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A Graph-Based Approach to Boundary Estimation
with Mobile Sensors

Sean O. Stalley1, Dingyu Wang2, Gautam Dasarathy3, and John Lipor1

Abstract—We consider the problem of adaptive sampling for
boundary estimation, where the goal is to identify the two-
dimensional spatial extent of a phenomenon of interest. Motivated
by applications in estimating the spread of wildfires with a mobile
sensor, we present a novel graph-based algorithm that is efficient
in both the number of samples taken and the distance traveled.
The key idea behind our approach is that by sampling locations
close to known cut edges (edges whose vertices lie on opposite
sides of the boundary), we can reliably find additional cut edges.
Our approach repeats this process of using the newly discovered
cut edges to find additional cut edges, eventually identifying all
vertices lying adjacent to the boundary. We show that our method
achieves both a sample complexity and a distance traveled that
are within a constant factor of the optimal values. Moreover, the
computational complexity of determining sample locations and
paths is O(1), making its deployment on mobile sensors highly
realistic. Experimental results on both synthetic and historical
wildfire data show that our proposed algorithm outperforms
existing methods in terms of sample complexity, distance traveled,
and computation time.

Index Terms—Sensor-based control, machine learning for
robot control, environment monitoring and management

I. INTRODUCTION

RAPIDLY sensing and estimating phenomena of interest
is a fundamental problem to scientists and engineers,

and the recent development of both low-cost robots and on-
board sensors has enabled safe, persistent monitoring across a
variety of applications. As a motivating example, we consider
the problem of estimating wildfire boundaries using a sensor
mounted to an unmanned aerial vehicle (UAV). In this setting,
it is essential to estimate the boundary as quickly as possible,
both to provide responders with the most accurate information
and to account for nonstationarity in the wildfire front. Toward
this aim, a key problem is that of developing algorithms that
can reliably estimate the boundary while minimizing the total
sampling time, a function of both the number of measurements
taken and the distance traveled.
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Fig. 1. (a) An example level set boundary ∂B (blue) and partition P10. Gray
lines indicate the cut edges in C that connect vertices on opposite side of the
level set. (b) An example sampling pattern of the proposed CuP algorithm on
∂B. Green dots indicate measurements inside the boundary, red dots indicate
measurements outside the boundary, and the gray dashed line depicts the path
traveled during sampling. Black dots are unsampled locations.

Recent research has shown that active learning methods
can be applied to improve the performance of mobile sensing
platforms when tasked with a variety of problems, such as
localization and mapping with aerial robots [1]–[3], selecting
the most informative images collected by a robot [4], im-
proving movement predictability when sharing an environment
with humans [5], intelligent mobile sensor placement for im-
proved environmental model accuracy [6], [7], and improved
positional accuracy of autonomous underwater vehicles [8].
Advances in active learning have resulted in algorithms that
achieve near-optimal sample complexity [9], [10] as well
as the ability to incorporate non-uniform label costs [11]–
[13]. An important application of these methods has been
one of discovering the spatial extent of some phenomenon
using mobile sensors [6], [14]–[20]. Traditional active learning
techniques are sample efficient but do not account for the cost
associated with the distance traveled by the mobile sensor.
Existing adaptations of active learning to this problem either
rely on strong modeling assumptions [21], are limited to very
restrictive cases [18], or treat this cost myopically [13].

Among approaches from active learning with low sample
complexity, the shortest-shortest path (S2) algorithm [9] is
shown to exhibit a zig-zagging behavior that traces the class
decision boundary in a manner that is likely to reduce the
distance traveled. However, this behavior is not guaranteed,
and hence S2 may sample a sequence of points with arbitrarily
long path length. Further, the sample selection process for S2

requires computing all pairs of shortest paths between nodes
in the graph, incurring a large computational cost that makes
it impractical for deployment on mobile sensors.

