Homework 3

Due: February 3, 2023, 11:59PM PT
Student Name:
Instructor Name: John Lipor

Problem 1 (5 pts each)
Let $A \in \mathbb{R}^{m \times n}$ and suppose $W \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$ are each orthogonal matrices.
(a) Show that A and $W A Q$ have the same singular values. Consequently, A and $W A Q$ have the same rank, Frobenius norm, and operator norm. This is why the Frobenius and operator norms are called unitarily invariant; their value does not change when the matrix is multiplied from the left and/or right by a unitary (or orthogonal) matrix. Any norm that depends on the singular values of A will, by definition, be unitarily invariant.
(b) Suppose W and Q are nonsingular but not necessarily orthogonal matrices. Do A and $W A Q$ still have the same rank? Prove or give a counterexample.
(c) In the setting of part (b), do A and $W A Q$ have the same singular values? Prove or give a counterexample.

Problem 2 (5 pts each)
Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.
(a) Determine the nullspace of A, denoted by $\mathcal{N}(A)$, and the range or column space of A, denoted by $\mathcal{R}(A)$.
(b) Are $\mathcal{N}(A)$ and $\mathcal{R}(A)$ equal? Is this true in general? If not, provide a counter-example.

Problem 3 ($7 \mathrm{pts}, 3 \mathrm{pts}$)
(a) Determine how the eigenvalues of

$$
B=\left[\begin{array}{cc}
0 & A \\
A^{T} & 0
\end{array}\right]
$$

are related to the singular values of $A \in \mathbb{R}^{n \times n}$.
(b) Verify that the eigenvectors of B are the normalized versions of

$$
\left[\begin{array}{l}
u_{i} \\
v_{i}
\end{array}\right] \text { and }\left[\begin{array}{c}
u_{i} \\
-v_{i}
\end{array}\right],
$$

where u_{i} and v_{i} are arbitrary left and right (respectively) singular vectors of A. Hint: To determine the eigenvalues, start off with some numerical experiments on self-generated A matrices and form a conjecture. The commands eig and svd will be helpful. You should also write A in terms of its SVD, i.e., $A=U \Sigma V^{T}$.

Problem 4 (7 pts)
The polar factorization of a matrix $A \in \mathbb{R}^{n \times n}$ is given by $A=Q S$, where Q is orthogonal and $S=S^{T} \succeq 0$, i.e., S is positive semi-definite. Express Q and S in terms of U, Σ, and V, where $A=U \Sigma V^{T}$.

Problem 5 (3 pts each)
Let $A=x y^{T}$, where neither x nor y is 0 .
(a) How many linearly-independent columns does A have? Explain why!
(b) What is the rank of A ? Explain why!
(c) Generate A in Matlab or Python using random (randn) $x, y \in \mathbb{R}^{100}$. Plot the singular values of A and include the plot here, as well as your code. The stem function works best for this.

Problem 6 (5 pts, 2 pts)
When D is an $m \times n$ rectangular diagonal matrix, its pseudo-inverse D^{+}is an $n \times m$ rectangular diagonal matrix whose nonzero entries are the reciprocals $1 / d_{k}$ of the diagonal entries of D. Thus, a matrix A having SVD $A=U \Sigma V^{T}$ has $A^{+}=V \Sigma^{+} U^{T}=V_{r} \Sigma_{r}^{-1} U_{r}^{T}$. Working with just this definition, determine by hand the pseudo-inverse of
(a) $A=x y^{T}$, where neither x nor y is 0
(b) $A=x x^{T}$, where $x \neq 0$.

You may again wish to from a conjecture using computational experiments.

Problem 7 (7 pts)

Prove that the orthogonal complement of the range of a matrix A equals the nullspace of A^{T}, i.e.,

$$
\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)
$$

Hint: A common strategy for proving that two sets X, Y are equal is to prove that $X \subset Y$ and $Y \subset X$.

Problem 8 (5 pts)
In this problem, you will implement another tool for use in the computer vision algorithm photometric stereo, which allows us to reconstruct a 3D object's surface from 2D images of it under different lighting conditions.

Suppose we are in a dark room with an object on a dark table, a camera fixed above it, and a moveable light source. We model the object surface as $z=f(x, y)$, where (x, y) denotes the coordinates on the table and z is the height above the table. Assume that the $m \times n$ sized image I is a representation of $f(x, y)$ for each (x, y) tuple. (Given one light source, $f(x, y)$ is the z coordinate of the position where a ray of light hits the surface at (x, y, z).) The pixel intensity $I(x, y)$ indicates how much light reflects off the surface $f(x, y)$. If our object is diffuse (also called matte or Lambertian), one can derive the relationship

$$
\begin{equation*}
I(x, y)=\alpha(x, y)\left(\ell^{T} n(x, y)\right) \tag{1}
\end{equation*}
$$

where $\ell \in \mathbb{R}^{3}$ is a unit-norm vector describing the orientation of the incident light rays on the surface, $n(x, y) \in \mathbb{R}^{3}$ is the unit-norm surface normal vector of f at $(x, y, f(x, y))$, and $\alpha(x, y)>0$ is a scaling constant called the surface albedo. Note that (1) is a scalar value.

Now suppose that we take d images I_{1}, \ldots, I_{d} of our object, with lighting directions $\ell_{1}, \ldots, \ell_{d}$. For any (x, y), we can stack (1) into an overdetermined system of equations

$$
\underbrace{\left[\begin{array}{c}
I_{1}(x, y) \tag{2}\\
\vdots \\
I_{d}(x, y)
\end{array}\right]}_{=: I_{x y}} \approx \underbrace{\left[\begin{array}{lll}
\ell_{1} & \ldots & \ell_{d}
\end{array}\right]^{T}}_{=: L^{T}} \underbrace{(\alpha(x, y) n(x, y))}_{=: \rho(x, y)}
$$

We could solve (2) for $\rho(x, y)$ when $d=3$, but in practice when there is noise or our assumptions do not hold exactly (they never do), a more robust approach is to take $d>3$ images and solve the least-squares problem

$$
\begin{equation*}
\rho(x, y)=\underset{\rho \in \mathbb{R}^{3}}{\arg \min }\left\|I_{x y}-L^{T} \rho\right\|_{2}^{2} \tag{3}
\end{equation*}
$$

and approximate the surface norm n by

$$
\begin{equation*}
n^{*}(x, y)=\frac{\rho(x, y)}{\|\rho(x, y)\|_{2}} \tag{4}
\end{equation*}
$$

Your task for this problem is to complete the function called compute_normals (in files for download) that computes the unit-norm surface normal vectors for each pixel in a scene by solving (3) and (4). You may use the \backslash or linalg.lstsq command, where $A \backslash b$ computes the solution $x_{\mathrm{LS}}=\arg \min _{x}\|A x-b\|_{2}^{2}$. Turn in your code for the implemented function and the resulting images generated by the catdemo script, which should match Fig. 1 below.

Hint: You can solve this for all $m n$ points simultaneously by vectorizing I.

Problem 9 Reflection (5 pts per problem)
In this problem, your task is to look back through Homeworks 1-2 and identify the two problems you found most difficult to solve and reflect on the problem solving strategies that got you through them. Complete the below tasks.

- For each problem, identify the top 1-3 tools/definitions from the course material you used.
- For each problem, write down the problem solving advice you would give to a peer attempting to solve the problem at the same point in the course. Do not simply give away the answer-place yourself in the role of an instructor during office hours.

Figure 1: Output images from Problem 8.

