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Abstract—Detection and analysis of epileptic seizures is of clin-
ical and research interest. We propose a novel seizure detection
and analysis scheme based on the phase-slope index (PSI) of
directed influence applied to multichannel ECoG data. The PSI
metric identifies increases in the spatio-temporal interactions
between channels that clearly distinguish seizure from inter-ictal
activity. We form a global metric of interaction between channels
and compare this metric to a threshold to detect the presence of
seizures. The threshold is chosen based on a moving average of
recent activity to accommodate differences between patients and
slow changes within each patient over time. We evaluate detection
performance over a challenging population of five patients with
different types of epilepsy using a total of 47 seizures in nearly
258 hours of recorded data. Using a common threshold procedure
we show that our approach detects all of the seizures in four of
the five patients with a false detection rate less than two per hour.
A variation on the global metric is proposed to identify which
channels are strong drivers of activity in each patient. These
metrics are computationally efficient and suitable for real-time
application.

Index Terms—Seizure detection, epilepsy, multichannel ECoG,
phase-slope index (PSI), seizure evolution

I. INTRODUCTION

ONE of the unresolved mysteries in neuroscience is infor-
mation flow and processing in the immensely complex

networks of the brain. Even an obvious disruption of this
flow, such as that which occurs in pathology like epilepsy, is
poorly understood. Although the electroencephalogram (EEG)
or electrocorticogram (ECoG) during epileptic seizures seems
simple compared to normal interictal activity, the transition
into and out of the seizure state is sudden and unexplained. The
large variety of epilepsies complicates matters and indicates
that multiple mechanisms may underlie epileptogenesis, all
culminating in a final common phenomenon - the seizure [1],
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[2]. Accurate detection of seizures is not only a prerequisite for
better understanding seizure generation; a reliable automated
seizure detector would also be a boon for clinicians who
must find epileptiform activity in long-term recordings. In
some cases, localizing the seizures is simple because they
occur frequently (several per hour or day) but in other cases
occurrence is rare (one seizure per day, week, or month).
Finally, a reliable detection of these events is also valuable
for the evaluation of efficacy of therapeutic intervention.

Early methods to detect seizure activity were driven by the
practical need to find epileptiform events in clinical recordings.
These methods are based on single channel analysis and
detection of specific features in the signal [3], [4]. Variations
on these methods are still employed (e.g. Kobayashi et al.,
[5]). A few decades later, the focus shifted from detection
of seizure onset to early detection and even anticipation of
seizures, typically using non-linear dynamical system anal-
ysis techniques, for example, the signals are embedded and
examined for a change in correlation dimension, entropy
or Lyapunov exponent around seizure onset [6]-[13]. The
underlying hypothesis here is that the seizure onset process is
deterministic and low dimensional so that it can be predicted.
In cases where the onset has a stochastic component such a
prediction would be, of course, impossible [14]. The initial
optimism about the prediction power of these techniques was
based on analysis of relatively short epochs of data - several
hours at best. Current investigations of long-term data sets (24
hours and longer), have shown that anticipation procedures
are sensitive to many events besides seizure onset, thereby
significantly reducing the specificity of these techniques [15].

Multichannel analysis is an alternative to single channel
examination. Brain activity balances similarity between chan-
nels associated with propagation of information and dissim-
ilarity associated with high entropy/information content. To
this end, several multichannel methods have been applied to
study clinical and experimental seizure activity using a variety
of metrics: cross correlation, coherence, Granger causality,
transfer functions, and several non-linear equivalents [16]-[21].
Although these studies have revealed that such metrics may
change with seizure state, the search for techniques to follow
information processing in the brain is far from completed. Be-
cause of the relationships between channels displayed during
overt seizure propagation, quantification of channel relations is
an ongoing research problem. Often combined or multiple step
approaches are used to assess dependence between areas [22]-
[24]. The challenges with multichannel analysis are keeping
computational load within reasonable limits and depicting the
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results in a manner that they can be easily interpreted. The
latter is absolutely critical in a clinical setting.

The purpose of this study is to quantify channel interrela-
tionships of brain electrical activity using a novel single-step
approach for the detection of spatio-temporal patterns in the
multichannel data based on the phase slope index (PSI) [25].
The PSI computes a directed, pairwise measure of interaction
between two channels. We test the hypothesis that the sum
of all pairwise PSI values for all channels increases during
seizure propagation and show that it is a sensitive measure
of seizure activity. The net PSI from each channel to all
others as a function of time quantifies the flow of information
originating in each channel.

