
ECE 510: Mathematical Foundations of Machine Learning Spring 2019

Demo: Robust Principal Component Analysis
Instructor Name: John Lipor

Introduction

PCA as Nuclear Norm Minimization

In this demo, you will implement the Principal Component Pursuit (PCP) algorithm for robust principal
component analysis using the alternating direction method of multipliers (ADMM) framework. Recall that
PCA performs a low-rank approximation to the data matrix X ∈ RD×N , which we formulated as

L̂ = arg min
L∈RD×N

‖X − L‖2F

subject to rank(L) ≤ r.

The above formulation assumes we know an upper bound on the desired rank. If this value is unknown, we
could solve the alternative formulation

L̂ = arg min
L∈RD×N

rank(L)

subject to ‖X − L‖2F ≤ ε

for some small value of ε that determines our reconstruction error. Unfortunately, as with minimizing the
number of nonzero elements in a vector, minimizing the rank of a matrix is a non-convex problem that is
NP-hard to solve. The solution is to again use a convex relaxation! Recall that the relaxation of ‖·‖0 in the
Lasso is ‖·‖1, i.e., we went from minimizing the total number of nonzero elements to minimizing the sum of
absolute values. In the case of matrices, we can view the rank as the total number of directions in which
there is a nonzero component, which can be expressed as

rank(X) =

∥∥∥∥∥∥∥∥∥


σ1
σ2
...

σmin(D,N)


∥∥∥∥∥∥∥∥∥
0

.

In words, since the rank of a matrix is the number of nonzero singular values, it is equivalent to the `0-“norm”
of the vector of all singular values. With this in mind, the natural convex relaxation of rank is the `1-norm
of the singular values, which is known as the nuclear norm

‖X‖∗ =

min(D,N)∑
i=1

σi.

Note that since σi ≥ 0, this is exactly the `1-norm of the vector of singular values. With this definition, we
can reformulate PCA as

L̂ = arg min
L∈RD×N

‖L‖∗

subject to ‖X − L‖2F ≤ ε,

which is a convex problem that we do have a hope of solving.

1



Demo Robust Principal Component Analysis 2

Sparse Plus Low-Rank Models

Suppose the matrixX is corrupted by sparse outliers stored in a matrix S ∈ RD×N and we observe Y = X+S.
In this case, we may wish to formulate an optimization problem that solves for the sparse and low-rank
components separately

L̂, Ŝ = arg min
L,S∈RD×N

rank(L) + λ ‖S‖0

subject to Y = L+ S.

This formulation has both the rank and `0-“norm” issues, so we again solve the convex relaxation of the
problem, which is written as

L̂, Ŝ = arg min
L,S∈RD×N

‖L‖∗ + λ ‖S‖1 (1)

subject to Y = L+ S.

This problem is known as principal component pursuit and is probably the most widely-considered formu-
lation for robust PCA. In fact, nearly all robust PCA algorithms are variants of (1). In this demo, we will
code the solution to the PCP problem using ADMM.

ADMM Iterations

The ADMM iterations for solving (1) are given below. In a homework, you may be asked to derive these,
but for now simply note that the update on L involves another soft-thresholding operator that is performed
only on the singular values of the appropriate matrix. This should reinforce the similarity between nulcear
norm minimization and `1-norm minimization.

The augmented Lagrangian for this problem is

L(L, S, Z) = ‖L‖∗ + λ ‖S‖1 + 〈Z, Y − L− S〉+
ρ

2
‖Y − L− S‖2F ,

where the matrix inner product above is defined as 〈A,B〉 = tr(ATB) and Z is the matrix of Lagrange
multipliers.

The update for the low-rank component L is

Lk+1 = D1/ρ(Y − Sk +
1

ρ
Zk) (2)

which is the singular value thresholding operator defined as

Dτ (X) = USτ (diag(Σ))V T

where X = UΣV T and Sτ (x) is the soft-thresholding operator.
The update for the sparse component S is the soft-thresholding operator applied to the entire matrix

Sk+1 = Sλ/ρ(Y − Lk+1 +
1

ρ
Zk). (3)

Finally, the update for the Lagrange multipliers is the usual gradient-descent type update

Zk+1 = Zk + ρ(Y − Lk+1 − Sk+1). (4)



Demo Robust Principal Component Analysis 3

Task 1: Implement PCP

Your first task is to implement the above ADMM iterations to complete the pcp.m function. Follow the
steps below in order.

• Complete the st.m (soft thresholding) and svt.m (singular value thresholding) files and test them
using the script threshTest.m. Hint: Your singular value thresholding function can and should call
your soft thresholding function.

• Raise your hand when you have successfully completed the thresholding functions.

• Integrate your st and svt functions to complete pcp.m. Test this on the script syntheticTest.m

• Raise your hand when you have successfully completed the PCP function.

Task 2: Test PCP on Benchmark Data

Your final task is to run your pcp.m algorithm on the included lobby.mat dataset using the script lobbyTest.m.
This dataset includes a video of an office lobby in which a person walks through near the end. The sta-
tionary/background portion of the video is modeled as the low-rank component, while the person walking
through is the sparse component. You should see that the second and third plots show the background only
and person only. This is an example of using robust PCA for foreground-background separation.


