
Adaptive Sampling for Seabed Identification from
Ambient Acoustic Noise

Matthew Sullivan
Dept. of Electrical and Computer Engineering

Portland State University
matsu2@pdx.edu

John Gebbie
Metron, Inc.

gebbie@metsci.com

John Lipor
Dept. of Electrical and Computer Engineering

Portland State University
lipor@pdx.edu

Abstract—We study the problem of adaptively obtaining am-
bient acoustic measurements via an autonomous underwater
vehicle, with the goal of characterizing the geoacoustic properties
of the seabed. In contrast to the traditional adaptive sampling
scenario, we are provided with sets of snapshots associated with
each spatial location, making the problem one of unsupervised
learning. We demonstrate how sets of snapshots can be used to
obtain noisy pairwise similarities between locations, which can
then be used to perform level set estimation to separate the
seabed into two highly-distinct types. We propose an adaptive
sampling policy that aims to directly reduce the number of
locations whose level set membership is uncertain, as well as an
approach to minimizing the distance traveled while sampling.
Results on synthetic and real-world sediment data demonstrate
the benefits of our approach in terms of both accuracy and
distance traveled.

I. INTRODUCTION

Understanding the spatial variability of geoacoustic prop-
erties in the ocean is essential for characterizing SONAR
system performance [1]–[3]. Historically, spatial variability
has been estimated through collection of sediment cores or
active SONAR, but these costly procedures are only feasible
for relatively small regions of the ocean. Further, existing
approaches collect measurements opportunistically or on a
uniform grid, rather than letting previous measurements guide
the sampling procedure to the most informative locations. Re-
cently, researchers have demonstrated the potential to estimate
seabed parameters through ambient acoustic noise sources,
such as surface waves or passing ships [4]–[6]. Such sources
have the potential to enable low-powered autonomous under-
water vehicles (AUVs) to continuously capture information
over vast regions of the ocean.

Given the massive scale of the regions of interest to
practitioners, obtaining a high-fidelity estimate of the seabed
requires adaptively guiding AUVs to discover and track
regions where the seabed varies. In recent years, a wide
variety of adaptive sampling algorithms have been developed
to improve environmental monitoring, improving estimates
of phenomena such as thermoclines [7]–[9], concentrations
of harmful chemicals and bacteria [10], [11], and wildfire
boundaries [12], [13]. Such algorithms typically proceed by
defining a notion of information gain, which is balanced with
the cost of obtaining measurements and traveling to new
sampling locations.
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Fig. 1: Seabed types (by color) in the northern Pacific
Ocean. The seabed predominantly consists of clay (yellow) or
medium silt (green), and the goal is to discover all locations
where the type differs significantly (light/dark blue). The red
box denotes the subregion used for experiments in Sec. IV.

Existing adaptive sampling algorithms typically proceed
by either a local view, where the goal is to track a single
boundary as closely as possible [7]–[9], [12]–[16], or a global
view, in which the entire field of interest is regressed after
each measurement [10], [11], [17]–[23]. While the former are
typically more efficient and noise-tolerant, they are limited to
the case of a single boundary and have no principled means
of exploring the region of interest. In the case of seabed
characterization, the goal is to discover multiple disconnected
regions where the seabed differs from the dominant type
(see Fig. 1). However, global approaches typically perform
poorly in high-noise scenarios, with a tendency to over-
explore. Further, in the case of seabed characterization, direct
measurements of seabed type are not available. Instead, the
AUV continuously collects acoustic snapshots, which can be
associated to a spatial location. As a result, seabed character-
ization can be viewed as an unsupervised problem, where the
goal is to simultaneously decide which snapshots correspond
to the same seabed type and determine the most efficient path
for the AUV.