A unique strength of this work is the design of methods
and evaluation of performance on long-term recordings from
a very challenging population of five pediatric patients with
different types of neocortical epilepsy. The five patients se-
lected for this study were already pre-screened for epilepsy
surgery, and therefore suffered from a combination of frequent
and intractable seizures. Abnormal background activity and
subclinical events are common in these records and pose
a significant challenge for any automated detection scheme.
It is difficult for even experienced clinicians to distinguish
these events from full clinical seizures without the aid of
simultaneous recorded video. Between 41 and 63 hours of
data are analyzed for each patient to evaluate seizure detection
performance and information flow. A significant feature of
our proposed PSI approach is computational efficiency. Our
algorithms run faster than real time - 24 hours of data takes
less than 24 hours to process - on a PC using MATLAB R©.
The information relationships represented by the PSI metrics
are also simple to analyze.

Our PSI-based metrics of interaction are introduced in
Section II and the data described in Section III. The results are
presented in Section IV and a discussion concludes the paper
in Section V.

II. METHODS

A. Phase-Slope Index

The phase-slope index (PSI) was first introduced in [25]
where it was also shown to be less sensitive to arbitrary mix-
tures of independent noise sources than the Granger causality
measure [26]. The central idea behind the PSI measure of
causal influence is that the cause precedes the effect in time
and thus the slope of the phase of cross-spectra between two
signals reflects the direction of influence. Consider signals
zi[n] and zj [n]. The cross-spectrum between them is defined
as

Sij(f) = E[Zi(f) Z∗j (f)] (1)

and the complex coherence is

Cij(f) =
Sij(f)√

Sii(f) Sjj(f)
. (2)

The un-normalized PSI metric is defined using complex co-
herence as

Ψ̃ij = Imag

∑
f∈F

C∗ij(f)Cij(f + δf)

 (3)

where F is the frequency band of interest and δf is the
frequency resolution. It is straightforward to show that Ψ̃ij

measures a weighted sum of the slopes of the phase between
zi[n] and zj [n] over the band F [25]. This measure is
normalized by its standard deviation to obtain a metric Ψij

that can be used to determine whether causal influence from
zi[n] to zj [n] is significant:

Ψij =
Ψ̃ij

std(Ψ̃ij)
. (4)

Nolte, et al., [25] suggest that absolute values of Ψij greater
than 2 should be considered significant. We compute Ψij using
the MATLAB software available at [27].

B. Metrics of connectivity

Our hypothesis is that the level of causal interactions in
the brain are much higher during a seizure than an inter-
ictal time segment. This hypothesis is consistent with the
wide spreading of highly correlated activity that characterizes
seizures. We use the normalized PSI (4) to construct a metric
of global interaction between measured channels over a given
time segment, as described below, and then use this metric to
automatically identify the onset of seizure activity.

Let xi[n] and xj [n] denote the measured signal in channels
i and j, respectively, where i, j ∈ {1, 2, . . . ,M}. Define zki [n]
as the kth segment or interval of xi[n] of length N samples

zki [n] =

{
xi[n] if (k − 1)N < n ≤ kN

0 otherwise . (5)

Note that this definition assumes successive segments do not
overlap. It is straightforward, but more complex notationally,
to construct zki [n] from overlapping sections of xi[n]. Now let
Ψk

ij be the PSI (4) computed using zki [n] and zkj [n]. Then the
net outward PSI from channel i during the kth time segment
is given as

Λk
i =

M∑
j=1
j 6=i

Ψk
ij 1{Ψk

ij≥2}. (6)

where
1{Ψk

ij≥2} =

{
1 if Ψk

ij ≥ 2
0 otherwise

is used to only include significant PSI values in the net causal
influence of a channel i during a particular segment k. We
measure the global level of interaction in the kth segment of
data as

Λk =

M∑
i,j=1
i 6=j

Ψk
ij 1{Ψk

ij≥2} (7)

In other words, we form Λk as the sum of significant PSI
values over all pairwise interactions.
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We compare the detection performance of the PSI-based Λk

to that of a simple moving average of the global power. Define
the global power in the kth segment of data as

P k =

M∑
i=1

kN∑
n=(k−1)N+1

(zki [n])2 (8)

Power metrics have been used for seizure detection, e.g., [28].