In this work, we present a novel graph-based algorithm for
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active boundary estimation that overcomes the shortfalls of
existing methods. The key idea is that we reduce this problem
to one of level set estimation of a graph function; by sampling
locations near known cut edges (graph edges whose vertices lie
on opposite sides of the boundary), we can reliably find more
cut edges and efficiently determine all vertices lying adjacent
to the boundary. We show that our method is optimal in terms
of sample complexity (for the graph reduction) and nearly
optimal in terms of distance traveled. Further, experiments on
synthetic and real wildfire boundaries show that our algorithm
is computationally efficient in choosing sample locations,
making its deployment on a mobile sensor realistic.

II. PROBLEM FORMULATION & RELATED WORK

Given a function f : [0, 1]2 → R, the γ-level set of f is
defined as

B =
{
x ∈ [0, 1]2 : f(x) ≥ γ

}
,

where γ is a critical value determined by the end user. In this
work, we consider the case where the level set B consists of
a single, simply-connected region. The problem of level set
estimation can be viewed as one of estimating the boundary,
denoted as ∂B ≜ {x ∈ [0, 1]2 : f(x) = γ}, between the γ-
level set B and its complement. Toward this end, we discretize
and consider a set of potential sampling locations determined
by a regular partition of [0, 1]2 into squares of side length 1/w,
denoted by Pw. Notice that w determines the accuracy of our
estimate of the boundary. An example boundary and partition
P10 are shown in Fig. 1a.

Given a partition Pw, consider the undirected graph Gw =
(V,E) with vertices V ⊂ [0, 1]2 corresponding to the corners
of each cell and edges E such that the resulting nodes are
connected to their four nearest neighbors (see Fig. 1a). Let
g : V → {0, 1} define the labeling of V according to f , i.e.,
g(v) = 1 if f(v) ≥ γ and g(v) = 0 otherwise. Define the
cut set with respect to g by C = {ex,y ∈ E : g(x) ̸= g(y)},
where ex,y denotes the edge connecting vertices x and y,
and let ∂C denote the boundary of the cut set ∂C =
{x ∈ V : ∃e ∈ C with x ∈ e}. The boundary ∂C corresponds
to all points in Pw whose corresponding cells intersect the
boundary ∂B, and hence by uncovering ∂C we obtain an
estimate of ∂B, where the approximation error decreases as
w grows.

Since the sampling procedure will be performed by a mobile
sampling vehicle, we wish to minimize not only the number
of samples taken, but also the distance traveled throughout the
sampling procedure. Hence our goal is to uncover the set ∂C
while traveling a distance on par with the total length of the
boundary ∂B.

In this work we assume that each sample yields the exact
value g(v), noting that noisy labels can be accommodated
through repeated measurements as proven in Proposition 1 of
[9]. Additionally, when comparing a fixed γ-level set against
measurements f(v) with Gaussian or Sub-Gaussian noise,
Hoeffding’s inequality shows us that the uncertainty of the
resulting label g(v) decreases exponentially with the number
of repeated measurements.

A. Related Work

As stated above, a number of approaches exist to perform
spatial sampling through the framework of active learning.
Greedy approaches, such as those based on adaptive sub-
modularity [12] have the flexibility to incorporate nonuniform
costs and have strong theoretical guarantees. However, sub-
modularity is fundamentally a property of set functions, and
hence costs such as the distance between sequential samples
cannot be incorporated. A nonmyopic graph-based method
for adaptive sampling is introduced by [22] that exploits this
submodularity to achieve near-optimal sampling paths when
the environment is predictable. Unfortunately, this method
was designed to solve the information path planning problem,
and is not applicable to our problem of boundary estima-
tion. A notion of submodular optimization with sequential
dependencies was presented in the recent work [23], but the
proposed algorithm relies on a reordering procedure that is not
applicable to our problem.

