
EE 516: Mathematical Foundations of Machine Learning Winter 2023

Homework 2
Due: January 27, 2023, 11:59PM PT

Student Name: Instructor Name: John Lipor

Problem 1 (5 pts)

Describe how the eigenvalues and eigenvectors of B = A−10I are related to the eigenvalues and eigenvectors
of A.

Problem 2 (6 pts)

Let v1, v2, . . . , vn be orthonormal vectors in Rn. Show that Av1, Av2, . . . , Avn are also orthonormal if and
only if A ∈ Rn×n is an orthogonal matrix.

Note: Proving a statement of the form “A if and only if B” is equivalent to showing that B implies A
(if) and A implies B (only if).

Problem 3 (5 pts)

Let A ∈ Rn×n = UΣV T with rank r = n. Express A−1 in terms of the SVD of A.

Problem 4 (8 pts)

Let B = T−1AT for an invertible matrix T . Determine the relationship between the eigenvalues and
eigenvectors of B and those of A. Explain. The matrices A and B, when thus related, are said to be
“similar”.

Note: Be sure to follow the convention that eigenvectors are normalized to have unit norm.

Problem 5 (5 pts)

Let X ∈ Rm×n. Using the SVD only, show that if XTX = 0, then X = 0.

Problem 6 (8 pts)

The Frobenius norm of A ∈ Rm×n is defined as ‖A‖F =
√∑

i,j |aij |
2
. Express the Frobenius norm of A in

terms of its singular values. Hint: How can ‖A‖F be computed from the matrix ATA?
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Problem 7 (6 pts, 2 pts, 2 pts)

Let A ∈ Rm×n with singular values σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n). Recall that the “operator norm” of a matrix
‖A‖2 = σ1. There are many other interesting and useful matrix norms, and we will continue to see these
throughout the course. Bounding these norms in terms of each other is an important problem.

(a) Show that

σ1 ≤ ‖A‖F ≤
√

min(m,n)σ1.

(b) If the Frobenius norm is small, what does this tell us about the operator norm?

(c) If the operator norm is small, what does this tell us about the Frobenius norm?
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Problem 8 (6 pts, 2 pts, 2 pts)

This problem develops a tool that will be used in later homework assignments for an application called
photometric stereo. To approximate the derivatives of a function f(x) that is sampled on a grid x1, . . . , xn
where xi+1 = xi + δ, a typical finite difference approach is:

∂f(x)

∂x

∣∣∣
x=xi

≈ f(xi+1)− f(xi)

δ
.

When the sample spacing is δ = 1, this approximation simplifies to

f ′(xi) :=
∂f(x)

∂x

∣∣∣
x=xi

≈ f(xi+1)− f(xi).

We can express this relation for all xi samples via the matrix-vector product
f ′(x1)
f ′(x2)

...
f ′(xn)

 ≈ Dn


f(x1)
f(x2)

...
f(xn)

 ,
where Dn is the so-called first-difference matrix

Dn =


−1 1

−1 1
. . .

. . .

−1 1
1 −1

 .

Here we choose to set Dn(n, 1) = 1, which corresponds to the (perhaps unexpected) approximation f ′(xn) ≈
f(x1)− f(xn). This choice is called a periodic boundary condition because essentially we are assuming that
the domain wraps around. We make this assumption because the resulting Dn is a circulant matrix, so its
eigenvectors can be computed in closed form!

The goal of this problem is for you to derive and implement the analog of Dn for two-dimensional
differentiation. Let f(x, y) be a function of two variables. We can approximate its partial derivatives using
finite differences as follows:

∂f(x, y)

∂x
≈ f(x+ 1, y)− f(x, y)

(x+ 1)− x
= f(x+ 1, y)− f(x, y) (1)

∂f(x, y)

∂y
≈ f(x, y + 1)− f(x, y)

(y + 1)− y
= f(x, y + 1)− f(x, y) (2)

To simplify notation, define the m× n matrices FXY, DFDX, and DFDY having elements as follows:

FXY(i, j) = f(i, j)

DFDX(i, j) =
∂f(i, j)

∂x

DFDY(i, j) =
∂f(i, j)

∂y
.

The x coordinate is along the column of FXY and the y coordinate is along the row of FXY, so we can think
in terms of FXY(x, y). Define the corresponding mn × 1 vectors fxy, dfdx, and dfdy to be the vectorized
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versions obtianed using the vec(·) operation (HW1, Problem 9). With this notation, we can succinctly
express equations (1) and (2) as [

dfdx

dfdy

]
= A fxy,

where A is a 2mn×mn matrix.

(a) Find an expression for A in terms of the first difference matrices Dn and Dm, appropriately sized identity
matrices, and appropriate Kronecker products of these matrices. Use periodic boundary conditions.

(b) Once you have determined A, write the function first diffs 2d matrix that takes as input the dimen-
sions m and n of FXY and returns the appropriate A matrix, stored in sparse format, since the resulting
matrix will be prohibively large to store as a full double-precision matrix. Python users should make
use of the scipy.sparse library.

(c) In this problem your function is designed to compute finite-difference approximations to derivatives along
x and y. If you create an m × n array X that is a picture of a disk, then the finite derivatives will be
mostly zero except near the edges of the disk. The code for generating such a disk is on the course
website. Test your code using your function and turn in plots of the resulting images, which should
match those below. Note that the Python reshape requires setting order=’F’.
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Problem 9 Reflection (5 pts)

Read Chapter 1 of Solving Mathematical Problems by Terence Tao, available here, and answer the following
questions.

• Among the problem solving strategies discussed, have you used any (whether implicitly or explicitly)
in the course so far?

• Among the problem solving strategies discussed, which do you think would be helpful to use going
forward?

• Comment on whether you think this article will be helpful to further problem solving in the course
and beyond.

http://www.math.ucla.edu/~tao/preprints/problem.ps
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