C. Detection of seizures

We declare the presence of a seizure in segment k if Λk

exceeds a threshold Γk. Here we choose Γk as a moving
average of Λk plus a certain number of standard deviations,
that is,

Γk = Λ̄k + c ∗ σΛk (9)

where the moving mean Λ̄k and the standard deviation σΛk

are

Λ̄k =
1

L

k−1∑
i=k−L

Λi, (10)

σΛk =

(
1

L− 1

k−1∑
i=k−L

(
Λi − Λ̄k

)2) 1
2

. (11)

The threshold is determined using the L most recent values
of Λk to identify significant short-term changes in global
interactivity as seizures. This adjusts for longer term evolution
in baseline global interactivity associated with changes in
state and accounts for differences between patients. Metrics
Λk from segments that exceed Γk are not used to calculate
future thresholds, so the threshold is not biased upward by the
presence of seizure activity. Also, consecutive segments for
which Λk exceeds Γk are counted as a single detection.

Similarly, we define the threshold Θk for global power
based seizure detection as

Θk = P̄ k + d ∗ σPk (12)

where the moving mean P̄ k and standard deviation σPk are
computed using the L most recent values of P k analogously
to (10) and (11).

We expect a time delay between seizure initiation and
PSI or power-based detection for three reasons: (1) Detection
cannot occur until the end of the N -sample segment used
to compute Λk or P k; (2) Use of non-overlapping segments
quantizes possible detection times to multiples of N ; (3) The
clinically-identified seizure onset is determined using a non-
causal analysis of the record and generally there is a time
delay to subsequent development of detectable increases in
global power or interactivity. Hence, we declare a seizure
to be correctly detected if Λk or P k exceeds the threshold
within two minutes after the identified initiation time. All
other instances of Λk or P k exceeding the threshold are false
positives.

We compute the seizure detection percentage based on the
ratio of correctly detected seizures to the number of actual
seizures. The number of false detections per hour is also
computed as the ratio of false positives to the total number
hours in the data.

TABLE I
SUMMARY OF PATIENTS AND DATA

Patient Age
(years) Sex Diagnosis Data

Number
of

seizures

1 21 F
Mesial Temporal
Sclerosis / Neu-
rofibromatosis

46 hrs:
101 ch
ECoG

6

2 13 F
Mesial Temporal
Sclerosis / Neu-
rofibromatosis

41 hrs: 88
ch ECoG 5

3 12 M Perinatal
Asphysxia

62 hrs: 88
ch ECoG 15

4 17 M

Intracrainial
Hemorrhage

after Arachnoid
Cyst

46 hrs: 96
ch ECoG 6

5 13 M
Partial Complex

Seizures
Idiopathic

63 hrs: 80
ch

ECoG/96
ch ECoG

15

D. Seizure Evolution Analysis

The nature of causal influence during seizures is assessed
for each patient by averaging the net PSI from each channel
to all other channels over all seizures. Let S denote the set of
clinically-identified seizure initiation time indices and define

Λ̃l
i =

1

|S|
∑
k∈S

M∑
j=1
j 6=i

Ψk+l
ij 1{Ψk+l

ij ≥2} (13)

This metric represents the net causal influence of the ith

channel as a function of time l relative to seizure initiation
averaged over all seizures. Hence, this metric identifies the
common spatio-temporal PSI features across seizures.

III. DATA

A. Description

All data were acquired from epilepsy surgery candidates of
Comer Children’s Hospital at the University of Chicago. Pa-
tient selection was based on the presence of multiple seizures
as well as the availability, quality and duration of recordings;
no other screens, except for an age criterion excluding patients
younger than three years old, were applied. In the patient
group, only two patients (patient 1 and 2) are typical mesial
temporal lobe cases, the other three show more complex
pathology. The clinical neurophysiologist of the team (M. H.
Kohrman) determined seizure onset times and leading channels
using visual analysis of the EEG/ECoG and the audiovisual
recording. The ECoG recorded for each patient was reviewed
and obvious equipment-related artifacts, such as the start and
stop of recording or data from loose electrodes, was excluded;
otherwise the ECoG records were analyzed in their entirety.
A summary of the five selected patients are given in Table I.