Numerous approaches to adaptive sampling assume the
underlying function f is a Gaussian process (GP), begin-
ning with [16], [24], where confidence-based algorithms are
presented for function optimization and level set estimation,
respectively. These proceed by successively sampling points
based on an upper/lower confidence bound related to the
variance of the GP estimate. This approach is extended in [13],
[17] and deployed on an autonomous surface vessel for spatial
sampling. Another approach to adaptive sampling is given
in [6] where the authors modify the approach from [24] to
move mobile sensors throughout the sample space to improve
accuracy of the function estimate. A similar method is used in
[7] to uncover the global maximum of an unknown field using
multiple mobile sensors. However, these approaches require
the selection of an appropriate kernel, as well as a number
of hyperparameters, both of which require existing data to
fit. Moreover, these methods incur a computational cost that
is cubic in the number of measurement locations considered,
which may prohibit their use in real-time settings.

Distance-penalized active learning in one dimension was
first considered in [18] and extended in [25], though neither
approach provides optimality guarantees. In the recent work
[19], the authors show that the one-dimensional distance-
penalized boundary detection problem can be formulated as a
stochastic shortest path problem, for which an optimal policy
can be obtained using dynamic programming. In this case,
a two-dimensional boundary can be estimated using a series
of transects. However, determining the optimal number of
transects and their impact on the overall cost remains an open
problem.

In [26], the authors present a means of estimating a one-
dimensional boundary of interest using a zig-zag pattern.
A similar method capable of estimating a two-dimensional
boundary is presented in [27], [28]. In this approach, the
mobile sensor follows circular paths across the boundary,
adaptively updating the mobile sensor’s trajectory whenever
the boundary is crossed. Further improvements to the method
of [27], [28] are made in [29] by constantly adapting the
sensor’s trajectory based on the current measurement. This
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allows the mobile sensor to more closely track the boundary,
yielding a more accurate estimate. However, this method uses
a gradient estimation technique which requires continuous-
valued sensor readings and cannot be implemented from binary
labels alone. Additionally, none of these approaches provide
any theoretical guarantees, and all assume samples can be
obtained continuously with negligible cost. Our empirical
results (see Sec. IV) demonstrate that our proposed method
requires fewer samples and travels a lower distance than the
methods of [27], [28].

Most related to the work presented here, [9] presents S2, a
graph-based approach to active learning that exhibits this zig-
zagging behavior, yielding strong theoretical guarantees under
broad assumptions. The algorithm achieves near-optimal sam-
ple complexity for non-parametric learning by successively
sampling the shortest shortest path between vertices lying
in ∂C. While this algorithm is sample efficient, it requires
performing the computationally-expensive task of finding the
shortest shortest paths between all previously-unsampled ver-
tices, making its deployment on a mobile sensor impractical.
Further, in the case where there are multiple shortest paths,
the algorithm breaks ties arbitrarily, resulting in unnecessarily
large distances traveled between subsequent sample locations,
making it a poor choice for distance-penalized applications.

III. ALGORITHM DESCRIPTION & ANALYSIS

In this section, we describe the proposed algorithm for
boundary estimation in two dimensions, which we refer to
as Cut Pursuit (CuP). We show that CuP overcomes the
shortcomings of S2, uncovering the same cut edges while trav-
eling a shorter distance and requiring much less computation
between samples.

The CuP algorithm proceeds as follows. Assume without
loss of generality that sampling begins at the point x1 with
g(x1) = 1 and proceeds to the point x2 with g(x2) = 0 having
distance 1/w from x1. These points could be obtained either
from prior knowledge, or from applying a one-dimensional
spatial sampling algorithm such as that of [19]. In the notation
above, the line segment connecting these two points is a cut
edge lying in the set C, and the vertices x1, x2 correspond to
adjacent corners of a single cell. In the general case where
x1 and x2 are not adjacent, CuP begins by sampling along
a path between x1 and x2 until an adjacent pair of locations
with different values is found. We assume that the level set
B is either fully contained within the sampling region (as in
Fig. 1a) or that the initial locations x1, x2 are on one extreme
of the domain.

