EE 510: Mathematical Foundations of Machine Learning	Winter 2021
Exercises 2	
Pages: 1.21 - 1.61	Instructor Name: John Lipor

Problems denoted by "BV X.YZ" are exercises from the book *Introduction to Applied Linear Algebra* by Boyd and Vandenberghe, which can be downloaded for free at the authors' website here.

Exercise 1

For $x, y \in \mathbb{R}^n$, the inner product/dot product is defined as $x^T y = \langle x, y \rangle = \sum_{i=1}^n x_i y_i$. Show that $x^T y = y^T x$.

Exercise 2

Show that the inner product is linear in the first argument, i.e., show that $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ and $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$, where $\alpha \in \mathbb{R}$.

Exercise 3

BV 1.11

Exercise 4

 $BV \ 1.16$

Exercise 5

Let $A \in \mathbb{R}^{20 \times 37}$. What size is $A_{17,:}$? $A_{:,3}$? Let $B \in \mathbb{R}^{37 \times 4}$. What size is AB?

Exercise 6

Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{n \times q}$.

- What must be true for A(B+C) to be a valid operation?
- What is A(B+C) when C = 0? When A = 0?

Exercise 7

Let $A \in \mathbb{R}^{3 \times 127}$, $C \in \mathbb{R}^{4000 \times 1}$, $B \in \mathbb{R}^{127 \times 4000}$. What size is *ABC*? What is the most memory-efficient way to place parentheses when computing this product?

Exercise 8

Where is the associative property used on the Exercises 1 sheet?

Exercise 9

Let $A \in \mathbb{R}^{m \times n}$ and $v \in \mathbb{R}^n$. Where must parentheses be placed to make $Av^T v$ a valid operation?

Exercises 2

Exercise 10

Let $A \in \mathbb{R}^{200 \times 40}$. What size must *I* be to compute *IA*? To compute *AI*?

Exercise 11

Let

$$A = \begin{bmatrix} 1 & 2\\ 4 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & 2\\ 5 & 7 \end{bmatrix}$$

What is AB? What is BA? What can you conclude about the relationship between AB and BA? Can you construct an example where they are the same?

Exercise 12

If $x, y \in \mathbb{R}^n$ have angle 0° between them, what can you say about ||x + y||? If $x, y \in \mathbb{R}^n$ are orthogonal, what can you say about $||x + y||^2$?

Exercise 13

For $x, y \in \mathbb{R}^n$, verify that

• $(x+y)^T(x-y) = ||x||^2 - ||y||^2$ • $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2).$

Exercise 14

For $x \in \mathbb{R}^n$, show that $||x||^2 = \operatorname{tr}(xx^T)$.