Ex 1

$$
\begin{aligned}
\|B, A\|_{f}^{2} & =\operatorname{tr}\left((B-A)^{\top}(B-A)\right) \\
& =\operatorname{tr}\left(\left(B^{\top}-A^{\top}\right)(B-A)\right) \\
& =\operatorname{tr}\left(B^{\top} B+A^{\top} A-A^{\top} B-B^{\top} A\right) \\
& =\operatorname{tr}\left(B^{\top} B\right)+\operatorname{tr}\left(A^{\top} A\right)-2 \operatorname{tr}\left(A^{\top} B\right)
\end{aligned}
$$

Ex 2
Consider $X=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ al $Y=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. Take $t=\frac{1}{2}$. Then

$$
\begin{aligned}
(1-t) X+t y & =\left[\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & \frac{1}{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right]
\end{aligned}
$$

which has rate 2, so if's rot in the set of rah-1 matrices.

Ex 3

$$
=\operatorname{tr}\left(\bar{V}^{\top} \bar{V} \bar{\Sigma}^{\top} \bar{\Sigma}\right)
$$

cyclic permutation property of tace

$$
=\operatorname{tr}\left(\bar{\Sigma}^{+} \overline{\bar{\Sigma}}\right)
$$

$$
=\sum_{k=k+1}^{r} \sigma_{k}^{2}
$$

$$
\begin{aligned}
& \|\hat{B}-A\|_{F}^{2}=\left\|\sum_{k=1}^{K} \sigma_{k} u_{k} v_{k}^{\tau}-\sum_{k=1}^{\sigma} \sigma_{k} u_{k} v_{k}^{\top}\right\|_{F}{ }^{\prime} \\
& =\left\|\sum_{k=1}^{k}\left(\sigma_{k} u_{k} v_{k}^{\top}-\sigma_{k} u_{k} v_{k}^{\top}\right)+\sum_{k=k+1}^{r} \sigma_{k} u_{k} v_{k}^{\top}\right\|_{F}^{2} \\
& =\left\|\sum_{k=k+1}^{r} \sigma_{k} u_{k} v_{k}^{\top} /\right\|_{F}^{2} \\
& =\left\|\bar{U} \bar{\Sigma} \bar{V}^{\top}\right\|_{F}^{2} \quad \text { where } \bar{U}=U[: k+1: r] \\
& =\operatorname{tr}\left(\left(\bar{u} \bar{\Sigma} \bar{v}^{\top}\right)^{r}\left(\bar{u} \bar{\Sigma} \bar{v}^{\top}\right)\right) \\
& \bar{v}=V[i, k+1: r] \\
& \bar{\Sigma}=\Sigma[k+1: r, k+1: r] \\
& =\operatorname{tr}\left(\bar{V} \bar{\Sigma}^{+} \bar{u}^{\top} \bar{u} \bar{\Sigma} \bar{V}^{\top}\right) \\
& \bar{u}^{+} \bar{u}=I_{r-k}
\end{aligned}
$$

Ex 4

$$
U^{\top}\left(\sum_{k=k+1}^{\sigma} \sigma_{k} u_{k} u_{k}^{\top}\right)=\sum_{k=k+1}^{\sigma} \sigma_{k}\left(U^{\top} u_{k}\right) u_{k}^{\top}
$$

Now note that $u^{\top} u_{k}=e_{k}$, so

$$
\sum_{k=k+1}^{\sigma} \sigma_{k}\left(U^{\top} u_{k}\right) v_{k}^{\top}=\sum_{k=k+1}^{r} \sigma_{k} e_{k} v_{k}^{\top}
$$

Now right multiply by V al note that $v_{k}^{\top} V=e_{k}^{\top}$ to see that

$$
U^{\top}\left(\sum_{k=k+1}^{r} \sigma_{k} u_{k} v_{k}^{\top}\right) v=\sum_{k=k+1}^{r} \sigma_{k} e_{k} e_{k}^{\top}
$$

Ex S
See pg. 6.15.