By convention, we maintain our “current” cut edge by
denoting the “inside” vertex a to be such that g(a) = 1,
and the “outside” vertex b such that g(b) = 0, yielding the
initial cut edge ea,b = e1,2. This edge is then removed from
the graph (G ← G \ ea,b) and the shortest path p between
a and b is calculated. Our proposed algorithm then samples
iteratively along this path, updating a and b when appropriate
until another cut edge is found. Subsequent cut edges are then
removed from the graph, at which point p is recalculated based
on the “current” vertices a and b. The process of removing
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Fig. 2. Example sampling procedure of proposed CuP algorithm. The
boundary is the blue dashed line and cut edges are depicted in green. The
initial cut edge is ea,b = e1,2. Sampling vertex x3 may reveal a cut edge
e3,2 (a). If x3 does not reveal a cut edge, then sampling vertex x4 will reveal
a cut edge at either e4,3 (b) or e1,4 (c).

Algorithm 1 Cut Pursuit (CuP) for Boundary Estimation
1: Input: Graph G, initial vertices x1, x2 where

g(x1) = 1 and g(x2) = 0
2: Initialize: a = x1, b = x2, p = path(a← b)
3: while p exists do
4: while a and b are not adjacent do
5: Obtain closest sample xn in path p (unless previously

sampled)
6: if g(xn) = 0 then
7: b← xn

8: else
9: a← xn

10: end if
11: end while
12: G← G \ ea,b
13: p = path(a← b)
14: end while

edges and finding paths repeats until no path exists between a
and b, meaning the two vertices are elements of two separate
graph components, and an estimate of the boundary between
these two components has been found.

Let us consider (without loss of generality) the first shortest
path p around a single cell (see Fig. 2). Denote the first vertex
sampled along the first path p as x3. If g(x3) = 1, then a = x3

and ea,b = e3,2 is a new cut edge. The edge ea,b is then
removed from the graph (G← G \ ea,b) and p is recalculated
(in O(1) time, as described below). Otherwise, b = x3 and no
cut edge is discovered. In this case the next sample x4 is the
fourth vertex in the current cell. If g(x4) = 1, then a = x4

and ea,b = e4,3 is a new cut edge, and if g(x4) = 0, then
b = x4 and ea,b = e1,4 is a new cut edge. In all cases a cut
edge is discovered, and the next vertex to sample lies along
the path p.

The pseudocode for this procedure is given in Alg. 1. After
the initial cut edge is discovered and removed, the path p is
always guaranteed to be the path around a single cell. This
ensures that p always has exactly four nodes: a, b, and the
two intermediate nodes in the cell. The intermediate nodes
may have been members of a previous path p and therefore
may have already been sampled. In this case the sample value
is already known and the mobile sensor does not need to travel
to this location again. Because the length of p is fixed to a
constant, finding the next path p (line 13 of Algorithm 1)
has complexity O(1). This also ensures that the inner loop
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Fig. 3. Example case of a cell with two opposite vertices on the rmin circle
and a boundary that creates four cut edges.

(lines 4 through 11) is run at most two times, making these
lines O(1) as well. Therefore, every operation inside the outer
loop (lines 3 through 14) of Algorithm 1 can be completed
in O(1), making the computational complexity of the sample
selection/path planning procedure O(1).

Fig. 1b shows an example of the sampling pattern selected
by CuP, where the red dots correspond to locations xn with
g(xn) = 0, the green dots correspond to g(xn) = 1, and the
gray dashed line denotes the path traversed throughout the
sampling procedure. The figure shows that CuP achieves the
desired zig-zagging behavior and does not sample any vertices
away from the cut set.

A. Theoretical Results

In this section, we analyze the performance of the proposed
CuP algorithm. We show that, under a mild assumption on the
level set, CuP recovers the cut set exactly while maintaining
a sample complexity and distance traveled within a constant
factor of the optimal values.

Assumption 1. The level set B and inverse partition side
length w ∈ N are such that the graph Gw \ C consists of
exactly two components.

