$E \times 1$
First casider \mathbb{R} ad verify the definition. If $x, y \in \mathbb{R}$, then $x+y \in \mathbb{R}$. Also if $x \in \mathbb{R}$ al $\alpha \in \mathbb{F}$ (which we the to also be \mathbb{R}), then $\alpha x \in \mathbb{R}$.

Next, the $y=0 \quad c \times i s$ in \mathbb{R}^{2} is all vectors of the form $\left[\begin{array}{c}x_{1} \\ 0\end{array}\right]$. Let $u=\left[\begin{array}{l}u_{1} \\ 0\end{array}\right], v=\left[\begin{array}{l}v_{1} \\ 0\end{array}\right], k \in \mathbb{R}$. Then

$$
u+v=\left[\begin{array}{c}
u_{1}+v_{1} \\
0
\end{array}\right]
$$

which is on the $y=0$ axis. Further $x u=\left[\begin{array}{c}\alpha u_{1} \\ 0\end{array}\right]$ also is.
$E x \quad 2$
The "lInear co-biretion of columns" view of matoix-vector wult-pication is most appropriate. Mataix-natrix multiplication versions 2 al 3 are both appropriate.

Ex 3

$$
\overline{\operatorname{span}}\left(\left\{u_{1}, \ldots, u_{n}\right\}\right)=\left\{y=\sum_{i=1} \alpha_{i} u_{i}: \alpha_{i} \in \mathbb{F}\right\}
$$

Now toter two vectors $x, y \in \operatorname{span}\left(\left\{u_{1}, \ldots, u_{n}\right\}\right)$, at $\gamma \in \mathbb{F}$. Then we con write

$$
x=\sum_{i=1}^{n} \alpha_{i} u_{i}, \quad y=\sum_{i=1}^{n} \beta_{i} u_{i}
$$

for som $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n}$. Therefore

$$
\begin{aligned}
x^{+} y & =\sum_{i=1}^{n} \alpha_{i} u_{i}+\sum_{i=1}^{n} \beta_{i} u_{i} \\
& =\sum_{i=1}^{n}(\underbrace{\alpha_{i}+\beta_{i}}_{\text {coll } h_{i 3}}) u_{i}=\sum_{i=1}^{n} \delta_{i} u_{i}
\end{aligned}
$$

so $x+y \in \operatorname{spar}\left(\left\{u_{1}, \ldots, v_{n}\right\}\right)$. Fuctur,

$$
\begin{aligned}
\gamma x & =\gamma \sum_{i=1}^{\hat{1}} \alpha_{i} u_{i} \\
& =\sum_{i=1}^{u} \gamma \alpha_{i} u_{i} \\
& =\sum_{i=1}^{\hat{}}(\underbrace{\gamma \alpha_{i}}_{\xi_{i}}) u_{i}=\sum_{i=1}^{\hat{1}} \xi_{i} u_{i}
\end{aligned}
$$

So $\quad \gamma x=\operatorname{span}\left(\left\{u_{1}, \ldots, u_{n}\right\}\right)$, ad it is therefore a subspace.

Ex 4
Let $u \in \mathbb{R}^{3}$ be a vector on the (x, z) plan. Aug such vector has the form $u=\left[\begin{array}{l}u_{1} \\ 0 \\ u_{3}\end{array}\right]$. We car write an such vector as

$$
u=\frac{1}{2}\left(u_{1}+u_{2}\right)\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+\frac{1}{2}\left(u_{1}-u_{3}\right)\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

Sick u was arbitrary, the vectors som the (x, z) plane.

E xS
a) les. If rot, we could write some c_{j} as

$$
c_{j}=\left[\begin{array}{l}
a_{j} \\
b_{j}
\end{array}\right]=\sum_{i=1}^{k} \alpha_{i}\left[\begin{array}{l}
a_{i} \\
b_{i}
\end{array}\right]
$$

but this would require $a_{j}=\sum_{i=1}^{k} \alpha_{i} a_{i}$, contradicting the linear independence of the a_{i} 's.
b) Not racessarily. If b_{1}, \ldots, b_{k} are linearly indepedat, then so are c_{1}, \ldots, c_{k}. For exple, let $a_{11}, \ldots, a_{k}=1 \quad\left|a_{i} \in \mathbb{R}\right|$. Then
$c_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ al $c_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ are lineoly indepalent.

Ex 6
Let $x, y \in \mathbb{R}^{n}$ be orthegond, ad suppose they are linearly defecket. Then we can write $x=\alpha y$ for some $\alpha \in \mathbb{R}$, ad so

$$
x^{\top} y=(\alpha y)^{\top} y=\alpha y^{\top} y=\alpha\|y\|
$$

Assuming $y \neq 0,\|y\|>0$, contradicting the orthagondity of x and y.

