Ex 1
The "SUD" way is to note that a valid (thin) SuD of Q is

$$
Q=\begin{aligned}
& Q I_{n} I_{n} \\
& n v^{\top}
\end{aligned}
$$

so that $Q^{+}=I I Q^{\top}=Q^{\top}$. Then $\hat{x}=Q^{\top} b$ as desired. Alternatively, the nocmal equations give

$$
Q^{\top} Q \hat{x}=Q^{\top} b
$$

but $Q^{\top} Q=I_{n}$, since Q has orthoneral columns, so this becomes

$$
\hat{x}=Q^{\top} b .
$$

We hovinit discussed computational complexity of LS poobleus, but it's lower when Q has orthonormal column.

Ex 2
a) Start from the RHS:

$$
\begin{aligned}
\left(A_{x}\right)^{\top}\left(A_{\hat{x}}\right) & =x^{\top} A^{\top} A \hat{x} & & \text { since }\left(A_{x}\right)^{\top}=x^{\top} A^{\top} \\
& =x^{\top} A^{\top} b & & \text { via the normal equations } \\
& =\left(A_{x}\right)^{\top} b & & \text { since }\left(A_{x}\right)^{\top}=x^{\top} A^{\top}
\end{aligned}
$$

b) Folloury the hast, we get

$$
(A \hat{x})^{\top} b=(A \hat{x})^{\top}(A \hat{x})=\|A \hat{x}\|^{2}
$$

so that

$$
\frac{(A \hat{x})^{\top} b}{\|A \hat{x}\|\|b\|}=\frac{\|A \hat{x}\|^{2}}{\|A \hat{x}\|\|b\|}=\frac{\|A \hat{x}\|}{\|b\|}
$$

c) Minimizing the ogle between $A x$ al b is equivalent to maximizing the cosine of the angle, so instead un think about solving

$$
\hat{x}=\operatorname{arguare}_{x} \frac{\left(A_{x}\right)^{\top} b}{\left\|A_{x}\right\|\|b\|}=\operatorname{agoux}_{x} \frac{\left(A_{x}\right)^{\top}\left(A_{\hat{x}}\right)}{\left\|A_{x}\right\|\|b\|} \text { by part (a) }
$$

Now note that by the Caccly-Soluante inequality.

$$
\left(A_{x}\right)^{\top}\left(A_{\hat{x}}\right)=\left\langle A_{x}, A_{\hat{x}}\right\rangle \leq\left\|A_{x}\right\|\left\|A_{\hat{x}}\right\|
$$

with equality when $A_{x}=\beta(A \hat{x})$ for som β_{1} ie... equality occurs when the ogle between A_{x} and $A_{\hat{x}}$ is zero. Therefore, setting $x=\beta \hat{x}$ maximizes $\left(A_{x}\right)^{\top}\left(A_{\hat{x}}\right)$. By the cark, by value of β will riminize the ogle, so we take $\beta=1$.

Ex 3
Overdetermined means more equations/measurements then unterowns, which results in a unique LS solution. Underdetermined reams A is wide as therefore has a nontrivial nullspace, so the Solution is not unique. See pg. 4.24 for a summery.

Ex 4
In this case, we have

$$
\sum=r\left[\begin{array}{ccc}
\sigma_{1} & & \\
\ddots-r & 0 \\
& & \\
\sigma_{r} & & \\
0 & 0
\end{array}\right] \quad \text { ad } \Sigma^{+}=r\left[\begin{array}{ccc}
\frac{1}{\sigma_{1}} & & \\
& \ddots-r & \\
& & \\
\sigma_{r} & 0 \\
0 & & 0
\end{array}\right]
$$

$\Rightarrow L \Sigma^{+}=\operatorname{mor}^{r}\left[\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right]$ Note the sizes!

Ex S
For $K \min (\mu, N)$, the rake of A is sualler/lowes than um (μ, N).

Ex 6

$$
\begin{aligned}
& \left\|\left[\begin{array}{c}
A \\
\sqrt{\beta} I
\end{array}\right] x-\left[\begin{array}{l}
y \\
0
\end{array}\right]\right\|^{2}=\left\|\left[\begin{array}{c}
A x-y \\
\sqrt{\beta} x-0
\end{array}\right]\right\|^{2} \\
& =\left[\left(A_{x}-j\right)^{\top}(\sqrt{\beta} x)^{\top}\right]\left[\begin{array}{c}
A x-y \\
\sqrt{\beta} x
\end{array}\right] \\
& =\left(A_{x}-y\right)^{\top}\left(A_{x}-y\right)+\beta x^{\top} x \\
& =\left\|A_{x}-y\right\|^{2}+\beta\|x\|^{2}
\end{aligned}
$$

E. 7

Let $A=V \wedge V^{-1}$. Then

$$
A^{2}=V \Lambda V^{-1} V \Lambda V^{-1}=V \Lambda^{2} V^{-1}
$$

but if all eigenvalues are 0 or 1 , then $\Lambda^{2}=\Lambda$, so $A^{2}=A$.

$$
E \times 8
$$

P is symantio with eigenvalues all cither O or 1 , So we can write a thin eigenvalue decomposition as

$$
P=V_{r} I_{c} V_{c}^{\top}=Q Q^{\top}
$$

where $Q=U_{\delta}$ has 5 orthonormal columns.