Ex 6
A basis -oust span the corresponding vector space and consist of LI vectors, so we reed to slow that

$$
\Rightarrow e_{n} e_{1}^{\top} \text { spas } \mathbb{R}^{n \times n}
$$

2) the vectors $\left\{e_{m} e_{n}^{\top}: m=1, \ldots, \mu, n=1, \ldots, n\right\}$ are $L I$

Note that $\mathrm{emen}_{n}{ }^{\top}$ is an $M \times N$ matrix E with $E_{\text {ven }}=1$ ant zero every where else. Therefore an $A \subset \mathbb{R}^{m \times n} c_{n}$ be written as

$$
A=\sum_{n=1}^{\mu} \sum_{n=1}^{N} a_{m n} e_{m} e_{n}^{\top}
$$

meaning the vectors span the space. In Ex. 8 , will show these vectors are orthogonal, imply they are LI.

Ex 7
Let $x=A, y=B$. Then we have

$$
\begin{aligned}
\cdot\langle x, y\rangle & =\operatorname{tr}\left(B^{\top} A\right)=\operatorname{tr}\left(\left(A^{\top} B\right)^{\top}\right)=\operatorname{tr}\left(A^{\top} B\right)=\langle y, x\rangle \\
\cdot\langle\alpha x, y\rangle & =\operatorname{tr}\left(\alpha A^{\top} B\right)=\alpha \operatorname{tr}\left(A^{\top} B\right)=\alpha\langle x, y\rangle \\
\cdot\langle x+y, z\rangle & =\operatorname{tr}\left((A+B)^{\top} C\right)=\operatorname{trc}\left(\left(A^{\top}+B^{\top}\right) C\right)=\operatorname{tr}\left(A^{\top} C+B^{\top} C\right) \\
& =\operatorname{tr}\left(A^{\top} C\right)+\operatorname{tr}\left(B^{\top} C\right)=\langle x, z\rangle+\langle y, z\rangle
\end{aligned}
$$

- $\langle x, x\rangle=\operatorname{tc}\left(A^{r} A\right)=\sum_{i=1}^{n} \lambda_{i}$ where λ_{i} are the eijenolves of $A^{\top} A$ but $A^{\top} A$ is PSD, so $\lambda_{i} \geq 0$ ad all are zero $\Leftrightarrow A=0$.

Ex 8
Yes. Following is. 6.18,

$$
\begin{gathered}
\left.\left\langle e_{m} e_{n}^{\top}, e_{k} e_{l}^{\top}\right\rangle=\operatorname{tr}\left(k_{k} e_{l}^{\top}\right)^{\top}\left(e_{n} e_{n}^{\top}\right)\right)=\operatorname{tr}\left(e_{e_{l}}^{\top} e_{m} e_{n}^{\top}\right) \\
=\left(e_{k}^{\top} e_{m}\right)\left(e_{n}^{\top} e_{l}\right)= \begin{cases}1 & k=m, l=u \\
0 & \text { otherise }\end{cases}
\end{gathered}
$$

Ex 9
Reed it!
Ex 10

$$
\begin{aligned}
& \text { Let } 1=[1 \cdots \cdots]^{\top} \in \mathbb{R}^{n} \\
& \begin{array}{rlr}
(P \perp)^{2} & =\left(I-\frac{1}{n} 11^{\top}\right)\left(I-\frac{1}{n} 11^{+}\right) \\
& =I-\frac{1}{n} I 11^{\top}-\frac{1}{n} 11^{\top} I+\frac{1}{n^{2}} 11^{\top} 11^{\top} & \text { nate for } 1 \in \mathbb{R}^{n}, \\
& =I-2 \frac{1}{n} 11^{\top}+\frac{1}{n} 1 I^{\top} & I^{\top} 1=\sum_{i=1}^{n} 1=n \\
& =I-\frac{1}{n} 11^{\top}
\end{array}
\end{aligned}
$$

Ex 11

$$
\begin{aligned}
P^{\prime} 1 & =\left(I-\frac{1}{n} I I^{\top}\right) 1 \\
& =1-\frac{1}{n} 11^{\top} 1 \\
& =1-\frac{1}{n} 1 n \\
& =1-1=0
\end{aligned}
$$

