurs for the smallest $c \in \mathbb{R}$ such that the elliptical contours hit the contraint set. For ℓ_1 regularization, these two sets tend to intersect at the corners where **w** is sparse, whereas ℓ_2 regularization (ridge regression) does not have this effect. For an excellent depiction, see **The Elements of Statistical Learning**, Fig. 3.11 (pg. 71).

1.3 Comparison to Ridge Regression

To build further intuition behind the lasso, let's consider the one-dimensional regression problem for standard least squares, ridge regression, and the lasso.

$$\hat{w}_{LS} = \arg\min_{w \in \mathbb{R}} (w - y)^2$$
$$\hat{w}_{RR} = \arg\min_{w \in \mathbb{R}} (w - y)^2 + \lambda w^2$$
$$\hat{w}_{lasso} = \arg\min_{w \in \mathbb{R}} (w - y)^2 + \lambda |w|$$

When trying to optimize the above, one issue is that the absolute value is not differentiable. To overcome this, we introduce a new object.

Definition 1. The subdifferential of a convex function $f : \mathbb{R}^D \to \mathbb{R}$ at $\mathbf{x} \in \mathbb{R}^D$ is

$$\partial f(\mathbf{x}) = \left\{ \mathbf{g} \in \mathbb{R}^D : f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \, \forall \mathbf{y} \in \mathbb{R}^D \right\}.$$

A vector in $\mathbf{g} \in \partial f(\mathbf{x})$ is called a subgradient.

Recall that for functions that are convex and differentiable, we had that

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$$

for all $\mathbf{y} \in \mathbb{R}^{D}$. Hence, we can see that for differentiable functions, the subdifferential consists of a single element, which is the gradient. Since |w| is not differentiable at zero, we'll instead take a subgradient to optimize the one-dimensional lasso. You should check for yourself that a valid subgradient of f(x) = |x| is

g = 0. With this subgradient in hand, we can write the closed-form solutions to our above three regression problems as

$$\begin{split} \hat{w}_{LS} &= y \\ \hat{w}_{RR} &= \frac{y}{1+\lambda} \\ \hat{w}_{lasso} &= \begin{cases} y-\lambda & y > \lambda \\ y+\lambda & y < -\lambda \\ 0 & y \in [-\lambda,\lambda] \end{cases} \end{split}$$

These are obtained by setting the (sub)gradient to zero and solving for w and can be seen in Fig. 1 below. Both ridge regression and lasso are known as *shrinkage* methods, since they shrink the solution toward zero, with λ controlling the amount of shrinkage.

Figure 1: Solutions to the one-dimensional regression problem.