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Abstract—We study the problem of clustering high-
dimensional temporal data such as video sequences of human
motion, where points that arrive sequentially in time are likely
to belong to the same cluster. State-of-the-art approaches to this
problem rely on the union-of-subspaces model, where points lie
near one of K unknown low-dimensional subspaces. We propose
the first approach to sequential subspace clustering based on
the popular K-Subspaces (KSS) formulation, which we refer
to as Temporal K-Subspaces (TKSS). We show how sequential
information can be incorporated into the KSS problem and
provide an efficient algorithm for approximate minimization
of the resulting cost function, proving convergence to a local
minimum. Results on benchmark datasets show that TKSS
achieves state-of-the-art performance, obtaining an accuracy
increase of over 10% compared to existing methods.

I. INTRODUCTION

In recent years, there has been an explosion of algorithms
capable of efficiently clustering high-dimensional data. In
contrast to earlier approaches that involve dimensionality
reduction followed by clustering, algorithms for subspace
clustering seek to simultaneously learn the intrinsic low-
dimensional structure as well as the clusters themselves [1].
These methods assume the data lie on a union of low-
rank subspaces, each corresponding to a distinct cluster/class,
and have achieved excellent performance on computer vision
tasks including face recognition, object tracking, and motion
segmentation [2]–[5].

While existing subspace clustering methods adequately
incorporate low-dimensional structure into the clustering pro-
cess, most ignore additional structure in the data. For example,
when performing human motion segmentation from video, the
goal is to cluster video sequences so that frames containing
the gesture are grouped together [6] (see Fig. 1 for example
gestures). In this case, the data have a meaningful ordering,
and sequential frames are more likely to belong to the same
cluster.

To address such problems, several methods have been devel-
oped to perform temporal subspace clustering, i.e., subspace
clustering in light of the temporal structure in the data.
These function by learning an encoding of the data such
that similar encodings are obtained (a) for points lying in
the same subspace and (b) for those that are temporally
similar. The first goal is typically accomplished by leverag-
ing the self-expressiveness property, which states that points
belonging to the same subspace are more easily encoded
by other points within the same subspace, and is the ba-
sis for numerous subspace clustering algorithms [2], [8]–

Fig. 1: Example gestures from the Ballet dataset.

[18]. The second goal is accomplished through a variety
of regularizers based on enforcing structure in the learned
coding matrix [19], [20], applying Laplacian regularization
[6], [21], and block-diagonal regularization [22]. While these
have achieved strong results on motion segmentation datasets,
they all rely on the self-expressiveness formulation laid out
in [2], [8], [9]. More recently, authors have shown that the
simple K-Subspaces (KSS) algorithm outperforms encoding-
based approaches when initialized properly [23]–[25]. Further,
methods based on KSS scale linearly in the number of data
points, making them amenable to large-scale clustering.

In this paper, we propose a novel approach to temporal
subspace clustering based on the KSS algorithm. Like KSS
(and K-means), our algorithm alternates between a subspace
learning step and clustering step. We show that the sequential
structure in the data can be easily incorporated into both steps,
and that the resulting algorithm converges to a local minimum.
Further, we propose a simple and natural method for initializ-
ing our algorithm. We show that our method outperforms the
state-of-the-art on benchmark motion segmentation datasets
while maintaining a low computational cost.

II. PROBLEM FORMULATION & RELATED WORK

Consider a collection of N vectors x1, . . . , xN ∈ RD, and
let X ∈ RD×N be the matrix obtained by stacking these
vectors as columns. The goal of subspace clustering is to label
points in an unknown union of K subspaces according to
nearest subspace. The union-of-subspaces model assumes that
if xi lies in cluster k, then it can be approximated as xi =
Ukzi, where Uk ∈ RD×d has d ≪ D orthonormal columns
that span the corresponding d-dimensional subspace, and zi ∈
Rd denotes the low-dimensional representation of xi.

In temporal clustering, we assume that the points are
ordered such that sequential points are more likely to belong
to the same cluster. When this assumption holds, we write



X =
[
X(1) X(2) . . . X(K)

]
, where X(k) ∈ RD×Nk denotes

the matrix containing the Nk points belonging to cluster k.
Subspace clustering has been a topic of increasing interest

since the initial formulations described in [3], with recent ap-
proaches obtaining strong theoretical guarantees [24]–[27] and
state-of-the-art performance on many image clustering tasks
while maintaining relatively low computational complexity
[15], [18], [23].