B. Acquisition and Preprocessing

The EEG and ECoG time series were recorded with a
bandwidth of 0.5-100 Hz, and digitized at 400 samples/second



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 4

Band-pass filter
(1 to 11 Hz)

v[n]

w[n]

z1[n]

z3[n]

z2[n]

Band-pass filter
(1 to 11 Hz)

y[n]

All-pass filter

Fig. 1. Simulation scenario for evaluating sensitivity of PSI to segment
length. v[n] and w[n] are uniform [−100, 100] independent random variables
while y[n] is a sequence of Gaussian distributed independent random variables
with zero mean and variance 0.1. The band-pass filter of 1 to 11 Hz passband
is a 12th-order IIR filter and the all-pass filter is a 3rd order IIR filter, both
assuming a sampling frequency of 100 Hz. The all-pass filter introduces a
non-linear phase-shift between z1[n] and z2[n].

with a 12-bit A/D converter using a BMSI 6000 unit (Cardinal
Health, Dublin, OH). All channels used a common scalp refer-
ence (CPz). As part of the preoperative evaluation, the activity
of 128 channels was recorded as a combination of intra-cranial
(Radionics Medical Products Inc., Burlington, MA) and scalp
electrodes for each patient. Intra-cranial electrodes were placed
on the cortical surface in locations dependent on expected
seizure onset location. Data from the scalp EEG electrodes
was not used in this study. For patients 4 and 5, the set of intra-
cranial electrodes used were changed during the data collection
interval for clinical considerations.

The time series data sampled at 400 Hz was passed through
a high-pass second-order Butterworth filter with cutoff fre-
quency of 1 Hz in order to discard low-frequency noise, and
then low-pass filtered to 50 Hz prior to downsampling the data
to a 100 Hz sampling rate. Downsampling was performed to
limit the memory and computational costs for this very-large
dataset.

IV. RESULTS

For the examples and the results in this paper, we have
considered 1 to 11 Hz as the frequency band of interest F in
(3) because the vast majority of seizure power lies below 11
Hz. The frequency resolution δf in (3) is chosen as 0.25 Hz.

A. Effect of window size on PSI consistency

We first used the simulated scenario depicted in Fig. 1 to
identify appropriate segment lengths N in (5) based on the
sensitivity of the PSI (4) to a 1 second temporal shift of the
input signals. We evaluated a case where the PSI should be
large - between z1[n] and z2[n] - and another case where
the PSI should be zero - between z1[n] and z3[n]. Note that
the IIR all-pass filter introduces a non-linear phase shift, that
is, non-constant group delay, between z1[n] and z2[n]. Five
hundred independent simulations were conducted to evaluate
the average PSI, the average change in PSI due to a 1 second
shift in the signals, and the standard deviation of the PSI
change for segment lengths N corresponding to 10, 20, 30,
45, and 60 seconds. Table II lists these outcomes. The 10-
second segment results in the smallest PSI value for z1[n]

and z2[n], a mean change of half the average PSI, and the
standard deviation of the change that exceeds the mean of
the change. The average PSI increases as the segment length
increases consistent with the true underlying scenario and the
mean and standard deviation of the change stabilizes as the
segment length increases. Similar behavior is observed for the
case where there is no underlying relationship between the
signals. In the subsequent data analysis we employed 20- and
60-second segment lengths.

B. Seizure connectivity measured by PSI

Figure 2 graphically depicts significant PSI values Ψij with
i, j = 1, 2, . . . , 88 defined in (4) for 60-second segments of
inter-ictal and ictal data from patient 2. The figure shows a
dramatic increase in causal influence between channels during
the seizure. This characteristic is representative of all patients
and seizures in this study and motivates the global PSI metric
Λk (7) as an indicator of seizure activity. Figure 3 depicts
Λk and the threshold Γk (9) for 1600 minutes of recording
(about 26.7 hours) from patient 1 using 20-second segments.
Seizure events show a dramatic increase in Λk. The threshold
shown is computed using c = 8 in (9) and L = 90 segments
(30 minutes). This threshold results in one falsely detected
seizure in the record as shown in the figure.

