Next, the goo exis in
$$R^2$$
 is all vectors of the firm $\begin{bmatrix} x, \\ 0 \end{bmatrix}$.
Let $u = \begin{bmatrix} u_1 \\ 0 \end{bmatrix}$, $v = \begin{bmatrix} v_1 \\ 0 \end{bmatrix}$, $\kappa \in \mathbb{R}$. Then
 $u + v = \begin{bmatrix} u_1 + v_1 \\ 0 \end{bmatrix}$

Ex 2 The "linear co-binetion of columns" view of materix-vector multiplication is nost appropriate. Materix-materix multiplication versions 2 and 3 are both appropriate.

$$E \times 3$$

$$spec (su_{1,...,1}u_{n}s) = \begin{cases} y = \sum_{i=1}^{n} x_{i}u_{i} : x_{i} \in F \end{cases}$$
Now take two vectors $x_{i}y \in spec (su_{1,...,n}u_{n}s)_{1}$ and $x \in F$.
Then we can write
$$x = \sum_{i=1}^{n} x_{i}u_{i}, \quad y = \sum_{i=1}^{n} s_{i}u_{i}$$
for som $x_{i_{1}..._{n}} \in x_{i_{n}} \beta_{i_{1}}..._{n} \beta_{i_{n}}..._{n} \beta_{i_{n}}..._{n} \beta_{i_{n}} \sum_{i=1}^{n} s_{i}u_{i}$

$$= \sum_{i=1}^{n} (x_{i} + \beta_{i})u_{i} = \sum_{i=1}^{n} s_{i}u_{i}$$

$$so x + y \in spec (su_{i_{1}..._{n}}u_{n}s)_{1} \text{ Further}$$

$$\forall x = y \sum_{i=1}^{n} x_{i}u_{i}$$

$$= \sum_{i=1}^{n} y \times i_{i}u_{i}$$

$$= \sum_{i=1}^{n} y \times i_{i}u_{i}$$

$$so x + y \in spec (su_{i_{1}..._{n}}u_{n}s)_{1} \text{ and } if is therefore a subspace.$$

Ex 4
Let
$$u \in \mathbb{R}^3$$
 be a vector on the (x, z) plan. Any such vector
has the form $u = \begin{bmatrix} u_1 \\ u_3 \end{bmatrix}$. We can write any such vector as
 $u = \frac{1}{2} (u_1 + u_2) \begin{bmatrix} i \\ i \end{bmatrix} + \frac{1}{2} (u_1 - u_3) \begin{bmatrix} i \\ -i \end{bmatrix}$
Since u was arbitrary, the vectors spin the (x, z) plane.

Ex 5
a) Nes. If not, we could write some cj as

$$c_{j} = \begin{bmatrix} a_{j} \\ b_{j} \end{bmatrix} = \begin{bmatrix} k \\ \forall i \begin{bmatrix} a_{i} \\ b_{i} \end{bmatrix}$$
b) this would require $a_{j} = \begin{bmatrix} k \\ \forall i a_{i}, contradicting$
the linear independence of the $a_{i}'s$.
b) Not necessarily. If $b_{11}...,b_{k}$ are linearly independent, then so are
 $c_{11}...,c_{k}$. For explaint let $a_{11}...,a_{k} = 1$ $[a_{i} \in \mathbb{R}^{k}]$. Then
 $c_{i} \in \begin{bmatrix} i \\ 0 \end{bmatrix}$ at $c_{2} = \begin{bmatrix} i \\ 0 \end{bmatrix}$ are linearly independent.

Bi-Bz=0 -Bz+Bz=0 Bz+Bz=0 The last two inply 2/3z=-0, so Bz=0, which inplies Bi=0 and Bz=0. Therefore, the only wy to have Bi=0 and Bz=0. Therefore, the only wy to have Bi=1, and Bz=0 is if Bi=Bz=Bz=0, from which be conclude that an an as are linearly independent.

