
EE 516: Mathematical Foundations of Machine Learning Winter 2023

Homework 3
Due: February 3, 2023, 11:59PM PT

Student Name: Instructor Name: John Lipor

Problem 1 (5 pts each)

Let A ∈ Rm×n and suppose W ∈ Rm×m and Q ∈ Rn×n are each orthogonal matrices.

(a) Show that A and WAQ have the same singular values. Consequently, A and WAQ have the same rank,
Frobenius norm, and operator norm. This is why the Frobenius and operator norms are called unitarily
invariant ; their value does not change when the matrix is multiplied from the left and/or right by a
unitary (or orthogonal) matrix. Any norm that depends on the singular values of A will, by definition,
be unitarily invariant.

(b) Suppose W and Q are nonsingular but not necessarily orthogonal matrices. Do A and WAQ still have
the same rank? Prove or give a counterexample.

(c) In the setting of part (b), do A and WAQ have the same singular values? Prove or give a counterexample.

Problem 2 (5 pts each)

Let A =

[
1 0
0 0

]
.

(a) Determine the nullspace of A, denoted by N (A), and the range or column space of A, denoted by R(A).

(b) Are N (A) and R(A) equal? Is this true in general? If not, provide a counter-example.

Problem 3 (7 pts, 3 pts)

(a) Determine how the eigenvalues of

B =

[
0 A
AT 0

]
are related to the singular values of A ∈ Rn×n.

(b) Verify that the eigenvectors of B are the normalized versions of[
ui
vi

]
and

[
ui
−vi

]
,

1



Homework 3 2

where ui and vi are arbitrary left and right (respectively) singular vectors of A. Hint: To determine the
eigenvalues, start off with some numerical experiments on self-generated A matrices and form a conjecture.
The commands eig and svd will be helpful. You should also write A in terms of its SVD, i.e., A = UΣV T .

Problem 4 (7 pts)

The polar factorization of a matrix A ∈ Rn×n is given by A = QS, where Q is orthogonal and S = ST � 0,
i.e., S is positive semi-definite. Express Q and S in terms of U , Σ, and V , where A = UΣV T .

Problem 5 (3 pts each)

Let A = xyT , where neither x nor y is 0.

(a) How many linearly-independent columns does A have? Explain why!

(b) What is the rank of A? Explain why!

(c) Generate A in Matlab or Python using random (randn) x, y ∈ R100. Plot the singular values of A
and include the plot here, as well as your code. The stem function works best for this.

Problem 6 (5 pts, 2 pts)

When D is an m × n rectangular diagonal matrix, its pseudo-inverse D+ is an n ×m rectangular diagonal
matrix whose nonzero entries are the reciprocals 1/dk of the diagonal entries of D. Thus, a matrix A having
SVD A = UΣV T has A+ = V Σ+UT = VrΣ

−1
r UTr . Working with just this definition, determine by

hand the pseudo-inverse of

(a) A = xyT , where neither x nor y is 0

(b) A = xxT , where x 6= 0.

You may again wish to from a conjecture using computational experiments.

Problem 7 (7 pts)

Prove that the orthogonal complement of the range of a matrix A equals the nullspace of AT , i.e.,

R(A)⊥ = N (AT ).

Hint: A common strategy for proving that two sets X,Y are equal is to prove that X ⊂ Y and Y ⊂ X.

Problem 8 (5 pts)

In this problem, you will implement another tool for use in the computer vision algorithm photometric stereo,
which allows us to reconstruct a 3D object’s surface from 2D images of it under different lighting conditions.

Suppose we are in a dark room with an object on a dark table, a camera fixed above it, and a moveable
light source. We model the object surface as z = f(x, y), where (x, y) denotes the coordinates on the table
and z is the height above the table. Assume that the m× n sized image I is a representation of f(x, y) for
each (x, y) tuple. (Given one light source, f(x, y) is the z coordinate of the position where a ray of light hits
the surface at (x, y, z).) The pixel intensity I(x, y) indicates how much light reflects off the surface f(x, y).
If our object is diffuse (also called matte or Lambertian), one can derive the relationship

I(x, y) = α(x, y)(`Tn(x, y)), (1)



Homework 3 3

where ` ∈ R3 is a unit-norm vector describing the orientation of the incident light rays on the surface,
n(x, y) ∈ R3 is the unit-norm surface normal vector of f at (x, y, f(x, y)), and α(x, y) > 0 is a scaling
constant called the surface albedo. Note that (1) is a scalar value.

Now suppose that we take d images I1, . . . , Id of our object, with lighting directions `1, . . . , `d. For any
(x, y), we can stack (1) into an overdetermined system of equationsI1(x, y)

...
Id(x, y)


︸ ︷︷ ︸

=:Ixy

≈
[
`1 . . . `d

]T︸ ︷︷ ︸
=:LT

(α(x, y)n(x, y))︸ ︷︷ ︸
=:ρ(x,y)

. (2)

We could solve (2) for ρ(x, y) when d = 3, but in practice when there is noise or our assumptions do not hold
exactly (they never do), a more robust approach is to take d > 3 images and solve the least-squares problem

ρ(x, y) = arg min
ρ∈R3

∥∥Ixy − LT ρ∥∥22 (3)

and approximate the surface norm n by

n∗(x, y) =
ρ(x, y)

‖ρ(x, y)‖ 2
. (4)

Your task for this problem is to complete the function called compute normals (in files for download)
that computes the unit-norm surface normal vectors for each pixel in a scene by solving (3) and (4). You

may use the \ or linalg.lstsq command, where A\b computes the solution xLS = arg minx ‖Ax− b‖
2
2.

Turn in your code for the implemented function and the resulting images generated by the catdemo script,
which should match Fig. 1 below.

Hint: You can solve this for all mn points simultaneously by vectorizing I.

Problem 9 Reflection (5 pts per problem)

In this problem, your task is to look back through Homeworks 1-2 and identify the two problems you found
most difficult to solve and reflect on the problem solving strategies that got you through them. Complete
the below tasks.

• For each problem, identify the top 1-3 tools/definitions from the course material you used.

• For each problem, write down the problem solving advice you would give to a peer attempting to solve
the problem at the same point in the course. Do not simply give away the answer—place yourself in
the role of an instructor during office hours.
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Figure 1: Output images from Problem 8.
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