Our main assumption implies that (1) the continuous-
domain level set consists of a single, simply connected com-
ponent, and (2) that the partition Pw is fine enough to maintain
the connectedness of this set. This corresponds to boundaries
that are guaranteed to be completely uncovered by the aggres-
sive search phase of S2, and for applications of interest such
as air and water quality monitoring this assumption is likely to
be satisfied for sufficiently large w [30], [31]. We remark that
multiple connected components can be easily accommodated
through either random search, following [9], or through prior
knowledge indicating one point within each component. Level
sets whose boundary is a Lipschitz function in one coordinate
can be shown to satisfy this assumption, though these may be
restrictive in practice. In the following theorem, we consider
a more realistic setting, showing that level sets with radial
Lipschitz boundaries satisfy Assumption 1.

Theorem 1. Assume that the level set boundary ∂B is a 2π-
periodic function r (ϕ) that is bounded below by rmin, i.e.,
r(ϕ) ≥ rmin, ∀ϕ ∈ [0, 2π]. Further, assume that r is K-
Lipschitz with constant

K ≤

√
r2min − 1

2w2 + 1√
2w
− rmin

sin−1
((√

2wrmin
)−1

) , (1)

Then the corresponding graph Gw satisfies Assumption 1.

Proof. The theorem holds as long as no cell contains more
than two cut edges. We consider a cell in the worst-case
location and derive the Lipschitz constant for which this cell
can have no more than two cut edges.

Consider a cell with vertices at locations x1, . . . , x4 where
vertices x1 and x3 both lie on the circle of radius rmin and are
outside of the boundary. These two vertices, being as close as
possible to the center of the circle, represent the largest possi-
ble difference in ϕ that two samples in the same cell can have
while lying outside of the boundary. Fig. 3 shows the relevant
geometry for such a cell. We denote the ϕ values of these
two vertices ϕ1 and ϕ3, where r(ϕ1) = r(ϕ3) = rmin. The
orientation and location of this cell minimizes the maximum
difference in r between these vertices and the farthest vertex
from the center of the circle, denoted x2. In order for this cell
to contain four cut edges, both x2 and x4 must be inside the
boundary, while x1 and x3 remain outside of the boundary. A
cell in this orientation requires the smallest possible change
in r over the largest possible change in ϕ to produce a cell
with four cut edges. Thus, if our Lipschitz constant is small
enough to ensure that Assumption 1 holds for this cell, it must
also hold for all other cells in the sampling domain.

Now let us use the properties of this cell to derive a
Lipschitz constant. The distance between the center o and the
vertices x1, x3 is rmin, and the distance between these two
vertices is

√
2/w. We now have an isosceles triangle with

known side lengths from which the angle between x1 and x3

can be derived:

ϕ1 − ϕ3 = 2 sin−1

((√
2rminw

)−1
)
. (2)

Due to the symmetry of the triangle and the cell in this
orientation, ϕ1 − ϕ2 = ϕ2 − ϕ3 = (ϕ1 − ϕ3)/2.

Let us now compare r(ϕ2), with r(ϕ1) and r(ϕ3), which
are known to be rmin. Note that r(ϕ2) must be greater than the
distance between o and x2 for x2 to lie inside the boundary.
The distance from o to x2 can be broken into two computable
distances: the segment between x2 and the intersection with
line l13 between x1 and x3, and the segment between l13 and
the origin o,

dist(o, x2) = dist(o, l13) + dist(l13, x2)

=
√

r2min − 1
2w2 + 1√

2w
. (3)

Therefore the change in r between ϕ1 and ϕ2 must be at least
dist(o, x2) − rmin to produce such a labeling. The resulting
inequality is derived from the change in ϕ given in (2) and
the change in r given in (3).
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Fig. 4. Average performance of proposed CuP algorithm compared with Bang-Bang and S2 algorithms on synthetic boundaries as a function of inverse side
length w. (a) Number of samples required to uncover all cut edges. (b) Distance traveled. (c) Estimation error. (d) Computation time. For CuP the sample
complexity is linear in w as predicted by Thm. 2, the distance traveled is independent of w, as predicted by Thm. 3, and the computation time is orders of
magnitude lower than that of S2 as predicted in Sec. III.