In this work, we propose an approach to performing adap-
tive sampling based on the collection of ambient acoustic
snapshots. We show how the seabed characterization problem
can instead be formulated as one of level set estimation



(LSE) from noisy similarity measurements. We then propose
an adaptive sampling policy that seeks to directly reduce the
number of uncertain locations (i.e., locations whose level set
membership is unknown). Finally, we introduce a mechanism
for controlling the distance traveled by the vehicle that has the
ancillary benefit of reducing the computation time required by
our policy. We show that our approach outperforms existing
adaptive sampling policies on both synthetic data and a case
study of seabed characterization in the northern Pacific Ocean.

II. PROBLEM FORMULATION

Consider an AUV carrying an array of M receivers that
capture ambient acoustic noise, typically assumed to be gener-
ated by surface waves. The time-series pressure recordings are
Fourier transformed to obtain snapshots z ∈ CM at a single
frequency, which are assumed to be drawn from a circularly-
symmetric complex Gaussian distribution with covariance [5]

Σθ = E[zzH ] = σ2
sΓθ + σ2

nI, (1)

where σ2
s is the power in the ambient noise, σ2

n is the
non-acoustic sensor noise variance, and Γθ is the signal
covariance matrix, with parameters θ corresponding to the
physical properties of the seabed [24], [25]. For a spatial
location x ∈ R2, there exists a corresponding seabed type
defined by its covariance. For two locations x, x′, our goal
is to determine whether the snapshots are generated from the
same (or a very similar) covariance.

We first motivate our LSE formulation with an application
of interest. The Naval Oceanographic Office maintains a
bottom sediment type database with a list of 23 seabed types
provided in the High Frequency Environmental Acoustics
(HFEVA) dataset [26]. In practice, the seabed often consists
of one predominant background type (e.g., clay), with patches
of different types distributed throughout a region (see Fig. 1).
Hence, the chief practical goal is to determine all regions
where the seabed differs significantly from this background
type. In the context of Fig. 1, the background types clay (yel-
low) and medium silt (green) are extremely similar, making
the goal to discover regions corresponding to rock (dark blue)
and gravelly muddy sand (light blue).

To formulate the above problem in terms of LSE, we con-
sider a finite domain of interest D ⊂ R2 and select a reference
location x0 known to belong to the background sediment
type. Observe that sampling location xt at time t provides a
collection of L snapshots z

(t)
1 , . . . , z

(t)
L . These snapshots can

be used to obtain similarities between pairs of locations as
follows. For each sampled location xt, we compute the sample
covariance matrix Σ̂t of the corresponding snapshots. We then
compute the Jensen-Shannon divergence (JSD) [27] between
locations xt and x0

J(Σ̂0||Σ̂t) = (D(Σ̂0||Σ̂t) +D(Σ̂t||Σ̂0))/2, (2)

where D(Σ̂0||Σ̂t) is the Kullback-Leibler divergence between
the Gaussian distributions defined by the covariance estimates

Σ̂0 and Σ̂t [28]. We exponentiate the JSD to obtain the noisy
similarity between x0 and xt

st = exp
(
−J(Σ̂0||Σ̂t)/ℓ

2
)
, (3)

where ℓ is a tuning parameter used to control the scale of the
similarities. Our goal is to accurately estimate the sublevel set
of locations that are sufficiently dissimilar to x0

L = {x ∈ D : s(x0, x) ≤ τ} , (4)

where τ > 0 is the threshold governing the degree of
dissimilarity of interest and s(x0, x) is the similarity between
the locations using the unknown true covariance matrices. In
addition, we wish to minimize the total sampling time, which
depends primarily on the distance traveled.

III. PROPOSED SAMPLING POLICY

In this section, we describe our approach to distance-
penalized LSE. As with other global algorithms, our policy
sequentially updates a prediction and confidence interval at
each x ∈ D, as well as estimates of the sublevel set, superlevel
set, and the uncertain set, which consists of points whose
level set membership cannot be confidently determined. Our
key observation is that the goal of LSE is to reduce the
cardinality of the uncertain set as quickly as possible. In light
of this, our proposed sampling policy chooses the location that
obtains the greatest (approximate) reduction in the size of the
uncertain set. Further, a great deal of attention has been given
to various forms of distance penalization in adaptive sampling.
We account for this cost by limiting our policy to only select
from among a fixed number of nearest neighbors within the
uncertain set. This directly reduces the distance traveled, while
selecting only from the uncertain set ensures that the selected
point still provides significant information gain.