$$\begin{aligned} \overline{E_{X} \mathcal{B}} \\ |(x)|^{2} &= x^{T} x = \left(\sum_{i=1}^{k} \beta_{i} \alpha_{i} \right)^{T} \left(\sum_{j=1}^{k} \beta_{j} \alpha_{j} \right) \\ &= \sum_{i=1}^{k} \beta_{i}^{2} \alpha_{i}^{T} \alpha_{i} + \sum_{i=1}^{k} \beta_{i} \beta_{i}^{2} \alpha_{i}^{T} \alpha_{i} \\ &= \sum_{i=1}^{k} \beta_{i}^{2} = ||\beta_{i}||^{2} \\ &= \sum_{i=1}^{k} \beta_{i}^{2} = ||\beta_{i}||^{2} \end{aligned}$$

$$Turefore ||x|| = ||\beta_{i}||.$$

$$\frac{E \times 9}{First, it is obvious that the vectors are livearly independent. Nowto show they span IR", note that for as $\times e IR''_{1}$
 $X = \begin{pmatrix} x_{1} \\ x_{2} \\ i \\ x_{n} \end{pmatrix}^{2} \times 1e_{1} + x_{2}e_{2} + \dots + x_{n}e_{n}.$$$

• The vectors are already show to be freasly independent. We could simply note that $dn(\mathbb{R}^3)=3$, so the vectors must spon \mathbb{R}^3 . More directly, for $x \in \mathbb{R}^3$,

$$\begin{aligned} \chi &= \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} &= \chi_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \chi_2 \begin{pmatrix} - \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \\ &+ \chi_3 \begin{pmatrix} \frac{1}{2} \int_{-1}^{-1} \\ 1 \\ 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \frac{1}{2} \int_{-1}^{0} \\ 0 \end{pmatrix} + \frac{1}{2} \int_{-1}^{0} \\ 0 \end{pmatrix} \\ &= a_1 \begin{pmatrix} \chi_1 + \chi_2 + \frac{1}{2} \chi_3 \end{pmatrix} + a_2 \begin{pmatrix} -\chi_2 + \frac{1}{2} \chi_3 \end{pmatrix} + a_3 \begin{pmatrix} \chi_2 + \frac{1}{2} \chi_3 \end{pmatrix} \end{aligned}$$

$$\frac{[\forall x \parallel 1]}{(d_{12})^{2}} = 1$$
• $d_{12} (S) = 1$
• $S + T = \frac{1}{2} S + \frac{1}{2} S = Span ([[i]]), t \in Span (\frac{1}{2} - \frac{1}{2}) \frac{1}{2}$

These are all vectors of the form $[[i]], S = S + \frac{1}{2}$

The lixel place, and den $(S + T) = 2$.

Ex 17
Since all vectors are in
$$\mathbb{R}^3$$
, the anxious dimension 3 3, 4 whether
case the vectors in S+T would spen \mathbb{R}^3 . We need to check
if any three are linearly independent. We know that T spens the
 (X, T) plane, so we need to see if either vector in S is
linearly independent of these two. We need to see if
 $\begin{bmatrix} 1 \\ 0 \end{bmatrix} = K, \begin{bmatrix} 0 \\ 1 \end{bmatrix} + K_2 \begin{bmatrix} 0 \\ -1 \end{bmatrix}$
but this is a clearly impossible, so dim $(S, T) = 3$ and $S = T$
spans \mathbb{R}^3 .
Next note that
 $\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \in T$
So $\begin{bmatrix} 0 \\ -1 \end{bmatrix} \in S \cap T = S S + T$ is NOT a direct sum.

Ex 14 Note that $\mathcal{R}(A) = \frac{2}{3} y = Ax : x \in \mathbb{R}^{n} \frac{3}{5}$, so $\mathcal{R}(A)$ is a subspace of \mathbb{R}^{m} . By definition, S^{\pm} is the subspace of vectors orthogonal to $\mathcal{R}(A)$. Since we have to be able to compte (v, y) for $y \in \mathcal{R}(A)$, we must have $v \in \mathbb{R}^{m}$ as well. Therefore, vectors in S^{\pm} have dimension m.

Ex 15 Since $\mathcal{R}(A) \subset |\mathbb{R}_{+}^{n}$ its maximum dimension is one. Recall that $\mathcal{R}(A) = \operatorname{Spar}(\operatorname{columns} \text{ of } A)$ and A has <u>r</u> columns. Therefore, to have dim $(\mathcal{R}(A)) = m$, A weast have at least <u>m</u> linearly independent columns.