
Chapter 1 

What This Book Is About and How to 
Read It 

1.1 " Exercises" vs. "Problems" 

This is a book about mathematical problem solving. We make three assumptions about 
you, our reader: 

• You enjoy math. 

• You know high-school math pretty well, and have at least begun the study of 
"higher mathematics" such as calculus and linear algebra. 

• You want to become better at solving math problems. 

First, what is a problem? We distinguish between problems and exercises. An 
exercise is a question that you know how to resolve immediately. Whether you get 
it right or not depends on how expertly you apply specific techniques, but you don 't 
need to puzzle out what techniques to use. In contrast, a problem demands much 
thought and resourcefulness before the right approach is found. For example, here is 
an exercise. 

Example 1 .1 .1  Compute 54363 without a calculator. 

You have no doubt about how to proceed-just multiply, carefully. The next ques
tion is more subtle. 

Example 1 .1 .2 Write 
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+ . . .  + 99 . 1 00 

as a fraction in lowest terms. 

At first glance, it is another tedious exercise, for you can just carefully add up all 
99 terms, and hope that you get the right answer. But a little investigation yields 
something intriguing. Adding the first few terms and simplifying, we discover that 
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= 3"' 
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1 1 1 3 
1 . 2 + 2 . 3 + 3 .4 = 4 ' 

1 1 1 1 4 
1 · 2 + 2 · 3 + 3 ·4 + 4 · 5 = 5 ' 

which leads to the conjecture that for all positive integers n, 
1 1 l I n 

- + -+ - + . . . + =--. 1 · 2 2 · 3 3 ·4 n (n + l )  n + l 
So now we are confronted with a problem: is this conjecture true, and if so, how do 
we prove that it is true? If we are experienced in such matters , this is still a mere 
exercise, in the technique of mathematical induction (see page 45) .  But if we are not 
experienced, it is a problem, not an exercise. To solve it, we need to spend some time, 
trying out different approaches. The harder the problem, the more time we need. Often 
the first approach fails .  Sometimes the first dozen approaches fail !  

Here i s  another question, the famous "Census-Taker Problem." A few people 
might think of this as an exercise, but for most, it is a problem. 

Example 1 . 1.3 A census-taker knocks on a door, and asks the woman inside how 
many children she has and how old they are. 

"I have three daughters , their ages are whole numbers, and the product of the ages 
is 36," says the mother. 

"That 's not enough information," responds the census-taker. 
"I'd tell you the sum of their ages, but you 'd still be stumped." 
"I wish you 'd tell me something more." 
"Okay, my oldest daughter Annie likes dogs." 
What are the ages of the three daughters? 

After the first reading, it seems impossible-there isn ' t  enough information to 
determine the ages . That 's why it is a problem, and a fun one, at that. (The answer is 
at the end of this chapter, on page 1 2, if you get stumped. )  

If the Census-Taker Problem is too easy, try this next one (see page 75 for solu
tion) : 

Example 1 .1 .4 I invite 10 couples to a party at my house. I ask everyone present, 
including my wife, how many people they shook hands with. It turns out that everyone 
questioned-I didn 't  question myself, of course-shook hands with a different number 
of people. If we assume that no one shook hands with his or her partner, how many 
people did my wife shake hands with? (I did not ask myself any questions.) 

A good problem is mysterious and interesting. It is mysterious, because at first you 
don 't know how to solve it. If it is not interesting, you won 't think about it much. If it 
is interesting, though, you will want to put a lot of time and effort into understanding 
it. 

This book will help you to investigate and solve problems. If you are an inex
perienced problem solver, you may often give up quickly. This happens for several 
reasons. 

• You may just not know how to begin. 
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• You may make some initial progress, but then cannot proceed further. 
• You try a few things, nothing works, so you give up. 

An experienced problem solver, in contrast, is rarely at a loss for how to begin inves
tigating a problem. He or she l confidently tries a number of approaches to get started. 
This may not solve the problem, but some progress is made. Then more specific tech
niques come into play. Eventually, at least some of the time, the problem is resolved. 
The experienced problem solver operates on three different levels: 

Strategy: Mathematical and psychological ideas for starting and pursuing 
problems. 
Tactics : Diverse mathematical methods that work in many different settings .  
Tools : Narrowly focused techniques and "tricks" for specific situations. 

1.2 The Three Levels of Problem Solvi ng 

Some branches of mathematics have very long histories, with many standard symbols 
and words. Problem solving is not one of them.2 We use the terms strategy, tactics 
and tools to denote three different levels of problem solving. Since these are not 
standard definitions, it is important that we understand exactly what they mean. 

