
EE 516: Mathematical Foundations of Machine Learning Winter 2023

Homework 7
Due: March 5, 2023, 11:59PM PT

Student Name: Instructor Name: John Lipor

Problem 1 (4 pts, 2 pts, 2 pts)

Define the unit `p-norm ball as

Bp =
{
x ∈ RD : ‖x‖p ≤ 1

}
.

It is often useful to visualize the unit ball for different norms, as we saw in the lecture on sparse regression.
To do this, we instead visualize the unit sphere for each norm, which is

Sp =
{
x ∈ RD : ‖x‖p = 1

}
.

One way to visualize this sphere is to generate a large number of random points and normalize these points
so that they have ‖x‖p = 1.

(a) Complete the script normalize that takes in a matrix X = [x1 x2 . . . xN ] ∈ RD×N and normalizes it
so that each column of X has unit `p-norm. Do not use any loops or built in norm or norms functions.
Turn in your code and a brief explanation of how it works.

(b) Test your implementation by running prob1. Turn in the resulting plot.

(c) Intuitively, a set is convex if the line connecting any two points in a set is contained within that set.
Based on this definition and your plot, for which norms (i.e., which values of p) is the unit ball convex?
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Problem 2 (5 pts, 4 pts, 4 pts)

In this problem, you will learn a linear classifier using empirical risk minimization (ERM) with the logistic
loss. In this case, for a linear function parameterized by the weight vector w, ERM seeks to minimize

J(w) =
1

N

N∑
i=1

L(yi, x
T
i w) +

λ

2
‖w‖22 , (1)

where
L(y, t) = log(1 + e−yt). (2)

The above loss is convex and differentiable. Using the above loss and assuming there are two class labels
yi ∈ {−1, 1}, solving (1) yields the optimal logistic regression classifier. In this problem, you will find this
classifier using gradient descent and stochastic gradient descent.

(a) First, rewrite (1) as a summation

J(w) =

N∑
i=1

Ji(w) (3)

for an appropriately defined Ji(w). Using the loss function defined in (2), differentiate (3) for a single i
with respect to the vector w ∈ RD to obtain the gradient.

(b) Solve (1) with logistic loss using gradient descent by computing the full gradient vector, which is the sum
of the above “stochastic” gradients. Complete the lrgd function using the learning rate µ = 100

kk , where
kk is the iteration number. Test your code on digits 1 and 2 from the MNIST dataset after reducing the
dimensionality to 2 using PCA by running prob2. Turn in your code. Plots will be formed in part (c).

(c) Solve (1) using stochastic gradient descent by taking 20 full passes through the data in random order.
Complete lrsgd using the learning rate µ = 100

kk , where kk is the iteration number. Turn in the
following:

• A plot of the resulting cost as a function of the number of iterations

• The resulting plot of the two separators and the reduced-dimension data (code provided in prob2)

• A sentence or two describing how the two methods compare.

Note: For fair comparison, you should compute the cost for SGD after each of the 20 cycles, not after
each individual update.
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Problem 3 (5 pts, 4 pts, 4 pts, 4 pts)

In this problem, you will learn a linear classifier using empirical risk minimization (ERM) with the hinge
loss. You will again minimize (1), but this time take the loss defined by

L(y, t) = max(0, 1− yt). (4)

The above loss is convex but not differentiable at 0, so we will make use of subgradients (see notes on sparse
regression). Using the above loss and assuming there are two class labels yi ∈ {−1, 1}, solving (1) yields the
optimal soft margin hyperplane, which is the subspace of dimension D− 1 that best separates data from two
classes (where D is the dimension of the features/examples/data points). In this problem, you will find this
classifier using gradient descent and stochastic gradient descent.

(a) First, rewrite (1) as a summation

J(w) =

N∑
i=1

Ji(w) (5)

for an appropriately defined Ji(w). Using the loss function defined in (4), differentiate (5) for a single i
with respect to the vector w ∈ RD to obtain a subgradient. Be careful at the point yt = 1.

(b) Solve (1) with hinge loss using gradient descent by computing the full gradient vector, which is the sum
of the above “stochastic” gradients. Complete the osmgd function using the learning rate µ = 100

kk , where
kk is the iteration number. Test your code on digits 1 and 2 from the MNIST dataset after reducing the
dimensionality to 2 using PCA by running prob3. Turn in your code. Plots will be formed in part (c).
Hint: It may be easier to create a separate subg function to compute the subgradient, which you can
use in both parts (b) and (c).

(c) Solve (1) using stochastic gradient descent by taking 20 full passes through the data in random order.
Complete osmsgd using the learning rate µ = 100

kk , where kk is the iteration number. Turn in the
following:

• A plot of the resulting cost as a function of the number of iterations

• The resulting plot of the two separators (code provided in prob3)

• A sentence or two describing how the two methods compare.

Note: For fair comparison, you should compute the cost for SGD after each of the 20 cycles, not after
each individual update.

(d) Finally, plot the reduced-dimension data with the classifiers obtained via (1) logistic loss + SGD, (2)
hinge loss + SGD, and (3) LS classifer from Homework 6. Turn in the resulting plot and a table
displaying the training and test errors in the form below.

Logistic Loss Hinge Loss Least Squares
Training Error (%)

Test Error (%)

Table 1: Comparison of classification performance on MNIST digits 1 and 2 after reducing dimension to two
using PCA.
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