Exercises 8

Exercise 1

Write the term $\|B-A\|_{F}^{2}$ in terms of the trace of the matrices A and B.

Exercise 2

A set is called convex if for every pair of points in the set, the line connecting those two points also lies in the set. Formally, for $x, y \in S$, all points of the form $(1-t) x+t y$ are also in S, where $t \in[0,1]$. Show that the set of rank- 1 matrices in $\mathbb{R}^{2 \times 2}$ is not a convex set.

Exercise 3

Convince yourself that $\|\hat{B}-A\|_{F}^{2}=\sum_{k=K+1}^{r} \sigma_{k}^{2}$ on pg. 6.3.

Exercise 4

Explain the transition from the second to third equality on the bottom of pg. 6.6, i.e., explain why

$$
\left\|U^{T} \sum_{k=K+1}^{r} \sigma_{k} u_{k} v_{k}^{T} V\right\|_{F}=\left\|\sum_{k=K+1}^{r} \sigma_{k} e_{k} e_{k}^{T}\right\|_{F} .
$$

Exercise 5

Work through and understand each line of the proof on pg. 6.15.

Exercise 6

Show that the canonical basis for $\mathbb{F}^{M \times N}$ given on pg .6 .16 is a valid basis.

Exercise 7

Show that $\operatorname{tr}\left(B^{T} A\right)$ is a valid inner product on $\mathbb{R}^{m \times n}$, i.e., that it satisfies

- $\langle x, y\rangle=\langle y, x\rangle$
- $\langle\alpha x, y\rangle=\alpha\langle x, y\rangle$
- $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$
- $\langle x, x\rangle \geq 0$ with equality if and only if $x=0$,
where $x, y \in \mathbb{R}^{m \times n}$ are matrices (which are referred to as "vectors" in this space).

Exercise 8

Does the canonical basis for $\mathbb{R}^{m \times n}$ form an orthonormal basis for $\mathbb{R}^{m \times n}$ when using the Frobenius inner product?

Exercise 9

Read through the top answer for explaining PCA given here

Exercise 10

Show that P^{\perp} defined on 6.33 is a valid projection matrix.

Exercise 11

Verify that $P^{\perp} 1=0$ on pg. 6.33.