To obtain predictions and confidence intervals, we utilize
kernel ridge regression (KRR), though we note that our
approach works with any regression algorithm that admits an
uncertainty estimate. Let k(x, x′) be a kernel function, which
denotes the similarity between locations x and x′. Consider a
set of visited sample locations x1, . . . , xt with corresponding
similarity measurements s1, . . . , st. Define Kt ∈ Rt×t to
be the matrix whose i, jth entry is k(xi, xj), let kx,t =
[k(x, x1), . . . , k(x, xt)]

T , and yt = [s1, . . . , st]
T . For a given

point x ∈ D, the KRR prediction and confidence width are

µt(x) = kTx,t (Kt + γI)
−1

yt (5)

and

σt(x) = γ−1/2
√
k(x, x)− kTx,t (Kt + γI)

−1
kx,t, (6)

where γ ≥ 0 is a regularization parameter. Following [29],
[30], these predictions can be updated in an online fashion to
reduce computational complexity.

Based on the above predictions and confidence widths, we
can state with high probability that the true similarity lies
within the confidence interval Ct(x) = [µt(x)± ησt(x)],
where η > 0 controls the size of the confidence interval. While



Algorithm 1 Lookahead Uncertain Set Reduction (LUSR)
Input: domain D, initial location x0, kernel function k,
threshold τ , tuning parameters γ, η, number of neighbors ρ,
number of samples T
Output: predicted sets LT , HT

1: L0 ← ∅, H0 ← ∅, U0 ← D
2: for t = 0, . . . , T do
3: Nρ(xt)← ρ nearest neighbors of xt in Ut

4: xt+1 ← arg maxx∈Nρ(xt) |Ut| −
∣∣∣Ũt+1

∣∣∣
5: collect snapshots, form similarity st+1 according to (3)
6: update µt+1 and σt+1 according to (5)-(6)
7: update Lt+1, Ht+1, Ut+1 according to (7)-(9)
8: end for

the value of η can be motivated theoretically, in practice most
approaches select a constant value that works well over a range
of problems [17]. Based on the confidence interval above, we
maintain estimates of the sublevel, superlevel, and uncertain
sets, respectively

Lt = {x ∈ D : µt(x) + ησt(x) ≤ τ} (7)

Ht = {x ∈ D : µt(x)− ησt(x) ≥ τ} (8)

Ut = D \ (Lt ∪Ht). (9)

We now define our sampling policy, which we refer to
as lookahead uncertainty set reduction (LUSR). As stated
above, the goal of LUSR is to select the sample that results
in the greatest reduction of the uncertain set. Note that the
confidence width (6) does not depend on the value of the
measurement and can therefore be evaluated exactly prior to
sampling a given point, as utilized by [11], [31]. However,
determining the uncertain set also requires evaluating the
posterior prediction (5), which does depend on the mea-
surement value. While this value cannot be known without
sampling, our key observation is that we can utilize the
existing confidence interval to obtain a false measurement for
a given location. In particular, we set

s̃t+1 =

{
µt(x)− ησt(x), µt(x) > τ

µt(x) + ησt(x), µt(x) ≤ τ
(10)

and then form estimates L̃t+1, H̃t+1, and Ũt+1 based on
this value. LUSR then selects the sample that maximizes the
estimated uncertain set reduction

xt+1 = arg max
x∈Ut

|Ut| −
∣∣∣Ũt+1

∣∣∣ . (11)

Pseudocode for sampling with LUSR is given in Alg. 1.
The false measurement (10) can be viewed as a pessimistic

choice in the sense that it is the value that removes the fewest
points from the uncertain set. If µt(x) > τ , we set s̃t+1 to
be the smallest possible value, which pushes x and all similar
points closer to the level set boundary τ . While one could
utilize any value within Ct(x), our initial experimentation
showed that pessimism results in a lower distance traveled
than other options, since it guides the vehicle toward locations
where we are highly confident many points will be removed.

