Exercises 2

Problems denoted by "BV X.YZ" are exercises from the book Introduction to Applied Linear Algebra by Boyd and Vandenberghe, which can be downloaded for free at the authors' website here.

Exercise 1

For $x, y \in \mathbb{R}^{n}$, the inner product/dot product is defined as $x^{T} y=\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}$. Show that $x^{T} y=y^{T} x$.

Exercise 2

Show that the inner product is linear in the first argument, i.e., show that $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$ and $\langle\alpha x, y\rangle=\alpha\langle x, y\rangle$, where $\alpha \in \mathbb{R}$.

Exercise 3

BV 1.11

Exercise 4

BV 1.16

Exercise 5

Let $A \in \mathbb{R}^{20 \times 37}$. What size is $A_{17,:}$? $A_{:, 3}$? Let $B \in \mathbb{R}^{37 \times 4}$. What size is $A B$?

Exercise 6

Let $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{n \times q}$.

- What must be true for $A(B+C)$ to be a valid operation?
- What is $A(B+C)$ when $C=0$? When $A=0$?

Exercise 7

Let $A \in \mathbb{R}^{3 \times 127}, C \in \mathbb{R}^{4000 \times 1}, B \in \mathbb{R}^{127 \times 4000}$. What size is $A B C$? What is the most memory-efficient way to place parentheses when computing this product?

Exercise 8

Where is the associative property used on the Exercises 1 sheet?

Exercise 9

Let $A \in \mathbb{R}^{m \times n}$ and $v \in \mathbb{R}^{n}$. Where must parentheses be placed to make $A v^{T} v$ a valid operation?

Exercise 10

Let $A \in \mathbb{R}^{200 \times 40}$. What size must I be to compute $I A$? To compute $A I$?

Exercise 11

Let

$$
A=\left[\begin{array}{ll}
1 & 2 \\
4 & 1
\end{array}\right] \quad B=\left[\begin{array}{ll}
3 & 2 \\
5 & 7
\end{array}\right]
$$

What is $A B$? What is $B A$? What can you conclude about the relationship between $A B$ and $B A$? Can you construct an example where they are the same?

Exercise 12

If $x, y \in \mathbb{R}^{n}$ have angle 0° between them, what can you say about $\|x+y\|$? If $x, y \in \mathbb{R}^{n}$ are orthogonal, what can you say about $\|x+y\|^{2}$?

Exercise 13

For $x, y \in \mathbb{R}^{n}$, verify that

- $(x+y)^{T}(x-y)=\|x\|^{2}-\|y\|^{2}$
- $\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)$.

Exercise 14

For $x \in \mathbb{R}^{n}$, show that $\|x\|^{2}=\operatorname{tr}\left(x x^{T}\right)$.