Radial Lipschitz boundaries have been studied extensively
in the context of non-parametric estimation [32] and are a
subset of the box counting class [33]. Further, such boundaries
are likely to occur in air quality monitoring contexts and
align with the spatial models used to estimate particulate
matter [34]–[36]. The requirement of a minimum radius on
the boundary is due to the assumption that the boundary ∂B
have a functional form and is not a strict requirement for our
algorithm. A more precise characterization of level sets that
satisfy Assumption 1 is a topic for our future research.

Next, we prove that CuP recovers the cut set boundary
exactly and characterize its performance in terms of the
number of samples required and distance traveled.

Theorem 2. Let B and w be such that Assumption 1 is
satisfied. Then CuP uncovers the boundary estimate ∂C in
at most 2 |C| queries.

Proof. Consider all possible enumerations of labelings for a
single cell. Note that of the possible enumerations, there are
only cases with two or four cut edges. The cases with four
cut edges occur when g(x1) = g(x3) ̸= g(x2) = g(x4), for
x1, . . . , x4 as in the proof of Thm. 1. Such a cell cannot exist
unless there are more than two components in the graph; thus,
if Assumption 1 is satisfied, all cells containing a cut edge
must contain exactly two cut edges.

Now consider the boundary ∂B as an ordered set of
boundary segments, with each segment being the portion
of the boundary that is contained within an individual cell.
Note that each boundary segment connects one cut edge to
another subsequent cut edge, and by following along the
entire boundary we will observe an ordered set of all the cut
edges. The CuP algorithm iteratively discovers the cut edges
following this order, and thus will discover all the cut edges.

Consider a single cell ck ∈ Pw with an initial cut edge cor-
responding to two vertices of ck obtained from two previous
queries. If Assumption 1 is satisfied, then there is exactly one
other cut edge in ck along the path pk. As shown in Section III,
CuP reveals a cut edge in every path pk. and the maximum
number of unsampled locations along every path pk is two.
Thus, the maximum number of queries needed to uncover all
the cut edges is twice the number of cut edges.

The above sample complexity matches the aggressive search

complexity of S2 and is sharp, since a boundary ∂B consisting
of a straight line will have |∂C| = 2 |C|. In such a case, CuP
queries the minimum number of samples possible to recover
∂C exactly. On the other hand, the minimum value of |∂C|
is |C| + 1, corresponding to the case where B contains only
a single vertex of Gw. In this case, the sample complexity
of CuP is within a constant factor of the optimum sample
complexity.

Finally, we derive an upper bound on the distance traveled
by the proposed algorithm in terms of the boundary length
L (∂B).

Theorem 3. Let B and w be such that Assumption 1 is
satisfied, and assume ∂B has length at least 4/w. CuP travels
a distance of at most 4L (∂B) to uncover the boundary
estimate, where L (∂B) is the length of the boundary.

Proof. In the worst case, CuP visits two unsampled nodes
in path p before identifying a new cut edge. To do this, it
travels at most 2/w. To uncover all the cut edges, it must
travel 2 |C| /w. The resulting expression then follows from
substituting in the bound in Lemma 1.

Lemma 1. The number of cut edges |C| for a given boundary
length L (∂B) is at most 2wL (∂B) where w is the inverse
side length, provided L (∂B) ≥ 4/w.

Proof. Given a 2 × 2 array of cells within some graph Gw,
consider the set of continuous boundary segments that intersect
all four cells and intersect two outside edges of such an array.
The length of such a boundary segment must be at least 2/w,
regardless of what outside edges the boundary intersects. Such
a boundary segment can be considered optimal in the sense
that it creates the largest possible number of cut edges over
the smallest possible length of boundary. A boundary that is
constructed of k ≥ 2 such boundary segments therefore has a
length of at least 2k/w and intersects 4k cut edges.