Existing methods for temporal subspace clustering rely on
the self-expressiveness property described above. In [19], the
authors introduce Ordered Subspace Clustering (OSC), which
follows the self-expressiveness formulation with an additional
penalty to encourage sequential points to have the same
coefficients in the coding matrix Z. In [22], the authors add
an additional regularizer to OSC to encourage block diagonal
structure in Z, yielding further improvements. The Temporal
Subspace Clustering (TSC) algorithm [21] extends this ap-
proach in two ways. First, temporal regularization is induced
by Laplacian regularization, which is more general and allows
the algorithm to encourage multiple sequential points to be
clustered together. Second, instead of regressing the points
using the data vectors themselves, a dictionary is learned
simultaneously, allowing for a more flexible representation.
This method outperforms OSC significantly, and Laplacian
regularization continues to be the basis for state-of-the-art
methods in temporal subspace clustering. A Bayesian ap-
proach is considered in [28]; this further improves on TSC but
requires the appropriate selection of prior distributions and has
a high computational complexity. The work of [20] extends the
Low-Rank Representation algorithm [8] to include temporal
structure and presents an efficient optimization method for
solving the resulting formulation, though these results lag
behind those of TSC. To the best of the authors’ knowledge,
the current state-of-the-art in unsupervised temporal subspace
clustering is achieved by the Graph Constrained Data Rep-
resentation (GCDR) algorithm [6]. Like TSC, this algorithm
learns both a dictionary and a representation matrix and relies
on Laplacian regularization to encourage sequential clustering.
The key addition is that GCDR includes an additional graph
penalization that encourages the pairwise similarities between
the true data points (in X) and their learned approximations to
be similar. The authors demonstrate through an ablation study
that this penalization has a significant impact on clustering
performance.

While these methods have made significant advances on
the problem of temporal subspace clustering, they all rely
on ADMM or similar alternating optimization techniques,
followed by the Normalized Cut algorithm, which can incur
a large computational cost. Further, they are exclusively
variations on the self-expressiveness formulation, whose per-
formance lags behind KSS-type methods for very close sub-
spaces [24]. Hence, there is a need to consider other problem
formulations that may reduce computation time and succeed
where existing methods fall short.

Recent work has considered a more direct approach to

the subspace clustering problem via variations on the K-
Subspaces algorithm [29]–[31], which seeks to solve

min
C,U

K∑
k=1

∑
i∈ck

∥∥xi − UkU
T
k xi

∥∥2
2
, (1)

where ck denotes the indices of points belonging to the
kth cluster, C = {c1, . . . , cK} denotes the set of estimated
clusters, and U = {U1, . . . , UK} denotes the corresponding
set of orthonormal subspace bases. Beginning with an initial
set of subspace bases, the KSS algorithm alternates between
clustering via nearest subspace and learning the subspace
corresponding to each cluster via PCA. Although (1) is NP-
hard even to approximate within any finite factor [32], it
has been shown to achieve strong performance under certain
initialization conditions [23]–[25], [32].

III. TEMPORAL K-SUBSPACES

In this section, we present our approach to temporal sub-
space clustering, which we refer to as Temporal K-Subspaces
(TKSS). Like KSS, TKSS alternates between a subspace
learning step and a clustering step and maintains a compu-
tational complexity that is linear in the number of data points.
We discuss the local convergence of the proposed approach
and present a method of initializing TKSS that performs well
on sequential data.

We wish to perform subspace clustering while encouraging
temporally sequential points to be clustered together. Define
the KSS loss for a single point xi assigned to the subspace
spanned by Uk to be

LKSS(xi, Uk) =
∥∥xi − UkU

T
k xi

∥∥2
2
.

As stated above, the KSS loss encourages each point to be near
its assigned subspace. Next, we wish to encourage that each
xi is clustered together with its s nearest sequential neighbors.
Let Ni be the indices of sequential neighbors of the ith point

Ni =
{
j ∈ [N ] : |i− j| ≤ s

2

}
.

We then define the sequential loss for the point xi as the sum
of distances from each sequential neighbor to the subspace
defined by Uk

LSeq(xi, Uk) =
∑
j∈Ni

∥∥xj − UkU
T
k xj

∥∥2
2
. (2)

With these definitions in mind, we define the TKSS cost func-
tion as the weighted combination of KSS loss and sequential
loss

min
C,U

K∑
k=1

∑
i∈ck

LKSS(xi, Uk) + λLSeq(xi, Uk). (3)

Below, we show that this cost can be approximately minimized
via an alternating procedure similar to KSS. Finally, we note
that in the case where λ = 0, the above reduces to the original
KSS algorithm.