Fig. 2: Synthetic fields used for evaluation of LSE policies.

Finally, we describe our approach to distance penalization,
which also reduces the computational complexity of our
approach. To reduce the distance traveled, we wish to avoid
large jumps across the region of interest. One way to prevent
such jumps is to only allow the policy to select from among
the ρ nearest neighbors within the uncertain set. At time t, we
denote this set by Nρ(xt). We then perform the maximization
in (11) over Nρ(xt), rather than over the entirety of Ut.
We show empirically in Sec. IV that there is a tradeoff
between distance traveled and accuracy that is governed by
ρ. As an additional benefit, searching over a fixed number
of neighbors can dramatically reduce the computation cost of
LUSR, especially for the case of large domains. Thus, our
approach provides a simple means to distance penalization
that also makes lookahead-type methods such as ours feasible
for real-time adaptive sampling.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the empirical performance of
LUSR on both synthetic data and real types maps from the
HFEVA database. We compare our policy to random sampling,
margin-based sampling xmar = arg minx |µt(x)− τ |, as well
as max variance sampling (VAR) xvar = arg maxx σt(x). For
all policies, we perform distance penalization by searching
over the ρ nearest neighbors. Although not shown, we also
compared against the state-of-the-art straddle heuristic [32]
and variance reduction in the spirit of [11]. However, the
straddle heuristic performed similar to margin while requiring
selection of another tuning parameter, while variance reduc-
tion was nearly equivalent to maximum variance sampling.

We first consider synthetic data, generating 20 random
fields of size 50 × 50 by mapping the coordinates to a
fourth-order polynomial, generating a random weight vector
in this high-dimensional space, then labeling each location
according to a linear classifier defined by this weight vector.
The resulting fields are shown in Fig. 2, where yellow denotes
the superlevel set and blue denotes the sublevel set. For
each field, we perform 32 random trials, drawing similarities
from a truncated normal distribution with means zero and
one for within-class and across-class similarities, respectively.
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Fig. 3: Level set estimation accuracy versus distance traveled
on synthetic data. (a) Low-noise setting with standard devia-
tion 0.15. (b) High-noise setting with standard deviation 0.45.

We set the level-set threshold τ = 0.5 and consider a low-
noise scenario having standard deviation 0.15 and a high-noise
scenario with standard deviation 0.45. For all policies, we set
γ = 0.01, η = 0.5, the number of neighbors ρ = 100, and
use the top left corner as the reference location. We evaluate
algorithms based on the classification accuracy, treating the
level set membership as a binary label.

Fig. 3 shows the median accuracy versus distance traveled
for each policy considered in both the low-noise and high-
noise settings, along with the interquartile range. In both cases,
we see that LUSR achieves a higher accuracy than its closest
competitor at a lower distance traveled. We note that for fields
containing only a single boundary, margin is able to quickly
discover and track the boundary, achieving a high accuracy
at a small cost. However, for fields whose super/sublevel
sets consist of more than one component, margin lacks the
exploration benefits of LUSR and obtains a low accuracy.
While VAR quickly discovers all components, it focuses too
heavily on exploration, resulting in a much higher distance
traveled. Hence, we see that LUSR selects points that are both
near the level set boundary and of high uncertainty, obtaining
the appropriate degree of exploration.

Next, we evaluate our approach to distance penalization.
Fig. 4 shows the accuracy and distance traveled as a function
of the number of neighbors for the low-noise setting described
above. As expected, by limiting the number of neighbors, we
can obtain a significant reduction in distance traveled by all
sampling policies at the cost of estimation accuracy. Further,
we again see that LUSR obtains a balance between the high
accuracy of VAR while traveling distance on par with margin.

