Ex 1

1) By definition, $R(A)$ is the sat of vectors $y$ of the form $y=A x$ for sone $x$. Hence the only wy for these to exist on $x$ such that $y=A x$ is to have $y \in M(A)$.
2) This news that every y must be able to be written as $y=A x$ for some $x$. In this case, the columns of $A$ must span whatever space $y$ lives in, which is $\mathbb{F}^{\mu}$ for $A \in \mathbb{F}^{\mu \times N}$.

Ex 2
We wort $\omega \in \mathbb{R}^{D}$ such that $y_{i} \approx \omega^{\top} x_{i}$. Stocky these, we get
$\tau$ dote matrix
where we und the foot that $\omega^{\top} x=x^{\top} \omega$.

Ex 3
We have

$$
\begin{aligned}
f(x) & =\|A x-y\|^{2}=\left(A_{x-y}\right)^{\top}\left(A_{x-y}\right) \\
& =x^{\top} A^{\top} A_{x}+y^{\top} y-2 y^{-} A x
\end{aligned}
$$

Frost let $v=A^{\top} y$ and consider $\nabla_{x} v^{+} x$. For arbiter $y x_{i}$, we have

$$
\frac{\partial}{\partial x_{i}} v^{\top} x=\frac{\partial}{\partial x_{i}} \sum_{i=1}^{\tilde{u}} u_{i} x_{i}=v_{i}
$$

Stacking all these gives

$$
\nabla_{x} v^{\top} x=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{v}
\end{array}\right]=v
$$

and substitution gives

$$
\nabla_{x} y^{\top} A_{x}=\nabla_{x}\left(A^{\top} y\right)^{\top} x=A^{\top} y
$$

Next consider the $x^{\top} A^{\top} A_{x}$ term. From H1WI,P7, we know that

$$
x^{\top} B x=\sum_{i=1}^{N} \sum_{j=1}^{N} x_{i} B_{i j} x_{j} \quad \text { substitute } B=A^{\top} A
$$

Further, consider the case where $B$ is symmetric, since $A^{T} A$ is.

Differentiating with respect to $x_{i}$, we red to account for $x_{i}$ : slowing op in both sums, which gives

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}} x^{+} B_{x} & =\sum_{j=1}^{N} B_{i j} x_{j}+\sum_{j=1}^{N} x_{j} B_{j i} \\
& =2 \sum_{j=1}^{N} B_{i j} x_{j} \quad \text { by symmetry of } B_{1}, B_{i j}=B_{j i} \\
& =2 B_{i, i} x
\end{aligned}
$$

Stacking all these, we jut

$$
\begin{aligned}
& \nabla_{x} \times T B_{x}=\left[\begin{array}{c}
B_{1:}: x \\
B_{2: x} \\
\vdots \\
B_{0, i}: x
\end{array}\right]=B_{x} \begin{array}{l}
\text { note the "ier product" view } \\
\text { of ratrix-vector multiplication }
\end{array} \\
& \Rightarrow \nabla_{x} x^{\top} A^{\top} A_{x}=A^{\top} A_{x} \text { by substitutiy } A^{\top} A=B \text {. }
\end{aligned}
$$

Putting this all together we jet

$$
\nabla_{x} \quad x^{\top} A^{\top} A_{x}+y^{\top} y-2 y^{\top} A_{x}=2 A^{\top} A_{x}-2 A^{\top} y .
$$

Ex 4
For $A^{\top} A$ to be inustible, it must be full rank. Using the SUD, we hare

$$
\begin{aligned}
A^{\top} A & =V \Sigma^{\top} u^{\top} u \Sigma V^{\top} \\
& =V \Sigma^{\top} \Sigma V^{\top}
\end{aligned}
$$

where $U$ is oathogeal, so $\operatorname{conk}\left(A^{\top} A\right)=\operatorname{rak}\left(\Sigma^{\top} \Sigma\right)$. Note that $\Sigma \in \mathbb{R}^{\mu \times N}$, so $\Sigma^{T} \sum \in \mathbb{R}^{N \times N}$ is the diagonal matrix of the form

$$
\left[\begin{array}{llllll}
\sigma_{1}^{2} & & & & & \\
& \sigma_{2}^{2} & & & & \\
& & \ddots & & & \\
& & & \sigma_{5}^{2} & & \\
& & & & \ddots & \\
& & & & &
\end{array}\right]
$$

