$$E_{x}$$
 [
 TL_{x} "SVD" way is to note that a valid (thin) SVD of Q is
 $Q = Q I_{n} I_{n}$
 $W \ge V^{T}$

So that Q⁺ = I I Q^T = Q^T. Then $\hat{x} = Q^T b$ as desired. Alternatively, the normal equations give $Q^T Q \hat{x} = Q^T b$ but $Q^T Q = I_n$, since Q has orthonormal columns, So this becomes $\hat{x} = Q^T b$. We haven't discussed computational complexity of LS problems, but it's lower when Q has orthonormal columns.

Ex 2
a) Start from the RHS:

$$(A_x)^T (A_x^2) = x^T A^T A_x^2$$
 Since $(A_x)^T = x^T A^T$
 $= x^T A^T b$ via the normal equations
 $= (A_x)^T b$ since $(A_x)^T = x^T A^T$

b) Followy the bot, we get

$$(A \neq S^{T}b = (A \neq)^{T}(A \neq) = ||A \neq ||^{2}$$
So that

$$\frac{(A \neq)^{T}b}{||A \neq || ||b||} = \frac{||A \neq ||^{2}}{||A \neq || ||b||} = \frac{||A \neq |||}{||b||}$$
c) Minimizing the agle between $A \times al = b$ is equivalent to rearrising
the cosine of the agle, so instead we think about solving

$$\frac{(A \times)^{T}b}{||A \times || ||b||} = \frac{agree}{||A \times ||} \frac{(A \times)^{T}(A \neq)}{||A \times || ||b||}$$
by part (a)

$$\frac{(A \times)^{T}b}{||A \times || ||b||} = \frac{agree}{||A \times || ||A \times ||} \frac{(A \times)^{T}(A \neq)}{||A \times || ||b||}$$
Now return that by the Constant should require the equality.

$$(A \times)^{T}(A \neq) = (A \times) f = Should instant (||A \times || ||A \times ||A \times ||A \times ||A \times ||A \times || ||A \times ||A$$

Ex 3 Ovesdutesmined reas more equations/measurements the unknowns, which results in a unique LS solution. Under determined reans A is wide and therefore has a nontrivial nullspace, so the Solution is not unique. See PJ. 4.24 for a summery.

Ex 4 In this case, we have

$$\begin{aligned}
\overleftarrow{F_{x}} & \overleftarrow{G} \\
& \left\| \left[\overbrace{y_{3}}^{\mathcal{A}} \overrightarrow{I} \right] \times - \left[\overbrace{y}^{\mathcal{A}} \right] \right\|^{2} = \left\| \left[\overbrace{y_{3}}^{\mathcal{A}} \times - \overbrace{y}^{\mathcal{A}} \right] \right\|^{2} \\
& = \left[\left[(A \times - \underbrace{y})^{T} \quad (\overleftarrow{f_{2}} \times)^{T} \right] \quad \begin{bmatrix} A \times - \underbrace{y} \\ \overleftarrow{f_{3}} \times \end{bmatrix} \right] \\
& = \left[(A \times - \underbrace{y})^{T} \quad (A \times - \underbrace{y}) + \underbrace{\beta \times^{T} \times} \\
& = \left\| (A \times - \underbrace{y}) \right\|^{2} + \underbrace{\beta} \left[|x||^{2} \\
\end{aligned}$$

En
$$\overline{7}$$

Let $A = V\Lambda V^{-1}$. Then
 $A^2 = V\Lambda V^{-1} V\Lambda V^{-1} = V\Lambda^2 V^{-1}$
but if all eigenvalues are \mathcal{O} or I_1 then $\Lambda^2 = \Lambda$, so $\Lambda^2 = \Lambda$.

Er 8
P is symmetric with eigenvalues all either
$$\Theta$$
 or I_1 so we can write
a thin eigenvalue decomposition as
 $P = V_F I_r V_r^T = Q Q^T$
where $Q = V_F$ has r orthonormal columns.