
EE 510: Mathematical Foundations of Machine Learning Winter 2020

Demo: Subspace-based Handwritten Digit Recognition
Instructor Name: John Lipor

In this demo, you will implement a nearest-subspace classifier for the MNIST handwritten digits database.
This is one of the most common benchmark datasets in machine learning, and state-of-the-art algorithms
achieve accuracy better than the average human. In this demo, we’ll see how a simple classifier based on
low-rank approximation gets quite good results. Follow the steps below in order after reading Section 6.3 of
the Low-Rank Approximation notes.

Task 1: Data Exploration

Open classifyDigits, which loads the dataset in for all 10 digits. The variables are the images (also called
feature vectors) X and the corresponding class labels trueLabels. There are 200 images from each class.
Note that

X =
[
x1 x2 . . . xN

]
is the matrix whose columns are the vectorized images of the digits. The original image size is 28 × 28.

• First, have a look at the actual images. Use subplots to plot 3-4 images from each of 3-4 classes. Hint:
Use the reshape command.

• Next, pick a couple of digits (classes), and plot the singular values of the matrix whose columns are
the vectors only from a single class. For example, let X(1) be the matrix whose columns are all the
images of the digit “1”. Plot the singular values of this matrix.

• For the classes above, take note of how many singular values are needed to capture “most” of the energy
in the data. This is a good way to estimate the intrinsic dimension of the data. You can evaluate this
quantitatively by looking at the ratio ∑K

k=1 σk∑r
k=1 σi

.

• Raise your hand once you’ve finished this part, and I’ll come by to look at your work.

Task 2: Train Classifier

Your second task is to complete the trainUoS.m function. This function takes in a set of feature vectors and
labels, as well as a tuning parameter r, which is the desired subspace dimension. The output is a matrix of
size D × r × 10, where each “page” corresponds to a D × r orthonormal basis for the learned subspace.

• Split the data into training and test sets. Use the first 100 images from each class to build the training
set and the next 100 images to build the test set.

• Implement the trainUoS function as described in the trainUoS.m file.

• Pick a few digits/classes and display the principal components returned by trainUoS run on the
training data as images. That is, pick some Uk = Ufull(:, :, k), and display the first 3-4 columns of Uk

as images. Do this in a subplot for a few values of k. What do you see? Hint: The squeeze command
may be useful.

• Raise your hand once you’ve finished this part, and I’ll come by to look at your work.

1



Demo Subspace-based Handwritten Digit Recognition 2

Task 3: Test Classifier

Now that you have trained a set (union) of subspaces that describes the training data, we’ll see if this does
a good job of predicting on new (test) data.

• Implement the nsClassify function as described in the nsClassify.m file. See Section 6.3 of the
notes.

• Pick a value of r that makes sense to you based on your evaluation in Task 1, and run your classifier.
What is the resulting classification error?

• Choose a few mislabeled examples from the test data and display the corresponding images. What do
you notice?

• If time allows, perform “model selection” by looping over a range of values for r. Which value works
best? What is the resulting error?

• Raise your hand once you’ve finished this part, and I’ll come by to look at your work.


