Ex 1
The eigemulues of $A$ are $13 \mathrm{ad} D$. First verify

$$
\begin{aligned}
& A \sim=A u \\
& \Leftrightarrow {\left[\begin{array}{ll}
4 & 6 \\
6 & 9
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
26 \\
39
\end{array}\right]=13\left[\begin{array}{l}
2 \\
3
\end{array}\right] }
\end{aligned}
$$

so the eigenvector equation is satisfied. However s

$$
\|u\|^{2}=2^{2}+3^{2}=13 \neq 1
$$

so $u$ does not have unit norm ad is therefore not a valid eigenvector. Instead we use

$$
v=\frac{1}{\sqrt{13}}\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

Ex 2
First use the inner product view of matrix-matrix multiplication. Let the columns of $v$ be $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$, So that

$$
V=\left[\begin{array}{cccc}
1 & 1 & & 1 \\
v_{1} & v_{2} & \ldots & v_{n} \\
1 & 1 & & 1
\end{array}\right] \quad \text { al } \quad v^{\top}=\left[\begin{array}{c}
-v_{1}^{\top}- \\
-v_{2}^{\top}- \\
\vdots \\
-v_{n}^{\top}-
\end{array}\right]
$$

Then

$$
v^{\top} v=\left[\begin{array}{cccc}
v_{1}^{\top} v_{1} & v_{1}^{\top} v_{2} & \ldots & v_{1}^{\top} v_{n} \\
v_{2}^{\top} v_{1} & v_{2}^{\top} v_{2} & \ldots & v_{2}^{\top} v_{n} \\
\vdots & & & \\
v_{n}^{\top} v_{1} & v_{n}^{\top} v_{2} & \ldots & v_{n}^{\top} v_{n}
\end{array}\right]
$$

Since the columns of $U$ are orthogonal.

$$
v_{i}^{\top} v_{j}=\left\{\begin{array}{lll}
0 & \text { if } & i \neq j \\
v_{i}^{+} v_{i} & \text { if } & i=j
\end{array}\right.
$$

Thus $V$ is diagonal. By the above the diagonal ailments of $V$ are of the form $v_{i}^{\top} v_{i}=\left\|v_{i}\right\|^{2}$. Therefore $V^{\top} V=I$ if $\|v i\|^{2}=1$ for $i=1, \ldots, n$, i.e., if the columns are orthonormal.

Ex 3
$A$ matrix is symmetric if $A=A^{\top}$. First let $A=x^{\top} x$.

$$
A^{\top}=\left(x^{\top} x\right)^{\top}=x^{\top}\left(x^{\top}\right)^{\top}=x^{\top} x=A
$$

Next let $A=X X^{\top}$. Then

$$
A^{\top}=\left(x x^{+}\right)^{\top}=\left(x^{\top}\right)^{\top} x^{\top}=x x^{\top}=A
$$

Ex 4

$$
\begin{aligned}
& P=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \Rightarrow P^{\top}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \\
& P^{\top} P=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& P P^{\top}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

So $P^{\top} P=P P^{\top}=I$, which is interesting to note.

Ex $S$

$$
\begin{aligned}
& \text { Ex S } \\
& U^{+} U=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-q \sin \theta & q \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & -q \sin \theta \\
\sin \theta & q \cos \theta
\end{array}\right] \\
& \\
& =\left[\begin{array}{cc}
\cos ^{2} \theta+\sin ^{2} \theta & -q \sin \theta \cos \theta+q \sin \theta \cos \theta \\
-q \sin \theta \cos \theta+q \sin \theta \cos \theta & q^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right.
\end{array}\right]
\end{aligned}
$$

Note that $\cos ^{2} \theta+\sin ^{2} \theta=1$. Further since $q \in\{0,1\}, q^{2}=1$, so

$$
U^{\top} U=I .
$$

Ex 6
we will comment y replace $A$ with its sud, ie., $A=u \sum V^{\top}$.

$$
\begin{aligned}
A_{J} & =A\left(v_{1}+v_{2}\right)=u \Sigma v^{\top}\left(v_{1}+v_{2}\right) \\
& =u \Sigma v^{\top} v_{1}+u \Sigma v^{\top} v_{2} \\
& =u \Sigma\left(v^{\top} v_{1}+v^{\top} v_{2}\right)
\end{aligned}
$$