A Mountaineering Analogy 

You are standing at the base of a mountain, hoping to climb to the summit. Your 
first strategy may be to take several small trips to various easier peaks nearby, so as 
to observe the target mountain from different angles. After this, you may consider a 
somewhat more focused strategy, perhaps to try climbing the mountain via a particu
lar ridge. Now the tactical considerations begin: how to actually achieve the chosen 
strategy. For example, suppose that strategy suggests climbing the south ridge of the 
peak, but there are snowfields and rivers in our path . Different tactics are needed to 
negotiate each of these obstacles. For the snowfield, our tactic may be to travel early 
in the morning, while the snow is hard. For the river, our tactic may be scouting the 
banks for the safest crossing. Finally, we move onto the most tightly focused level, that 
of tools: specific techniques to accomplish specialized tasks. For example, to cross the 
snowfield we may set up a particular system of ropes for safety and walk with ice axes. 
The river crossing may require the party to strip from the waist down and hold hands 
for balance. These are all tools. They are very specific. You would never summarize, 
"To climb the mountain we had to take our pants off and hold hands," because this was 
a minor-though essential-component of the entire climb. On the other hand, strate
gic and sometimes tactical ideas are often described in your summary : "We decided 
to reach the summit via the south ridge and had to cross a difficult snowfield and a 
dangerous river to get to the ridge." 

I We wil l  henceforth avoid the awkward "he or she" construction by alternating genders in subsequent chapters. 
2 In fact, there does not even exist a standard name for the theory of problem solving, although George P6lya 

and others have tried to popularize the term heuristics (see, for example, [32]). 
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As we climb a mountain, we may encounter obstacles. Some of these obstacles are 
easy to negotiate, for they are mere exercises (of course this depends on the climber's 
ability and experience). But one obstacle may present a difficult miniature problem, 
whose solution clears the way for the entire climb. For example, the path to the sum
mit may be easy walking, except for one l O-foot section of steep ice. Climbers call 
negotiating the key obstacle the crux move. We shall use this term for mathematical 
problems as well. A crux move may take place at the strategic, tactical or tool level; 
some problems have several crux moves; many have none. 

From Mountaineering to Mathematics 

Let 's approach mathematical problems with these mountaineering ideas. When con
fronted with a problem, you cannot immediately solve it, for otherwise, it is not a 
problem but a mere exercise. You must begin a process of investigation . This in
vestigation can take many forms. One method, by no means a terrible one, is to just 
randomly try whatever comes into your head. If you have a fertile imagination, and a 
good store of methods, and a lot of time to spare, you may eventually solve the prob
lem. However, if you are a beginner, it is best to cultivate a more organized approach. 
First, think strategically. Don 't try immediately to solve the problem, but instead think 
about it on a less focused level. The goal of strategic thinking is to come up with a plan 
that may only barely have mathematical content, but which leads to an "improved" sit
uation, not unlike the mountaineer's strategy, "If we get to the south ridge, it looks like 
we will be able to get to the summit." 

Strategies help us get started, and help us continue. But they are just vague outlines 
of the actual work that needs to be done. The concrete tasks to accomplish our strategic 
plans are done at the lower levels of tactic and tool. 

Here is an example that shows the three levels in action, from a 1 926 Hungarian 
contest. 

Example 1.2. 1 Prove that the product of four consecutive natural numbers cannot be 
the square of an integer. 

Solution: Our initial strategy is to familiarize ourselves with the statement of 
the problem, i .e . ,  to get oriented. We first note that the question asks us to prove 
something. Problems are usually of two types-those that ask you to prove something 
and those that ask you to find something. The Census-Taker problem (Example 1 . 1 . 3) 
is an example of the latter type. 

Next, observe that the problem is asking us to prove that something cannot hap
pen . We divide the problem into hypothesis (also called "the given") and conclusion 
(whatever the problem is asking you to find or prove). The hypothesis is : 

Let n he a natural number. 
The conclusion is :  

n(n + 1 ) (n + 2) (n + 3 )  cannot be the square of an integer. 
Formulating the hypothesis and conclusion isn 't a triviality, since many problems don 't 
state them precisely. In this case, we had to introduce some notation. Sometimes our 
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Perhaps we should focus on the conclusion: how do you go about showing that 
something cannot be a square? This strategy, trying to think about what would im
mediately lead to the conclusion of our problem, is called looking at the penultimate 
step.3 Unfortunately, our imagination fails us-we cannot think of any easy crite
ria for determining when a number cannot be a square. So we try another strategy, 
one of the best for beginning just about any problem: get your hands dirty. We try 
plugging in some numbers to experiment with. If we are lucky, we may see a pat
tern. Let's try a few different values for n. Here 's a table. We use the abbreviation 
f(n) = n (n + 1 ) (n + 2) (n + 3) . 