Finally, we compare algorithm performance on realistic
sediment type data from the region bounded by the red box in
Fig. 1. This region contains HFEVA sediment types 2, 8, 16,
17, and 22, with types 16-22 having very similar covariances
[33]. Hence, we aim to distinguish types 2 and 8 from the
background types 16, 17, and 22. For each sediment type, we
obtain a signal covariance from the Multidimensional Ambient
Noise Model [34] and generate complex normal snapshots
according to the covariance defined by (1) with a signal-
to-noise ratio of 10, using M = 32 sensors. Each sampled
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Fig. 4: Impact of number of neighbors considered on (a)
accuracy and (b) distance traveled for different selection
policies. The figures show a trade-off between accuracy and
distance traveled that is compatible with any policy.
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Fig. 5: Level set estimation accuracy on seabed data from the
northern Pacific Ocean. (a) Accuracy as a function of distance.
(b) Relative size of uncertain set as a function of distance.

location provides L = 300 snapshots. To obtain similarities,
we set ℓ = 10, and the level set threshold is chosen to be
τ = 0.3, though all policies are robust to a wide range of
values for these parameters. Results are shown for 16 random
trials with the bottom left corner as the reference location.

Fig. 5 displays (a) the accuracy as well as (b) the relative
size of the uncertain set as a function of distance. As with syn-
thetic data, we see that LUSR achieves a higher accuracy than
VAR at a lower cost, with a maximum distance approximately
1,200 km less than that required by VAR. Further, Fig. 5(b)
shows that LUSR reduces the uncertain set more quickly than
VAR, indicating that our use of false measurements obtains
the desired benefit of estimating the cardinality of Ut+1.

V. CONCLUSION

We have provided an approach to seabed characterization
from ambient acoustic noise through the lens of adaptive
sampling for level set estimation. Our proposed adaptive
sampling policy directly estimates the reduction in uncertainty
via the use of false measurements, obtaining strong empirical
results on both synthetic and realistic ambient acoustic data.
The analysis of both our adaptive sampling policy and our
distance penalization technique is of particular interest as a
topic of future study.



REFERENCES

[1] E. L. Hamilton, “Geoacoustic models of the sea floor,” Physics of sound
in marine sediments, pp. 181–221, 1974.

[2] D. DEL BALZO, “Critical angle and seabed scattering issues for active-
sonar performance predictions in shallow water,” in High Frequency
Acoustics in Shallow Water, Conference Proceedings, 1997, 1997.

[3] M. Prior, C. Harrison, and S. Healy, “Assessment of the impact
of uncertainty in seabed geoacoustic parameters on predicted sonar
performance,” Impact of Littoral Environmental Variability of Acoustic
Predictions and Sonar Performance, pp. 531–538, 2002.

[4] L. Muzi, M. Siderius, and C. M. Verlinden, “Passive bottom reflection-
loss estimation using ship noise and a vertical line array,” The Journal
of the Acoustical Society of America, vol. 141, no. 6, pp. 4372–4379,
2017.

[5] J. Gebbie and M. Siderius, “Optimal environmental estimation with
ocean ambient noise,” The Journal of the Acoustical Society of America,
vol. 149, no. 2, pp. 825–834, 2021.

[6] M. Siderius and J. Gebbie, “Environmental information content of ocean
ambient noise,” The Journal of the Acoustical Society of America, vol.
146, no. 3, pp. 1824–1833, 2019.

[7] S. Petillo, H. Schmidt, P. Lermusiaux, D. Yoerger, and A. Balasuriya,
“Autonomous & adaptive oceanographic front tracking on board au-
tonomous underwater vehicles,” in OCEANS 2015-Genova. IEEE,
2015, pp. 1–10.

[8] J. Lipor and G. Dasarathy, “Quantile search with time-varying search
parameter,” in 2018 52nd Asilomar Conference on Signals, Systems, and
Computers. IEEE, 2018, pp. 1016–1018.

[9] D. Wang, G. Dasarathy, and J. Lipor, “Distance-penalized active learning
via markov decision processes,” in Proc. IEEE Data Science Workshop,
2019.
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