C. Seizure detection performance

We evaluate the performance of our PSI-based automated
seizure detection approach on the five patients using seizure
detection percentage and false detections per hour. These
parameters were computed for a range of threshold values for
each patient by varying the constant c in (9) between 0 and 25.
The two graphs shown in Fig. 4 illustrate the seizure detection
percentage and the false detections per hour for patients 2 and
5. The general trend of these graphs was the same for all
patients: at low thresholds all the seizures are detected but at
the cost of a greater number of false detections. The fall in
false detections as c increases is steeper than that of the seizure
detection percentage. This is further highlighted in Table III
where the performance parameters are listed for the maximum
c where 100% of the seizures were detected. The numbers for
both 20- and 60-second segment lengths are displayed using
30 minutes of past PSI values to calculate the threshold, that
is, using L = 90 segments and L = 30 segments, respectively,
in (9). The seizures from patient 1 have the greatest contrast
with inter-ictal activity since all of them are detected using a
threshold based on 17 and 21 standard deviations for 20- and
60-second segments, respectively. At these thresholds there
are no false detections. The seizures of patient 3 have the
least contrast. The maximum thresholds for detection of all
of patient 3’s seizures are based on 2.7 and 0.8 standard
deviations for 20- and 60-second segments, respectively. The
rate of false detection is still quite high at these thresholds,
exceeding 7 per hour. With 20-second segments, all seizures
but one of patient 3’s are detected using a threshold based on
4.8 standard deviations, and the corresponding rates of false
detection are less than 1 per hour, excluding the rate for patient
4, which is at 1.9 per hour. Other than patient 1, fairly large
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TABLE II
EFFECT OF SEGMENT SIZE ON PSI (Ψij IN (4)) CONSISTENCY WHEN DATA SAMPLES ARE SHIFTED BY 1 SECOND EVALUATED OVER 500 SIMULATIONS

Segment
length

(seconds)

z1[n] and z2[n] z1[n] and z3[n]

Average Ψ1,2
Mean of change

in Ψ1,2

Standard
deviation of

change in Ψ1,2

Average Ψ1,3
Mean of change

in Ψ1,3

Standard
deviation of

change in Ψ1,3

10 6.4 3.1 4.4 0.013 0.64 0.65

20 9.6 3.0 3.1 0.048 0.55 0.45

30 12 2.9 2.3 0.044 0.53 0.42

45 15 2.9 2.2 0.063 0.53 0.39

60 18 2.8 2.3 0.035 0.53 0.39

(a) (b)

Fig. 2. Graphical depiction of causal interaction between channels using the PSI metric Ψij with i, j = 1, 2, . . . , 88 during 60-second segments for patient
2. Only values with Ψij > 2 are shown. Yellow indicates smaller PSI values while red indicates larger PSI values. (a) Inter-ictal segment. (b) Ictal segment.
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Fig. 3. PSI metric Λk (Equation (7) computed with segment length N = 20
seconds) over time plotted with the threshold Γk (Equation (9) computed with
L = 90 and c = 8) for 1600 minutes of data for Patient 1. All four seizures
were identified and one event is falsely declared as seizure.

thresholds - greater than 10 standard deviations - are required
to achieve zero false detections.

We investigated the nature of false detections by asking
a board-certified neurologist (M. H. Kohrman) to examine
examples of the EEG of false detections in two patients,
2 and 3. The neurologist reviewed 13 EEG segments of 1
minute before and after the false detection, as well as the 1
minute segment that was erroneously flagged as a seizure. The

neurologist concluded that the false detection segments fell
into one of four categories: (1) Sub-clinical events; (2) Periods
of constant background activity that indicated abnormal EEG
but not a sub-clinical event; (3) Equipment artifact; and (4)
No abnormal activity. Categories 1 and 2 dominated false
detections. Fig. 5 provides examples of cases 1 and 3. As
epilepsy surgery candidates, the subjects suffered from a
combination of frequent and intractable seizures. Abnormal
background and subclinical events are common in the record,
and present a challenge for any automated system; indeed,
without the help of video recorded simultaneously with the
EEG, it is often difficult for even experienced clinicians to
distinguish between these events and full clinical seizures.

Table IV depicts detection performance using 20-second
segments for both PSI and power methods. The largest com-
mon threshold that resulted in detection of all seizures for four
out of five patients was chosen. This resulted in c = 4.8 for the
PSI method and d = 2.1 for the power method. The detection
performance is comparable: the PSI method only missed one
of fifteen seizures in patient 3, while the power method missed
one of fifteen in patient 5. However, the PSI method yields
dramatically better false detection performance - between 0.15
and 1.9 per hour - compared to 10 to 19 per hour for the
power method. We note that false detection rates decrease for
60-second segments, ranging from 0.13 to 0.43 for the PSI
method and 1.4 to 3.7 for the power method. However, this
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Fig. 4. Seizure detection percentage (solid line) and false detections per hour (dashed line) for a range of values of c in (9). 20-second segments were used
in (4) and L = 90 segments (30 minutes) was set in (9) to calculate the moving threshold Γk . (a) Patient 2. (b) Patient 5.