Thus $A^{1} A$ is full rat if $r=N$ above, or when rok $(A)=N$. In other words. $A^{\top} A$ is revertible when the columns of $A$ are inertly indpredat.

Ex 5
FIll. Note that oe use the fact that hue $=I$.

$$
\frac{\text { Ex } 6}{\sum_{r}^{-1} \underbrace{u_{s}^{\top} y}_{v \in \mathbb{R}^{-}}}=\left[\begin{array}{lll}
1 / \sigma_{1} & & \\
& \ddots & \\
& & 1 / \sigma_{r}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{s}
\end{array}\right]=\left[\begin{array}{c}
v_{1} / \sigma_{1} \\
v_{2} / \tau_{2} \\
\vdots \\
v_{r} / \sigma_{r}
\end{array}\right]
$$

Now inspect $v=u_{r}^{\top} y$

$$
U_{r}^{\top} J=\left[\begin{array}{c}
u_{1}^{\top} \\
u_{2}^{\top} \\
\vdots \\
u_{c}^{\top}
\end{array}\right] y=\left[\begin{array}{c}
u_{1}^{\top} J \\
u_{2}^{\top} y \\
\vdots \\
u_{r}^{\top} y
\end{array}\right]
$$

where $u_{i}$ is the $i^{\text {th }}$ colum of $U$. Pitting these together

$$
\Sigma_{r}^{-1} u_{s}^{\top} z=\left[\begin{array}{c}
u_{1}^{\top} \jmath / \sigma_{1} \\
u_{2}^{\top} y / \sigma_{s} \\
\vdots \\
u_{r}^{\top} y / \sigma_{s}
\end{array}\right]
$$

Ex 7
Recall we defined $z=U^{\top} \hat{x}$ ad $V$ is orthogonal, so $V^{-1}=U^{\top}$. This gives

$$
\hat{x}=V V^{\top} \hat{x}=V z
$$

Ex 8
The number of $L I$ columns in $A$ is $\operatorname{dim}(\mathbb{K}(A))$. Note that $R(A) \in \mathbb{R}^{\mu}$ which has maximum dinasion $\mu$. If $N>\mu$ column are $2 I$, there would exist $N=\mu$ columns in $\mathbb{R}^{\mu}$ that are LI, contradicting the definition of dimension of a vector space.

Ex 9
Let $A \in \mathbb{R}^{m \times 1}$ with men. Recall the SUD sizes are

$$
\begin{aligned}
& A=\sum_{m \times m}^{U} \sum_{m \times n} V_{n \times u}^{\top}
\end{aligned}
$$

If $r=n$, we jet $V_{0}$ of size $n-r=n-n=0$.

Ex 10

$$
\begin{gathered}
\overline{A^{+}=}\left(u \Sigma v^{\top}\right)^{+}=\left(u_{r} \Sigma_{r} v_{r}^{\top}\right)^{+} \\
=\left(u_{r}\left(\Sigma_{r} v_{r}^{\top}\right)\right)^{+}
\end{gathered}
$$

$$
=\left(\Sigma_{r} v_{r}^{\tau}\right)^{+} u_{r}^{\top}
$$

property (Pi) since Us has orthoremal column
$=V_{c} \Sigma_{c}^{+} U_{s}^{\top} \quad$ property (P2) since $V_{r}^{\top}$ has orthonormal rows

