Consider the Netflix problem, where we are given a collection of users, each of whom has rated some subset of the available movies/shows on Netflix. If we arrange this information in a matrix, it may look like this (obviously Netflix has more users and movies than this).

\[
\begin{array}{c|c|c|c|c}
 & \text{movie 1} & \text{movie 2} & \text{movie 3} & \text{movie 4} \\
\hline
\text{user 1} & 3 & ? & 5 & ? \\
\hline
\text{user 2} & ? & 1 & ? & 2 \\
\hline
\text{user 3} & 2 & ? & 2 & ? \\
\hline
\text{user 4} & ? & 4 & ? & ? \\
\hline
\text{user 5} & 5 & ? & ? & 4 \\
\hline
\end{array}
\]

Obviously, Netflix wishes to fill in these missing entries so it knows what movies to recommend to a given user. One method of filling in these missing entries leverages low-rank structure in the matrix. This is called low-rank matrix completion (LRMC).
Observation Model

Assume $X \in \mathbb{R}^{m \times n}$ has rank $r < \min(m,n)$, so that

$$X = \sum_{i=1}^{r} c_i u_i v_i^T.$$

Suppose we observe a subset of the entries in X, so we are given a matrix $Y \in \mathbb{R}^{m \times n}$ such that

$$Y_{ij} = \begin{cases} X_{ij} & (i,j) \in \mathcal{S} \\ \text{?} & \text{otherwise} \end{cases}, \quad \mathcal{S} \subset \{1, \ldots, m\} \times \{1, \ldots, n\}^2$$

where \mathcal{S} is a set of known sampling locations. We may then ask

1) Can we recover X from Y?
2) How do we do it?
3) How well does it work?
Supply Conditions

To answer the first question, assume we receive exact (noiseless) measurements. If X has rank r, we can write

$$X = \tilde{U}_r \tilde{V}_r^T,$$

where \tilde{U}_r has size $M \times r$ and \tilde{V}_r has size $N \times r$. In this light, the degrees of freedom in X are $M \times r + N \times r = (M+N)r$, which is typically much smaller than MN. Alternatively, suppose the first r columns are linearly independent, and the next $N-r$ columns are dependent entirely on the first r. This gives $M \times r + (N-r)r = (M+N)r - r^2$ degrees of freedom.

If $M = N$, then the DoF $= 2Nr$, so we need at least $O(Nr)$ samples to have any hope of recovery.

Q: If X is $N \times N$, approximately how many samples do we need?
LRMC Problem Formulation

How should we formulate the LRMC problem as an optimization problem? We have two goals for any estimate \hat{X}:

1) $\hat{X}_{ij} = X_{ij}$ for $(i,j) \in \mathcal{I}$ (observed entries match)
2) $\text{rank}(\hat{X}) = r$ (estimate is low-rank)

Let P_2 be the orthogonal projection onto the space of matrices supported on \mathcal{I}. Then we write

$$P_2 X = \begin{cases} X_{ij} & (i,j) \in \mathcal{I} \\ 0 & \text{otherwise} \end{cases}$$

An equality-constrained ℓ_1-norm pursuit-type optimization problem is then

$$\min_X \|X\|_{1,1} \quad \text{s.t.} \quad P_2(X) = P_2(Y)$$

(1)
Alternatively, if we believe our observations are corrupted by noise, we may choose to solve the Lasso-type/Tikhonov regularized problem

$$\min_{\mathbf{x}} \frac{1}{2} \| \mathbf{P}_2(\mathbf{x}) - \mathbf{P}_2(\mathbf{y}) \|_F^2 + \lambda \| \mathbf{x} \|_1 . \quad (2)$$

Note the similarity between (1-2) and our optimization problems for sparse regression.

Algorithms for LRMC

We can solve the LRMC problem using both ADMM and IRLS. The latter will appear on homework. Define the (split) augmented Lagrangian to be

$$L^s(\mathbf{x}, \mathbf{z}, \mathbf{L}) = \frac{1}{2} \| \mathbf{z} \|_2^2 \quad + \frac{1}{2} \| \mathbf{P}_2(\mathbf{x}) - \mathbf{P}_2(\mathbf{y}) \|_F^2 \quad + \langle \mathbf{L}, \mathbf{x} - \mathbf{z} \rangle \quad + \frac{\lambda}{2} \| \mathbf{x} - \mathbf{z} \|_2^2$$

where \mathbf{L} is the matrix of Lagrange multipliers. The ADMM updates are given below. Their derivation is likely to be a homework problem. Note the similarity to the Lasso updates!
ADMM for LRMC

\[X^{(k+1)}_{i,j} = \begin{cases} \frac{1}{\rho} Y_{i,j} & \text{if } (i,j) \in S \\ Z - L & \text{if } (i,j) \notin S \end{cases} \]

\[Z^{(k+1)} = \text{prox}_{\lambda p} (X + L) \]

\[L^{(k+1)} = L + X - Z \]