Ex 1
Use the definition of inner product:

$$
\begin{aligned}
x^{\top} y & =\sum_{i=1}^{n} x_{i} y_{i} \\
& =\sum_{i=1}^{1} y_{i} x_{i}=y^{\top} x
\end{aligned}
$$

Ex 2
Check the two properties:

$$
\begin{aligned}
\langle x+y, z\rangle & =(x+y)^{\top} z \\
& =\left(x^{\top}+y^{\top}\right) z \\
& =x^{\top} z+y^{\top} z=\langle x, z\rangle+(y, z\rangle \\
\langle\alpha x, y\rangle & =(\alpha x)^{\top} y \\
& =\alpha x^{\top} y=\alpha\langle x, y\rangle
\end{aligned}
$$

Ex 3
$\frac{\text { ax } 3}{\text { a) } 1^{\top} \omega}=\left[\begin{array}{llll}1 & 1 & 1 & \ldots\end{array}\right]\left[\begin{array}{c}\omega_{1} \\ \omega_{2} \\ \vdots \\ \omega_{n}\end{array}\right]=\sum_{i=1}^{n} 1 \cdot \omega_{i}$
Thus, $I^{\top} w$ is the number of words in the document.
b) $w_{282}=0$ means word 282 does not appear in the document.
c) Frost consider a single element h_{i}

$$
h_{i}=\frac{\text { count of oed } i}{\text { total count }}=\frac{\omega_{i}}{1^{+} \omega}
$$

Therefore the full histogram vector is

$$
h=\frac{w}{1^{r} w}
$$

Et 4
a) If $x, y \in \mathbb{R}^{n}$ are nonnegative, them

$$
\langle x, y\rangle=x^{+} y=\sum_{i=1}^{n} x_{i} y_{i}
$$

bat $x_{i}, y_{i} \geq 0$, so $x_{i} y_{i} \geq 0$, implying $\langle x, y\rangle \geq 0$.
b) There we two options:

1) Either $x=0$ and for $y=0$
2) The elemats for which $x_{i}>0$ correspond to elemats for which $y:=0$. Formally, we write
"Set of indices
i such $\sim\left\{_{i}: x_{i}>0\right\}=\left\{i: y_{i}=0\right\}$ and
that $x:>0$ "

$$
\left\{j: y_{j}>0\right\}=\left\{j: x_{j}=0\right\}
$$

Ex S
$A_{17, i}$ is a row of A, hail size 1×37
$A:, 3$ is a colum of A, hound size 20×1
$A B$ has size $(20 \times 37)(37 \times 4)=20 \times 4$
$B A$ is not a valid operation

Ex 6

- Most have $p=q$
- when $C=0, A(B+C)=A B$

When $A=0, \quad A(B+C)=0$

Ex 7
$A B C$ has sire 3×1. The test way to ploce parentheses is
$A(B C) \backsim$ This wajonly does natriy-vecter $\hat{j}^{\tau_{127 \times 1} \text { molt instead of the ratrix-matrix }}$ 3×127 molt $A B$

Ex 8
we used the associative property to do substitution in problem 9 .

Ex q
Sires are
A: man
$v: n \times 1 \Rightarrow A v^{\top}$ is not a valid operation but $v^{\top} u$ is $v^{\top}: 1 \times u$
Therefor we most do $A\left(v^{\top} v\right)$ (matlab does this automatically)

Ex 10
For IA, I most have size 200×200. For AI, I must have size $1 \% \times 40$.

Ex 11

$$
\begin{aligned}
& A B=\left[\begin{array}{ll}
1 & 2 \\
y & 1
\end{array}\right]\left[\begin{array}{ll}
3 & 2 \\
5 & 7
\end{array}\right]=\left[\begin{array}{lll}
1 & 2
\end{array}\right]\left[\begin{array}{lll}
3 \\
5
\end{array}\right]\left[\begin{array}{lll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
2
\end{array}\right]\left[\begin{array}{ll}
4 & 1
\end{array}\right]\left[\begin{array}{ll}
3 \\
5
\end{array}\right]\left[\begin{array}{ll}
4 & 4
\end{array}\right]\left[\begin{array}{ll}
2 \\
7
\end{array}\right]\left[\begin{array}{ll}
16 \\
17 & 15
\end{array}\right] \\
& B A=\left[\begin{array}{ll}
3 & 2 \\
5 & 7
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
11 & 8 \\
3 & 17
\end{array}\right]
\end{aligned}
$$

Tate rang: $A B \neq B A$ in general.

Ex 12
If $x i y$ hove angle 0° between then we can write $y=\alpha x$ for some α. In this case

$$
\begin{aligned}
\|x+y\| & =\|x+\alpha x\| \\
& =\|(1+\alpha \mid x \| \\
& =\| 1+\alpha)\|x\| \\
& =\|x\|+\alpha\|x\| \\
& =\|x\|+\|\alpha x\| \\
& =\|x\|+\|y\|
\end{aligned}
$$

So the norm adds when vectors are aligned. Whin $x \perp y$,

$$
\begin{aligned}
\|x+y\|^{2} & =\|x\|^{2}+\|y\|^{2}+2 x^{\top} y \\
& =\|x\|^{2}+\|y\|^{2}
\end{aligned}
$$

so the norm squared adds when vectors are orthogonal.

Ex 13

$$
\left.\begin{array}{rl}
(x+y)^{\top}(x-y) & =x^{\top} x-y^{\top} y+x^{\top} y-x^{\top} y \\
& =x^{\top} x-y^{\top} y=\|x\|^{2}-\|y\|^{2} \\
& \|x+y\|^{2}+\|x-y\|^{2}
\end{array}=x^{\top} x+y^{\top} y+2 x^{\top} y+x^{\top} x+y^{\top} y-2 x^{\top} y\right]
$$

Ex is
The trace of a scalar is the scalar itself, so

$$
x^{\top} x=\operatorname{tr}\left(x^{\top} x\right)
$$

Now use the cyclic permutation popperty to see that

$$
\begin{aligned}
& \operatorname{tc}\left(x^{\top} x\right)=\operatorname{tc}\left(x x^{\top}\right) \\
\Rightarrow & x^{\top} x=\operatorname{tr}\left(x x^{\top}\right)
\end{aligned}
$$