Noun note that if $u j$ is the $j^{\text {th colum of } V \text {, we hove }}$

$$
V^{\top} u_{j}=\left[\begin{array}{c}
v_{j}^{\top} \\
v_{2}^{\top} \\
\vdots \\
u_{j}^{\top} \\
\vdots \\
v_{u}^{\top}
\end{array}\right] v_{j}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
0 \\
\vdots \\
0
\end{array}\right]=e_{j} \begin{aligned}
& \text { culled the " } j \text { th staled } \\
& \text { basis vector," which } \\
& \text { is zero every where } \\
& \text { except element } j
\end{aligned}
$$

So

$$
A_{y}=u \Sigma\left(v^{\top} v_{1}+v^{\top} v_{2}\right)=u \Sigma\left(e_{1}+e_{2}\right)
$$

Now

So that
$u \sum e_{j}=\sigma_{j} u_{j}$ (write it out lite atoor to see this)
Therefor

$$
A_{y}=\sigma_{1} u_{1}+\sigma_{2} u_{2}
$$

Now rote that $u_{1} \perp u_{z}$, so

$$
\begin{aligned}
\left\|A_{y}\right\|^{2} & =\left\|\sigma_{1} u_{1}+\sigma_{2} u_{2}\right\|^{2} \\
& =\sigma_{1}^{2}\left\|u_{1}\right\|^{2}+\sigma_{2}^{2}\left\|u_{2}\right\|^{2}+2 \sigma_{1} \sigma_{2} u_{1}^{\top} u_{2} \\
& =\sigma_{1}^{2}+\sigma_{2}^{2} \\
\Rightarrow\left\|A_{y}\right\| & =\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}
\end{aligned}
$$

Ex 7
Similes to pg. 2.18, we have $A^{\top} z=V \varepsilon^{\top} U^{\top} z$. We wat

$$
\begin{aligned}
& A^{\top} z \perp A_{x}^{\top} \text { i.e., }\left(A_{z}^{\top}\right)^{\top}\left(A_{x}^{\top}\right)=0 \text {. Expanding, we get } \\
& z^{\top} A^{\top} A x=z^{\top} V \Sigma U^{\top} U^{I} \Sigma U^{\top} x \\
&=z^{\top} V \Sigma^{\top} \Sigma U_{x}^{\top} \\
&=z^{\top} V\left[\begin{array}{ccc}
\sigma_{1}^{2} & \sigma_{r}^{2} & 0 \\
0 & 0
\end{array}\right] V_{x}^{\top}
\end{aligned}
$$

Therefore taking $z=v_{1}$ and $x=v_{2}$ gives

$$
\begin{aligned}
z^{\top} A^{\top} A x & =\left(u_{1}^{\top} V\right)\left(\Sigma^{\top} \bar{C}\right)\left(V_{v_{2}}^{\top}\right) \\
& =e_{1}^{\top} \Sigma^{\top} \Sigma e_{2} \\
& =\sigma_{1} \sigma_{2} e_{1}^{\top} e_{2}=0
\end{aligned}
$$

since $e_{1}^{\top} e_{2}=\left[\begin{array}{llll}1 & 0 & \ldots & 0\end{array}\right]\left[\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right]=0$. An easier we j to
solve this is to recognize that $A^{\top} u_{j}=\sigma_{j} v_{j} b_{j}$ the reasoning of the previous exercise. In this case

$$
\begin{aligned}
\left(A^{\top} z\right)^{\top}\left(A^{\top} x\right) & =\left(\sigma_{1} v_{1}\right)^{\top}\left(\sigma_{2} v_{2}\right) \\
& =\sigma_{1} \sigma_{2} v_{1}^{\top} v_{2}=0
\end{aligned}
$$

Since all singular vector are orthegenol.

Ex 8
See notes.

Ex $q$
See notes.

Ex 10
Write $X$ as $U \Sigma V^{T}$. Then we see that

$$
\begin{aligned}
A=X^{\top} X & =V \Sigma^{\top} u^{\top} u \Sigma v^{\top} \\
& =V \Sigma^{\top} \Sigma v^{\top}
\end{aligned}
$$

but $\Sigma^{\top} \bar{L}$ is diagonal ad $V$ is an orthogonal nation, so $V\left(\Sigma^{\top} \Sigma\right) U^{\top}$ is a valid eigndecomposition. We therefore
conclude that the eigenvectors of $A$ are the right singular vectors of $X$ and the eigenvalues are the squares of the singular value of $x$.

What weald hopper if we let $A=X X^{\top}$ ?