The maximum distance traveled by CuP is a constant factor
of the boundary length, meaning the total distance traveled
scales directly with the length of the boundary being estimated.
This makes CuP near-optimal in terms of distance traveled.
On the other hand, S2 has no means of accounting for the
distance traveled, and we will show empirically that breaking
ties arbitrarily results in a distance that increases with w.
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Fig. 5. Average performance of proposed CuP algorithm compared with Bang-Bang and S2 algorithms on historical wildfire data. (a) Number of samples
required to uncover all cut edges. (b) Distance traveled. (c) Estimation error. (d) Computation time.

IV. SIMULATIONS

In this section, we compare the performance of our proposed
algorithm with the S2 algorithm of [9] as well as the adaptive
and non-adaptive Bang-Bang algorithms proposed in [27],
[28]. Specifically, we compare the performance of CuP to
the “aggressive search phase” of S2, described by lines 4
through 10 of Algorithm 1 in [9], as well as a mobile
sensor following the fixed and adaptive Bang-Bang steering
control policies described in Eq. (1) and (2) of [28], where
the distance between measurements is set to the graph side
length 1/w in order to compare to CuP and S2. Both the
fixed and adaptive Bang-Bang algorithms can be tuned to
adjust the angle between subsequent samples. Additionally,
the “adaptivity” of the adaptive Bang-Bang algorithm can
be tuned. We tested both algorithms over a range of angles
from 40o to 140o between samples and considered adaptive
adjustments between 0% and 50% of the maximum angle per
sample, reporting the best-performing results here.

We run the algorithms on synthetic boundaries as well as
historical wildfire boundaries from the MTBS Burned Area
Boundaries Dataset [37] 1.

We first characterize the performance of our proposed
algorithm by drawing 100 random boundaries from a radial GP
[38, Ch. 4] and check to ensure that each boundary satisfies
Assumption 1 for inverse partition widths w ranging between
10 to 50. We then run the algorithms on each boundary for
this range of w values and compare our results.

We also characterize the performance of the algorithm on
real wildfire boundaries from the MTBS dataset. Specifically,
we investigate the performance of these algorithms on wildfire
boundaries in Oregon ranging in size from 1000 to 5000
acres by mapping the set of sampling locations Pw to a
20 km×20 km region centered around each fire. Fig. 6 shows
the sampling path used by the CuP algorithm on one such
wildfire boundary. We analyze the performance of CuP and
S2 when using regular partitions with side lengths 1/w
and compare them with the tuned Bang-Bang algorithms that
sample at a rate of 1/w. This corresponds to distances ranging
between 200 m and 500 m between samples. We report the
average results on 159 different fire boundaries that satisfy
Assumption 1. The resulting number of samples, distance
traveled, estimation error, and computation time as a function

1The source code for these experiments is available at
https://github.com/sstalley/CuP.

Fig. 6. A simulated CuP sampling path on the 2017 Staley wildfire. The
blue region indicates the burned area. The red line indicates the path traveled
by the remote sensor when using CuP with a side length of 400m. Aerial
imagery from [39].

of w for the synthetic and real boundaries are shown in Figs. 4
and 5, respectively.

We make several observations on the results on both real and
synthetic boundaries. First, we see that with CuP the number
of samples increases linearly with w, as predicted by Thm. 2.
We see that the number of samples in S2 also increases linearly
with w, but at a faster rate. The adaptive and fixed Bang-Bang
algorithms have similar sample complexity, but both use more
samples than both CuP and S2 for all values of w. This is true
for both the synthetic and real boundaries.

Second, the distance traveled by CuP is roughly constant,
as predicted by Thm. 3. The distance traveled by the Bang-
Bang algorithms is also roughly constant on both the real and
synthetic boundaries, but noticeably larger than the distance
needed by the equivalent CuP algorithm. In contrast, the
distance traveled by S2 appears to increase linearly with w.

