Exercises 4

Pages: 3.1-3.20
Instructor Name: John Lipor

Exercise 1

Verify the following are valid vector spaces:

- \mathbb{R}
- the $y=0$ axis in \mathbb{R}^{2}.

Exercise 2

Which view of matrix-vector multiplication is most related to the definition of span? Which view of matrixmatrix multiplication?

Exercise 3

Verify that for $u_{1}, \ldots, u_{n} \in \mathcal{V}, \operatorname{span}\left(\left\{u_{1}, \ldots, u_{n}\right\}\right)$ is a subspace of \mathcal{V}.

Exercise 4

Verify that the vectors $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{T}$ and $\left[\begin{array}{lll}1 & 0 & -1\end{array}\right]^{T}$ span the (x, z) plane in \mathbb{R}^{3}.

Exercise 5

BV 5.1

Exercise 6

Show that any two orthogonal vectors are linearly independent.

Exercise 7

Show that the vectors

$$
a_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad a_{2}=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] \quad a_{3}=\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

are linearly independent.

Exercise 8

BV 5.4

Exercise 9

- Show that the standard basis vectors $e_{1}, \ldots, e_{n} \in \mathbb{R}^{n}$ are a basis for \mathbb{R}^{n}.
- Show that a_{1}, a_{2}, a_{3} from Exercise 7 above are a basis for \mathbb{R}^{3}. Are they an orthonormal basis?

Exercise 10

Prove the fact given on pg. 3.14.

Exercise 11

Let

$$
\mathcal{S}=\operatorname{span}\left(\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\}\right) \quad \mathcal{T}=\operatorname{span}\left(\left\{\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]\right\}\right)
$$

What are

- $\operatorname{dim}(\mathcal{S})$
- $\mathcal{S}+\mathcal{T}$ and its dimension
- $\mathcal{S} \cap \mathcal{T}$ and its dimension.

Exercise 12

Let

$$
\mathcal{S}=\operatorname{span}\left(\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}\right) \mathcal{T}=\operatorname{span}\left(\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]\right\}\right)
$$

- What is $\operatorname{dim}(\mathcal{S}+\mathcal{T})$?
- What is $\operatorname{span}(\mathcal{S}+\mathcal{T})$?
- Is $\mathcal{S}+\mathcal{T}$ a direct sum?

Exercise 13

Draw a picture of the orthogonal complement example given on pg. 3.18.

Exercise 14

Let $A \in \mathbb{R}^{m \times n}$. If $\mathcal{S}=\mathcal{R}(A)$, what dimension are the vectors in \mathcal{S}^{\perp} ?

Exercise 15

If $A \in \mathbb{R}^{m \times n}$, what is the maximum dimension of $\mathcal{R}(A)$? What must be true for $\mathcal{R}(A)$ to achieve this dimension?