I f(n) I 2! I 1 2� I 36� I 84� I 1 68� I 1 7 1!� I 
Notice anything? The problem involves squares, so we are sensitized to look for 

squares. Just about everyone notices that the first two values of f(n ) are one less than 
a perfect square. A quick check verifies that additionally, 

f(3 )  = 1 92 - 1 , f(4) = 292 - 1 , f(5 )  = 4 1 2 - 1 , f( 1 O) = 1 3 1 2 - I . 

We confidently conjecture that f(n ) is one less than a perfect square for every n . Prov
ing this conjecture is the penultimate step that we were looking for, because a positive 
integer that is one less than a pelfect square cannot be a pelfect square since the 
sequence 1 , 4 , 9 , 1 6 , . . .  of perfect squares contains no consecutive integers (the gaps 
between successive squares get bigger and bigger) . Our new strategy is to prove the 
conjecture. 

To do so, we need help at the tactical/tool level. We wish to prove that for each 
n, the product n (n + 1 )  (n + 2) (n + 3) is one less than a perfect square. In other words, 
n(n + 1 )  (n + 2) (n + 3 )  + 1 must be a perfect square. How to show that an algebraic 
expression is always equal to a perfect square? One tactic : factor the expression ! 
We need to manipulate the expression, always keeping in mind our goal of getting a 
square. So we focus on putting parts together that are almost the same. Notice that the 
product of n and n + 3 is "almost" the same as the product of n + I and n + 2, in that 
their first two terms are both n2 + 3n . After regrouping , we have 

[n (n + 3 ) ] [ (n + l ) (n + 2) ]  + 1 = (n2 + 3n ) (n2 + 3n + 2) + I . ( 1 )  

Rather than multiply out the two almost-identical terms, we introduce a little symme
try to bring squares into focus:  

(n2 + 3n) (n2 + 3n + 2) + 1 = ( ( n2 + 3n + 1 )  - 1 ) ( ( n2 + 3n + 1 )  + 1 ) + 1 . 

Now we use the "difference of two squares" factorization (a tool ! )  and we have 

( (n2 + 3n + 1 )  - 1 ) ( (n2 + 3n + 1 )  + 1 ) + 1 = (n2 + 3n + 1 ) 2 - 1 + 1 

= (n2 + 3n + 1 ) 2 . 

3The word "penultimate" means "next to las!." 
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We have shown that f(n) is one less than a perfect square for all integers n, namely 

f(n) = (n2 + 3n +  1 ) 2 - 1 , 
and we are done. • 

Let us look back and analyze this problem in terms of the three levels. Our first 
strategy was orientation, reading the problem carefully and classifying it in a prelim
inary way. Then we decided on a strategy to look at the penultimate step that did not 
work at first, but the strategy of numerical experimentation led to a conjecture. Suc
cessfully proving this involved the tactic of factoring, coupled with a use of symmetry 
and the tool of recognizing a common factorization. 

The most important level was strategic. Getting to the conjecture was the crux 
move. At this point the problem metamorphosed into an exercise ! For even if you 
did not have a good tactical grasp, you could have muddled through. One fine method 
is substitution: Let u = n2 + 3n in equation ( 1 ) . Then the right-hand side becomes 
u (u + 2) + 1 = u2 + 2u + 1 = (u + 1 ) 2 . Another method is to mUltiply out (ugh ! ) .  We 
have 

n( n + 1 )  (n + 2) (n + 3) + 1 = n4 + 6n3 + 1 1  n2 + 6n + 1 . 
If this is going to be the square of something, it will be the square of the quadratic 
polynomial n2 + an + 1 or n2 + an - 1 .  Trying the first case, we equate 

n4 + 6n3 + 1 1  n2 + 6n + 1 = (n2 + an + 1 ) 2 = n4 + 2an3 + (a2 + 2 )n2 + 2an + 1 
and we see that a = 3 works; i .e . ,  n(n + l ) (n + 2) (n + 3 )  + 1 = (n2 + 3n + 1 ) 2 . This 
was a bit less elegant than the first way we solved the problem, but it is a fine method. 
Indeed, it teaches us a useful tool: the method of undetermined coefficients. 

1.3 A Problem Sampler 

The problems in this book are classified into three large families: recreational, contest 
and open-ended. Within each family, problems split into two basic kinds: problems 
"to find" and problems "to prove.,,4 Problems "to find" ask for a specific piece of 
information, while problems "to prove" require a more general argument. Sometimes 
the distinction is blurry. For example, Example 1 . 1 .4 above is a problem "to find," but 
its solution may involve a very general argument. 

What follows is a descriptive sampler of each family. 

Recreational Problems 

Also known as "brain teasers," these problems usually involve little formal mathemat
ics, but instead rely on creative use of basic strategic principles . They are excellent to 
work on, because no special knowledge is needed, and any time spent thinking about a 

4These two terms are due to George P61ya [32]. 