Next, we compute the resulting estimation error to be the
proportion of cells in Pw that are mislabeled, which is exactly
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to the number of cells intersecting the boundary divided by
the total number of cells. Both CuP and S2 find the exact
same cut edges, and thus have identical estimation error. The
estimation error of the Bang-Bang algorithms is comparable to
that of CuP and S2 on both the real and synthetic data. On the
synthetic boundaries, the Bang-Bang algorithms have slightly
lower estimation error than CuP and S2, but as discussed
above travel farther and require significantly more samples to
do so. On the real boundaries, we found that all four algorithms
produced results with the exact same estimation error. On these
boundaries the most successful Bang-Bang tuning was one
with 90o between samples and no adaptive adjustments. This
results in the Bang-Bang algorithms sampling on the same
grid as the other algorithms, resulting in identical boundary
estimates but requiring more samples than CuP or S2. In
all cases, the figures indicate a clear trade-off of w between
linearly increasing sampling cost and the inversely decreasing
and estimation error.

Finally, we see that the computation time of CuP and Bang-
Bang is several orders of magnitude lower than the compu-
tation time of S2 for our example boundaries. In addition,
the computation time of CuP and Bang-Bang appears to scale
linearly with w, requiring more time for estimates that contain
more cut edges, but providing a constant computation time
per sample. In contrast, the computation time of S2 increases
polynomially with respect to w for the same boundaries.

To further illustrate the advantages of CuP over existing
methods, we consider the actual costs incurred by sampling
the above wildfire boundaries with a particulate matter sensor
attached to a UAV. In particular, we consider sampling times
of 8 s and 30 s, corresponding to the extremes of the settling
time of the Sensirion SPS30 particulate matter sensor [40], and
travel times of 32 km/hr and 65 km/hr, corresponding to the
velocity range of the DJI Matrice 600 UAV. The total sampling
cost is computed as

Ttot = TsN + TtD,

where Ts is the time required to obtain a single sample, Tt is
the time to travel one unit distance, N is the total number of
samples required, and D is the distance traveled.

Table I shows the total sampling cost incurred by the Bang-
Bang, S2, and CuP algorithms. As stated above, the adaptive
Bang-Bang steering policy provided no benefit over the non-
adaptive Bang-Bang policy on the real fire boundaries, and
thus its results are omitted from this table. We report results
from each algorithm with the best tuning in terms of average
accuracy per unit cost over the 159 fire boundaries. The results
show that CuP achieves the same (or lower) estimation error
at a lower cost than both the Bang-Bang and S2 algorithms
in all sampling scenarios, providing a 21% reduction in total
cost compared to the Bang-Bang policy for all sampling/travel
times.

V. CONCLUSION

We have presented a graph-based approach to boundary
estimation with mobile sensors. We show that our proposed
algorithm uncovers all vertices lying adjacent to the boundary

TABLE I
TOTAL SAMPLING COSTS ON HISTORICAL WILDFIRE DATA

Sampling Time (s) 8 8 30 30
Velocity (km/hr) 32 65 32 65

Bang-Bang Total Cost (hr) 1.83 1.15 3.15 2.47
Error (km2) 0.68 0.68 0.68 0.68

S2 Total Cost (hr) 6.19 3.25 7.28 2.57
Error (km2) 0.68 0.68 0.68 1.13

CuP Total Cost (hr) 1.44 0.90 2.48 1.95
Error (km2) 0.68 0.68 0.68 0.68

while achieving order-optimal sample complexity and distance
traveled while requiring O(1) computation time per sample.
To the best of our knowledge, this is the first algorithm that
achieves a “zig-zagging” behavior that is both principled and
practical for the application of mobile sensing. In our future
work, we will consider alternate graph structures, including
triangular and hexagonal partitions, as well as non-regular
partitions. On the synthetic boundaries, we found that the
Bang-Bang algorithm with angle 60o was most frequently
the best tuning in both the adaptive and non-adaptive cases.
In this configuration, the Bang-Bang algorithm samples in a
hexagonal pattern, indicating that a hexagonal variant of CuP
may be of particular interest.
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