Exercises 7

Pages: 4.30-4.52
Instructor Name: John Lipor

Exercise 1

BV 12.2

Exercise 2

BV 12.3

Exercise 3

What is the difference between an over-determined system and an under-determined system for least squares problems?

Exercise 4

Let have $A \in \mathbb{R}^{m \times n}$ have rank r. In this case, what is $\Sigma \Sigma^{+}$, where $A=U \Sigma V^{T}$?

Exercise 5

Why do we refer to the estimate A_{K} as "low rank" on pg. 4.36?

Exercise 6

Verify the equivalence between Eq. (4.19) and the term $\|\tilde{A} x-\tilde{y}\|_{2}^{2}$ on pg. 4.39.

Exercise 7

Show that every square, diagonalizable matrix with eigenvalues that are all either 0 or 1 is a valid projection matrix.

Exercise 8

Show that every projection matrix P with rank at least one (i.e., not all zeros) can be written of the form $Q Q^{T}$, where Q is a matrix with orthonormal columns.

