
EE 510: Mathematical Foundations of Machine Learning Winter 2021

Demo: Kernel Ridge Regression
Instructor Name: John Lipor

Introduction to Kernels

In this demo, you will implement a version of Ridge Regression for nonlinear functions known as Kernel Ridge
Regression (KRR). Recall in Homework 4, Problem 3 you used the linear least-squares formulation to fit a
nonlinear function. To do this, you mapped the one-dimensional “feature” vector x to a (p+ 1)-dimensional
vector corresponding to a polynomial of degree p. Mathematically, this map looked like

x ∈ R 7→ Φ(x) =
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 ∈ Rp+1.

You then performed least-squares regression to the transformed data Φ(x) to obtain function that was linear
in Rp+1 but nonlinear in R. Revisiting our least-squares cost function, you solved the following problem
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The above gives us a way to easily fit arbitrary functions to data, which seems great! We saw that this
mapping can overfit the data if we let p be large, but of course this can be fixed by regularization (i.e., ridge
regression). The bigger problem with the above formulation is that as the dimension of Φ(x) grows, the
computational complexity of this problem increases to the point where it becomes infeasible. To avoid this
problem, we use something known in machine learning as the kernel trick, which hinges on the following two
properties

• Many machine learning algorithms depend on Φ(x) only via inner products 〈Φ(x),Φ(y)〉.

• For certain Φ, the function
k(x, y) = 〈Φ(x),Φ(y)〉

can be computed effeciently, even if p is huge or infinite.

When the function k(x, y) above satisfies some important properties described here, it is known as an inner
product kernel. For our purposes, it is sufficient to know that we can take advantage of such a mapping as
long as

• The function k(x, y) is symmetric, i.e., k(x, y) = k(y, x).

• The matrix K whose (i, j)th entry is k(xi, xj) is symmetric and positive semi-definite.

The above two properties mean that k is a positive definite kernel, which implies that k is an inner product
kernel. Another way to view kernels is that we are making use of the fact that the data is linear in some
high-dimensional space. We map to that space via the function Φ, which is computationally inefficient, but
we can do inner products in that space using the function k, which is computationally efficient.

1

http://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
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Task 1: Kernelizing Ridge Regression

To make use of kernels in ridge regression, we need to write the solution down in terms of inner products
between the vectors Φ(x) (or simply x if we consider the original space). Recall the solution to ridge regression

ŵ =
(
XTX + λI

)−1
XT y.

To this point, we’ve been most interested in finding w explicitly. However, the basic usage of w is to apply
it to a new “test” vector xt to predict the resulting label yt. The resulting prediction is simply the inner
product

yt = ŵTxt = xTt ŵ = xTt
(
XTX + λI

)−1
XT y.

Since the vectors xi are the rows of X, the matrix XTX above is not a Gram matrix and does not depend
on inner products. We’ll rewrite this using the matrix inversion lemma

(P +QRS)
−1

= P−1 − P−1Q(R−1 + SP−1Q)−1SP−1

with
P = λI Q = XT R = I S = X.

The resulting simplified prediction for a single test point xt is

yt = yT (XXT + λI)−1Xxt = ŵTxt. (1)

• Find all the inner products 〈xi, xj〉 in (1) and replace them with kernels k(xi, xj). Make use of the
matrix K defined above, and call k(xt) the vector whose ith element is k(xi, xt).

• Write a concise expression for determining the vector ŷ ∈ RN of estimated labels for each vector (row)
in X. This gives you the estimated label/value at each point in your training set.

• Raise your hand when you’ve finished this part, and I’ll come check your answer.

• If at the end of this demo you still have time to spare, try to derive (1) on your own.

Task 2: Train KRR

Your second task is to complete the first portion of the KRR.m function. The function takes in a set of
feature vectors and labels, a ridge regression tuning parameter λ, the tuning parameter σ for the radial basis
function (RBF) kernel given below. The output is the corresponding vector of labels for each test point.
The RBF and polynomial kernels are given below. Implementing the polynomial kernel is optional.

1. k(xi, xj) = exp
(
−‖xi−xj‖22

2σ2

)
, where σ > 0 (radial basis function/RBF kernel)

2. k(xi, xj) =
(
xTi xj + c

)p
, where c ∈ R and p ∈ N (polynomial kernel of degree p)

• Implement the training portion of KRR.m as instructed above.

• Test your function on the first portion of syntheticTest.m. Try a few different values for the various
tuning parameters. What effect does the parameter σ have?

• Now vary the two frequency parameters f1, f2. How does this change the best choice of σ?

• Raise your hand once you’ve finished this part, and I’ll come by to look at your work.

https://en.wikipedia.org/wiki/Woodbury_matrix_identity
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Task 3: Test KRR

Your final task is to complete the testing portion of the KRR.m function. This function makes use of Xtest,
a set of feature vectors with unknown labels (called test data). The output is the set of predicted labels for
each point in the test data set.

• Implement the testing portion of KRR.m using your kernelized verison of (1).

• Test your predictions on the test data given in the second portion of syntheticTest.m.

• Calculate the resulting mean-squared error (MSE, i.e., the least-squares cost) for the test data.

• If time allows, compute the MSE for a range of tuning parameters and display the result.