$$
=V_{r} \Sigma_{r}^{-1} U_{r}^{\top}
$$

since $\Sigma_{r}$ is invertible

Ex 11

$$
\begin{aligned}
& \Sigma^{+}=\left[\begin{array}{cc}
\Sigma_{r}^{-1} & 0 \\
0 & 0
\end{array}\right] \\
& \text { 1) } \Sigma \Sigma^{+} \Sigma=\left[\begin{array}{ll}
\Sigma_{r} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
\Sigma_{r}^{-1} & 0 \\
0 & 0
\end{array}\right] \Sigma=\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
\Sigma_{r} & 0 \\
0 & 0
\end{array}\right]=\Sigma \\
& \text { 2) } \Sigma^{+} \Sigma \Sigma^{+}=\left[\begin{array}{ll}
\Sigma_{r}^{-1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
\Sigma_{r} & 0 \\
0 & 0
\end{array}\right] \Sigma_{r}^{+}=\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{r}^{-1} & 0 \\
0 & 0
\end{array}\right] \\
&=\left[\begin{array}{cc}
\Sigma_{r}^{-1} & 0 \\
0 & 0
\end{array}\right]=\Sigma^{+}
\end{aligned}
$$

3) $\Sigma^{+} \Sigma=\left[\begin{array}{cc}\Sigma_{r}^{-1} & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}\Sigma_{\delta} & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}I_{s} & 0 \\ 0 & 0\end{array}\right]$ which is sjumetric
4) $\left[\Sigma^{+}=\left[\begin{array}{ll}\Sigma_{8} & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}\Sigma_{r}^{-1} & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}I_{s} & 0 \\ 0 & 0\end{array}\right]\right.$ which is sjumetric

Ex 12
By definition. $N(A)=\left\{x \in \mathbb{R}^{n}: A_{x}=0\right\}$.

Ex 13
Anon all vectors $x$ of the form $x=A^{+} J+x_{N}$ where $x_{N} \in N(A)$ we wat to fid the one with niminum norm.

E 14
$A^{+} y=V_{r} \Sigma_{r}^{-1} u_{r}^{\top} y$. Let $v=\varepsilon_{r}^{-1} u_{r}^{\top} y$. Then $A^{+} y=U_{r} y$, which saris fees the definition of a vector lying in $R\left(U_{r}\right)$.

Ex 15
Using the normal equation, the solution satisfies $A^{\top} A y=A^{\top} b$. but $a, b \in \mathbb{R}^{\mu}$ so $A^{\top} A=a^{\top} a \in \mathbb{R}$ ad $A^{\top} b=a^{\top} b \in \mathbb{R}$ as well. The Solution then

$$
\hat{x}=\frac{a^{\top} b}{a^{\top} a}=\frac{a^{\top} b}{\|a\|^{2}}=\frac{\|a\|\|b\| \cos \theta}{\|a\|^{2}}=\frac{\|b\|}{\|a\|} \cos \theta
$$

Now the LS cost becomes

$$
\begin{aligned}
& \|a \hat{x}-b\|^{2}=\left\|\frac{\|b\|}{\|a\|} \cos \theta a-b\right\|^{2} \\
& =\left(\frac{\|b\|}{\|a\|} \cos \theta a-b\right)^{\top}\left(\frac{\|b\|}{\|a\|} \cos \theta a-b\right) \\
& =\frac{\|b\|^{2}}{\|a\|^{2}} \cos ^{2} \theta a^{\top} a+b^{\top} b-2 \frac{\|b\|}{\|a\|} \cos \theta a^{\top} b \\
& =\|b\|^{2} \cos ^{2} \theta+\|b\|^{2}-2\|b\|^{2} \cos ^{2} \theta \\
& =\|b\|^{2}\left(1-\cos ^{2} \theta\right) \\
& =\|b\|^{2} \sin ^{2} \theta \quad \sin ^{2} \theta+\cos ^{2} \theta=1
\end{aligned}
$$