Algorithm 1 Temporal K-Subspaces (TKSS)
Input: dataset X , number of subspaces K, subspace dimen-
sion d, sequential weight parameter λ, number of sequential
neighbors s
Output: subspace bases U = {U1, . . . , UK}, cluster estimates
C = {c1, . . . , cK}

1: initialize clusters c1, . . . , ck
2: while not converged do
3: for k = 1, . . . ,K do
4: form weight matrix W (k) according to (6)
5: Uk ← d principal singular vectors of matrix XW (k)

6: end for
7: assign clusters c1, · · · , cK according to (8)
8: end while
9: U ← {U1, . . . , UK}

10: C ← {c1, . . . , cK}
11: return U and C

A. Approximate Minimization of the TKSS Cost
The TKSS cost (3) is approximately minimized in an alter-

nating fashion, where the subspace learning step is efficiently
solved using the singular value decomposition (SVD), and
points are assigned to clusters in order to minimize the cost
at each iteration.

We first describe the subspace estimation step, assuming
an initial set of clusters are obtained (we describe one such
initialization in Sec. III-C below). We first define nk(j) to
be the number of times the point xj appears as a sequential
neighbor of a point in the kth cluster, i.e.,

nk(j) = |{i ∈ ck : j ∈ Ni}| , (4)

where |S| denotes the cardinality of the set S. Now note that
for a candidate basis U , the TKSS cost for the kth cluster can
be written as∑

i∈ck

∥∥xi − UUTxi

∥∥2
2
+ λ

∑
j∈Ni

∥∥xj − UUTxj

∥∥2
2


=

N∑
i=1

∥∥xi − UUTxi

∥∥2
2
(1 {i ∈ ck}+ λnk(i)) , (5)

where 1 {·} denotes the indicator function. From (5), we
see that the TKSS cost applies a weight to each point that
depends on whether that point (a) lies in the corresponding
cluster or (b) is a sequential neighbor of one or more points
in the cluster. Further, we see that points are weighted more
heavily if they are sequential neighbors of multiple points in
the cluster. To minimize (5) over U , define the diagonal weight
matrix W (k) ∈ RN×N with diagonal elements

w
(k)
ii =

√
1 {i ∈ ck}+ λnk(i). (6)

The subspace estimation step is then equivalent to solving

Uk = arg min
U∈RD×d

UTU=Id

∥∥∥XW (k) − UUTXW (k)
∥∥∥2
F
, (7)

for which the solution corresponds to the left singular vectors
of the matrix XW (k) corresponding to the largest d singular
values.

After the subspace learning step, points are assigned to
clusters in order to minimize the TKSS cost (3). This is
done by evaluating the weighted combination of residual from
the point to a given subspace as well as the residuals of its
sequential neighbors, so that the kth cluster is

ck =

{
i ∈ [N ] : k = argmin

l
LKSS(xi, Ul) + λLSeq(xi, Ul)

}
.

(8)
The algorithm then alternates between subspace learning
and cluster assignment until convergence (guaranteed below).
Pseudocode for the TKSS algorithm is given in Alg. 1.

The computational complexity of TKSS is dominated by
the subspace learning step, which requires a SVD on the
D × N matrix XW (k). However, since we only require
the top d singular vectors, this procedure has computational
complexity O(NDd). For each iteration of TKSS, we perform
one such SVD per class, so in the case where we run
T iterations, the computational complexity of our method
is O(TKNDd), making it scale linearly with the number
of data points. For comparison, TSC and its variants have
a computational complexity of O(TNr2), where T is the
number of ADMM iterations and r is the number of vectors
in the learned dictionary. While this scales linearly with N ,
TSC also requires the use of the Normalized Cut algorithm to
obtain clusters, which has a computational complexity that is
quadratic in N .

B. Local Convergence of TKSS

The optimization problem (3) is non-convex, with the first
global convergence results of similar problems appearing only
very recently in [25]. Here we observe that the proposed TKSS
algorithm converges to a local minimum. The proof follows
in a fashion very similar to that of [29]. Note that TKSS
proceeds by alternating between a subspace learning step and
a cluster assignment step. During the subspace learning step,
the resulting subspace is the global optimum of (5). Hence,
this step cannot increase the overall objective. Similarly, the
cluster assignment step assigns each point to the subspace that
minimizes the distance to it and its sequential neighbors; this
again cannot increase the overall objective. Since there are a
finite number of ways the points in X can be assigned, and
since the objective function (3) is bounded below by zero,
the TKSS algorithm must terminate at some clustering that is
locally optimal.

