EE 510: Mathematical Foundations of Machine Learning Winter 2020

Lecture Notes: Sparse Regression

Instructor Name: John Lipor

1 Introduction

Let’s return to the matrix-vector version of least squares but keep the feature-label interpretation. In this
case, we form X by letting the rows of X be the feature vectors xi,...,xy € RP corresponding to the
labels y1,...,yn € R. Recall that our goal is to regress y € RY via linear combinations of the columns of
X, i.e., we want

Xw Ry,

where w € RP. In a large number of applications, we wish to represent y using the smallest number of
columns of X possible. For example, if the columns of X are different features in a machine learning problem,
then we may want to know the top few features that best predict our labels—a process known as feature
selection.

1.1 Formulating sparse regression

We wish to encode the goal of minimizing the number of nonzero coefficients in w into a mathematical
optimization problem (and ideally a convex one). Recall from the low-rank approximation slides that we
defined the fo-“norm” of a vector ||wl|, to be the number of nonzeros in that vector (norm is in quotes
because it does not satisfy the definition of a norm). We can therefore encode our goal of sparse regression
via the formulation

. 2
min Xw — 1

min - [Xw - [} (1

subject to  [[wll, <s (2)

where s € N is the number of nonzeros we allow in w. Unfortunately, solving (2) is NP-hard, which is a
precise way of saying that solving it is computationally prohibitive. This is in part due to the fact that (2)

is not a convex problem. One way to see this is to note that for every s € N, there exists a A € R such that

solving (2) is equivalent to solving
. 2
min || Xw — + A||lwl|g - 3
weRD | vyl Iwllo (3)
Since ||-||, is not a convex function, the above is not a convex problem.
As we’ve learned, convex problems are much easier to deal with (typically through first-order methods).
Our solution to the above problem is to find the convex problem whose solution approximates that of (3).

Such a problem is called a convex relaxation. For reasons that you’ll see in the homework, the natural
convex relaxation of the £p-“norm” is the ¢;-norm (actually a norm), which is defined as

D
lwll, = i -
i=1

Using this, we form the convex relaxation of the problem (3) to be

. 2
min [ Xw —y|5 + Al[w]; (4)
weRDP


https://en.wikipedia.org/wiki/Feature_selection
https://en.wikipedia.org/wiki/Feature_selection
https://en.wikipedia.org/wiki/Norm_(mathematics)
https://en.wikipedia.org/wiki/NP-hardness

Sparse Regression 2

which is called the lasso (least absolute shrinkage and selection operator). Since (4) attempts to regress y
using a sparse vector w, we refer to this problem as sparse regression. Further, we can interpret (4) in
the context of empirical risk minimization, where the data-fit term (loss) is the usual least squares objective,
and the regularizer is the ¢;-norm (instead of ¢5 as in ridge regression).

1.2 What leads to sparsity?
Why does the lasso lead to solutions that are sparse? Let’s consider the constrained form of (4)
min - [|Xw —y]; (5)
subject to  [|w|; < s. (6)
The constraint [[wl|; < s means that the solution w* lies in the £;-ball of radius s, i.e.,
w* e {weRP:|w|, <s}.
On the other hand, the set of solutions with equal regression error

{W ERD ;| Xw — y\|§ = c}

is an ellipse for each ¢ € R. The solution to (4) occurs for the smallest ¢ € R such that the elliptical contours
hit the contraint set. For ¢; regularization, these two sets tend to intersect at the corners where w is sparse,
whereas {5 regularization (ridge regression) does not have this effect. For an excellent depiction, see The
Elements of Statistical Learning, Fig. 3.11 (pg. 71).

1.3 Comparison to Ridge Regression

To build further intuition behind the lasso, let’s consider the one-dimensional regression problem for standard
least squares, ridge regression, and the lasso.

Wps = arg min(w —y)?
weR
Wrp = arg min(w —y)? + Iw?
weR
Wigsso = arg min(w —y)? + X w).
weR

When trying to optimize the above, one issue is that the absolute value is not differentiable. To overcome
this, we introduce a new object.

Definition 1. The subdifferential of a convex function f : RP — R at x € RP is

af(x) ={g €R": f(y) > f(x) + (g,y —x)Vy e R"}.
A vector in g € 0f(x) is called a subgradient.

Recall that for functions that are convex and differentiable, we had that

fy) 2 fx) +(Vf(x),y —x)

for all y € RP. Hence, we can see that for differentiable functions, the subdifferential consists of a single
element, which is the gradient. Since |w| is not differentiable at zero, we’ll instead take a subgradient to
optimize the one-dimensional lasso. You should check for yourself that a valid subgradient of f(z) = |z| is


https://en.wikipedia.org/wiki/Lasso_(statistics)
https://en.wikipedia.org/wiki/Sparse_approximation
https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12.pdf
https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12.pdf
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g = 0. With this subgradient in hand, we can write the closed-form solutions to our above three regression
problems as

wrs =Y
N _ Y
WRE TN
y—A y>A
Wiasso = y+A y<-—A
0 y €[\ A

These are obtained by setting the (sub)gradient to zero and solving for w and can be seen in Fig. 1 below.
Both ridge regression and lasso are known as shrinkage methods, since they shrink the solution toward zero,
with A controlling the amount of shrinkage.
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Figure 1: Solutions to the one-dimensional regression problem.
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