## Exercises 6

Pages: 4.1-4.29
Instructor Name: John Lipor

## Exercise 1

Explain why items 1 and 2 are true on pg. 4.3.

## Exercise 2

Assume you obtain $N$ noisy measurements $y_{i}=w^{T} x_{i}+n_{i}$, where $w \in \mathbb{R}^{D}, x_{i} \in \mathbb{R}^{D}$ for $i=1, \ldots, N$, and $n_{i}$ is a scalar that represents measurement noise. Define the matrix $X$ and vector $y$ such that finding $w$ can be written as a least-squares problem.

## Exercise 3

Derive the gradient equation given on pg. 4.9.

## Exercise 4

Let $A \in \mathbb{R}^{m \times n}$ with $m>n$. Name a condition on $A$ such that the matrix $A^{T} A$ is invertible. In this case, the least-squares solution is $\hat{x}=\left(A^{T} A\right)^{-1} A^{T} y$.

## Exercise 5

Is the SVD applied on pg. 4.10 a full or thin SVD?

## Exercise 6

Verify that $\Sigma_{r}^{-1} U_{r}^{T} y$ gives the $\hat{z}$ defined in Eq. (4.6).

## Exercise 7

Why can the estimate $\hat{x}$ be recovered as $\hat{x}=V z$ on pg. 4.12?

## Exercise 8

Why do we need $M \geq N$ for $A \in \mathbb{R}^{M \times N}$ to have linearly independent columns?

## Exercise 9

What size is $V_{0}$ when computing the SVD of a tall, full-rank matrix $A$ ? A tall matrix is one with more rows than columns.

## Exercise 10

Use the properties of the pseudoinverse to show that $A^{+}=V_{r} \Sigma_{r}^{-1} U_{r}^{T}$.

## Exercise 11

Complete the exercise given on pg. 4.19.

## Exercise 12

Verify that $A x=0$ for $x \in \mathcal{N}(A)$.

## Exercise 13

Write in words what is meant by the optimization problem given in Eq. (4.16) on pg. 4.29.

Exercise 14
Why is $A^{+} y \in \mathcal{R}\left(V_{r}\right)$ on pg. 4.29?

## Exercise 15

BV 12.1

