Exercises 3

Pages: 2.1-2.29
Instructor Name: John Lipor

Exercise 1

Let

$$
A=\left[\begin{array}{ll}
4 & 6 \\
6 & 9
\end{array}\right]
$$

which has eigenvalues 0 and 13. Is $v=\left[\begin{array}{ll}2 & 3\end{array}\right]^{T}$ a valid eigenvector for A ? If not, provide a valid eigenvector.

Exercise 2

- Show that if the columns of $V \in \mathbb{R}^{n \times n}$ are orthogonal, then $V^{T} V$ is a diagonal matrix.
- What are the values of the diagonal elements of $V^{T} V$?
- What must be true of the columns of V such that $V^{T} V=I$?

Exercise 3

Let $X \in \mathbb{R}^{m \times n}$. Prove that the Gram matrix $X^{T} X$ and outer product matrix $X X^{T}$ are both symmetric.

Exercise 4

Verify that the permutation matrix P on pg. 2.6 is normal, i.e., that $P^{T} P=P P^{T}$.

Exercise 5

For the rotation matrix

$$
V=\left[\begin{array}{cc}
\cos \theta & -q \sin \theta \\
\sin \theta & q \cos \theta
\end{array}\right]
$$

verify that $V^{T} V=I$, where $q \in\{ \pm 1\}$.

Exercise 6

Let $A \in \mathbb{F}^{m \times n}$ (i.e., A may have real or complex values), and let $y=v_{1}+v_{2}$, where v_{1}, v_{2} are the right singular vectors of A associated with the largest two singular values. What is $\|A y\|$?

Exercise 7

For $A \in \mathbb{F}^{m \times n}$, what vectors $x, z \in \mathbb{F}^{m}$ make $A^{T} x$ and $A^{T} z$ orthogonal?

Exercise 8

Work through the matrix 2-norm proof on pg. 2.20 carefully. Note and discuss any steps that you do not understand.

Exercise 9

Work through the EVD/SVD example on pg. 2.24. Verify that each line is indeed a valid EVD/SVD.

Exercise 10

If $A=X^{T} X$ for $X \in \mathbb{R}^{m \times n}$, what are the eigenvectors and eigenvalues of A in terms of the singular vectors and singular values of X ?