Ex 7
Suppose they are linearly depperenten so that $\exists \beta_{1}, \beta_{2}, \beta_{3} \in \mathbb{R}$ such that $\beta_{1} a_{1}+\beta_{2} a_{n}+\beta_{3} a_{3}=0$. This would wean

$$
\beta_{1}-\beta_{3}=0 \quad-\beta_{2}+\beta_{3}=0 \quad \beta_{2}+\beta_{3}=0
$$

The last two imply $\alpha \beta_{3}=-0$, so $\beta_{3}=0$, which implies $\beta_{1}=0$ ad $\beta_{2}=0$. Therefore, the only wong to have $\beta_{1} a_{1}+\beta_{2} a_{2}+\beta_{3} a_{3}=0$ is if $\beta_{1}=\beta_{2}=\beta_{3}=0$, from which we conclude that a_{1}, a_{2}, a_{3} are linewly independent.

Ex 8

$$
\begin{aligned}
\|\left(x \|^{2}\right. & =x^{\top} x=\left(\sum_{i=1}^{k} \beta_{i} a_{i}\right)^{\top}\left(\sum_{j=1}^{k} \beta_{j} a_{j}\right) \\
& =\sum_{i=1}^{k} \beta_{i}^{2} \underbrace{\top}_{i} a_{i}^{\top}+\sum_{i=1}^{k} \beta_{i} \beta_{j} a_{i}^{\top} \underbrace{\top}_{0} a_{j} \\
& =\sum_{i=1}^{k} \beta_{i}^{2}=\|\beta\|^{2}
\end{aligned}
$$

Therefore $\|x\|=\|\beta\|$.

Ex q

- First, it is obvious that the vectors are linearly independat. Now to show thy span \mathbb{R}^{n}, note that for of $x \in \mathbb{R}^{n}$,

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} e_{1}+x_{2} e_{2}+\ldots+x_{n} e_{n}
$$

- The vectors are already show to be liecsly indegandat. we could simply note that $\operatorname{dim}\left(\mathbb{R}^{3}\right)=3_{1}$, so the vectors wist spar \mathbb{R}^{3}. More directly. for $x \in \mathbb{R}^{3}$,

$$
\begin{aligned}
& x= {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=} \\
& x_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+x_{2}\left(-\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right) \\
&+ x_{3}\left(\frac{1}{2}\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]\right) \\
&= a_{1}\left(x_{1}+x_{2}+\frac{1}{2} x_{3}\right)+a_{2}\left(-x_{2}+\frac{1}{2} x_{3}\right)+a_{3}\left(x_{2}+\frac{1}{2} x_{3}\right)
\end{aligned}
$$

Ex 10
Amoy u_{1}, \ldots, \cup_{N}, the axiom number of limarly independent vectors is N, so the maximum number of bass vectors for $\operatorname{spar}\left(\left\{u_{1}, \ldots, u_{N}\right\}\right) \rightarrow N$.

Ex 11

$$
\begin{aligned}
& \cdot \operatorname{din}(S)=1 \\
& \cdot S+\tau=\left\{s+t: s \in \operatorname{span}\left(\left[\begin{array}{l}
1 \\
i \\
1
\end{array}\right]\right), t \in \operatorname{span}\left(\left\{\begin{array}{l}
1 \\
\vdots \\
-1
\end{array}\right)\right\}\right.
\end{aligned}
$$

These are all vectors of the form $\left[\begin{array}{l}a \\ 0 \\ b\end{array}\right]$, So $S+\tau$ is the (x, z) place, ad $\operatorname{dim}(s+\tau)=2$.

- $S \cap \tau=\left\{v \in \mathbb{R}^{3}: v \in \operatorname{span}\left(\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}\right), v \in \operatorname{span}\left(\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\right\}\right)\right.$

Note that these vectors are orthogonal, so $S \cap \tau=\{0\}$.
This has infinite dimension.

Ex 12
Since all vectors are in \mathbb{R}^{3}, the maximum dimension is 3 , in which case the vectors in $S+T$ would spar \mathbb{R}^{3}. We need to check if ar three are linearly indepuclat. We know that τ spas the (x, z) plane, so we reed to see if either vector in S is linearly independent of these two. We need to see if

$$
\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\alpha_{1}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+\alpha_{2}\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]
$$

but this is clearly impossible, so $\operatorname{dim}(S+\tau)=3$ al $S T \tau$ spars \mathbb{R}^{3}.

Next mote that

$$
\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]-\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \in \tau
$$

So $\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right] \in S \cap \tau \Rightarrow S+\tau$ is Not a diced sum.

Ex 13

Ex 14
Note that $R(A)=\left\{y=A x: x \in \mathbb{R}^{n}\right\}$, so $\mathbb{R}(A)$ is a subspace of \mathbb{R}^{m}. By definition, S^{+}is the subspace of vectors orthogonal to $K(A)$. Since we have to be able to compute $\langle v, y\rangle$ for $y \in R(A)$, we must have $v \in \mathbb{R}^{m}$ as well. Therefore, vectors in S^{\perp} have dinasion m.

Ex is
$\overline{\text { Since } R}(A) \subset \mathbb{R}^{m}$, its neximm dinassion is me. Recall that

$$
R(A)=\text { spar (columns of } A)
$$

and A has \simeq columns. Therefore, to have $\operatorname{dim}(\mathcal{M}(A))=m_{1}, A$ most have at least m linearly independent columns.