C. Initialization

As observed in [23]–[25], obtaining a good initial set of
subspaces (or clusters) is key to achieving strong performance
with KSS-type algorithms. In [25], the authors show that a
simple procedure that involves performing spectral clustering
on the Gram matrix of the data yields correct clustering
of the data under certain assumptions. In our setting, we



Algorithm Keck Weizmann MAD UT Ballet
OSC 49.1 38.3 24.4 75.3 31.6
TSC 49.3 75.8 75.7 84.1 50.3

GCDR 78.6 85.0 83.0 87.0 (not reported)
TKSS 88.9 83.5 84.5 83.0 73.1

TABLE I: Clustering accuracy (%) on benchmark human
motion segmentation datasets. The proposed TKSS algorithm
is among the top two performers for all but the UT dataset.

wish to begin with an initialization that encourages sequential
neighbors to be clustered together. With this in mind, we
follow the simple approach of dividing the dataset into K
balanced clusters of sequential points. For example, for a
dataset with K = 2 clusters and N = 100 points, the initial
clusters would be c1 = {1, . . . , 50} and c2 = {51, . . . , 100}.
We show in Sec. IV that this approach obtains state-of-the-
art performance on benchmark datasets, even though these
datasets are not balanced.

IV. EMPIRICAL RESULTS

In this section, we demonstrate the strong performance of
TKSS on human motion segmentation datasets commonly
used as benchmarks for temporal subspace clustering. We
compare the clustering accuracy of TKSS with OSC [19], TSC
[22], and GCDR [6]. For OSC and TSC, we use the code
provided by the authors. Unless otherwise stated, for OSC,
TSC, and TKSS, we perform hyperparameter selection via
the Optuna framework [33] and report the best performance
among 50 hyperparameter configurations. For GCDR, we
compare only to the reported values in [6], since author code
is not yet available.

We consider the Keck [34], Weizmann [35], MAD [36], UT
[37], and Ballet [7] datasets. Each dataset consists of video
sequences of human subjects performing various gestures,
with further details reported in [38]. These datasets contain
between 440 - 2048 total points with the number of clusters
ranging from 7-10. For the Keck, Weizmann, MAD, and UT
datasets, we use the data provided by the authors of [38], ex-
tracting HoG features [39] to obtain 324-dimensional feature
vectors from each frame, then concatenate all frames into a
single video sequence. For the Ballet dataset, we follow the
procedure of [28], obtaining 300-dimensional feature vectors
via Orthogonal Matching Pursuit [40].

The resulting clustering accuracy for each dataset is given
in Table I. We first note that the accuracies for OSC and
TSC are sometimes significantly higher than those reported
elsewhere, due to our more thorough selection of hyper-
parameters. Selecting hyperparameters in an unsupervised
manner is considered in [41], and these results highlight the
importance of parameter selection in comparing algorithms
for subspace clustering. From Table I, we see that TKSS is
among the top two performers for all but the UT dataset,
though strong performance is still achieved in this case. On
the Keck dataset, TKSS achieves an accuracy of 88.9%,
outperforming the closest competitor (GCDR) by over 10%.
On the Ballet dataset, TKSS outperforms TSC by over 20%,
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Fig. 2: Sensitivity analysis on Keck dataset. Accuracy as a
function of (a) subspace dimension, (b) weight of sequential
loss λ, and (c) number of sequential neighbors s.

indicating a dramatic increase over the state-of-the-art. The
Keck and Ballet datasets are those with the largest number of
points N . This conforms to previous observations that KSS-
type algorithms perform best when there are many points per
subspace, whereas algorithms based on the self-expressiveness
formulation achieve stronger performance when there are
few points per class [24]. Hence, we see that TKSS either
performs on par with the state-of-the-art or obtains a dramatic
performance improvement in the case of large datasets.

Given the difficulty of tuning hyperparameters, we next
investigate the sensitivity of TKSS to the subspace dimension
d, weight of sequential loss λ, and number of sequential
neighbors s. Fig. 2 shows the accuracy as a function of
these parameters on the Keck dataset, varying each parameter
while keeping the other two fixed to their optimal values. The
figure shows that TKSS exhibits stable performance over a
wide range of parameter values. The number of sequential
neighbors has the greatest impact on performance, with s ≤ 10
resulting in stable performance, and an accuracy reduction of
nearly 10% when too many sequential neighbors are included.
Although not shown due to lack of space, similar results hold
for the other datasets considered.

V. CONCLUSIONS & FUTURE WORK

In this work, we considered the problem of subspace clus-
tering on sequential data, where sequentially-arriving points
are likely to belong to the same cluster. We presented the first
known approach to sequential clustering based on the popular
K-Subspaces algorithm, proving that this algorithm converges
to a local minimum and providing an initialization procedure
that yields strong empirical performance. We demonstrated the
efficacy of our proposed approach on benchmark datasets, as
well as its robustness to the choice of hyperparameters.

The development of other initialization methods that do not
assume perfectly balanced classes could lead to further per-
formance benefits. Such methods could respect the sequential
neighbors of a given point while also seeking out points that
are likely to belong to the same subspace. Further, it would
be of interest to apply the results of [25] to obtain global
convergence results for TKSS. Doing so would require the
development of an appropriate model for sequential UoS data,
as well as the analysis of any proposed initialization method.
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