Fig. 5. Shown are two 10-sec segments of ECoG representative of PSI false detections, both taken from patient 3s record. Panel A is an example of abnormal
activity that occasionally organizes, but does not rise to the level of a clinical seizure and may therefore be considered a subclinical event. Panel B shows
equipment artifact.
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Fig. 6. Average delay in detecting seizures using 20-second segments with
a threshold Γk that employs L = 90 (30 minutes) in (9). Error bars denote
one standard deviation. The value of the constant c in (9) was 4.8 for the PSI
method and 2.1 for the power method.

reduction is associated with detecting fewer true seizures in
one of the patients and increased detection latency.

The average latency of detected seizures using 20-second
segments and a threshold based on 4.8 standard deviations
for the PSI method and 2.1 standard deviations for the power
method is shown for each patient in Fig. 6. The error bars in
the graph denote one standard deviation. We define the delay
as the time difference between end of the segment in which
the seizure is first detected and the seizure onset identified by
the clinician. For example, a delay of 25 seconds implies that
the seizure was detected using the data from 5 to 25 seconds
after the identified start of the seizure. Note that seizures could
start at any time within a segment - we did not synchronize
the segment locations to the seizure onset times. Furthermore,
the onset times identified by the epileptologist are determined
in a noncausal manner by going backwards in time from well-
developed seizure activity to find the very first indications of
a seizure. Hence, the latencies in Fig. 6 represent the delay
in seizure detection that would result in a real-time clinical
application. Except for patient 3 and the power method of
Patient 4, seizures are generally detected with delay on the
order of the segment length. The standard deviation of the
power method latencies are considerably larger than those of
the PSI method.

D. Seizure evolution analysis

The average spatio-temporal evolution of all seizures for
each patient evaluated according to (13) is shown in Fig. 7
as the average outward PSI flow from each channel as a
function of time. The values of l in (13) correspond to the
segments from 1 minute prior to 3 minutes after the seizure
initiation. For patients 4 and 5 the electrodes were changed
during the recording interval. We only display the spatio-
temporal evolution for patient and electrode configurations
in which at least five seizures are available. The dashed
horizontal lines correspond to the clinically-identified leading
channels. In general, there is correspondence between the

leading channels and the channels with large post-seizure PSI.
Table V compares the leading channels to the five channels
with maximum PSI summed over time, again for patient and
electrode configurations in which at least five seizures are
available. The channels with largest PSI include or are located
near the leading channels in many cases.

V. DISCUSSION

The PSI is sensitive to interactions involving simple time
delays or non-constant group delay in a portion of the fre-
quency band being analyzed, as demonstrated by the results in
Fig. 1 and Table II. The minimum usable data segment length
for PSI computation is governed in part by the amount of data
required to reliably estimate the cross-spectrum. We employed
simulated signals to evaluate PSI consistency for a 1-11 Hz
analysis bandwidth and 100 Hz sampling rate with respect to
1-second shifts in the signals. Consistency with respect to time
shifts of the signals is a relevant metric since in this application
the seizure onset will naturally vary with respect to the
segment location. Other tests for consistency may give slightly
different conclusions, and such simulations should only be
considered as guides given the impossibility of simulating
realistic scenarios. The level of consistency decreased fairly
rapidly with less than 20-second segment lengths and became
very stable as the segment length approached 60 seconds.
Consequently, we evaluated detection performance for both
20- and 60-second segment lengths.

The global PSI defined in (7) is sensitive to the widespread
increased interaction between channels that occurs during
seizure activity. Consequently it is a suitable metric for de-
tecting seizures. There are multiple parameters that can be
adjusted in computing global PSI: the segment length as
already discussed, the threshold for which the pairwise PSI is
significant, and the method for choosing a global PSI threshold
for seizure detection. We adopted the pairwise PSI significance
threshold recommended in [25] without further experimenta-
tion and have proposed a patient-dependent moving average
strategy for choosing the global PSI seizure detection thresh-
old. This strategy is motivated by the observation that the
global PSI during inter-ictal conditions varies in mean value
and variability across patients and over time. For example,
the mean global PSI was observed to be significantly larger
for patient 3 than 1, consistent with the frequent nature of
subclinical events in this patient. Using a specified number
of standard deviations above the mean as a threshold - with
both computed using recent data - is one way to standardize
the threshold across patients and over time. This strategy
also is relatively insensitive to the PSI significance threshold
because seizures are identified based on the contrast between
interictal and seizure global connectivity. Modest changes in
the threshold do not have a significant impact on the contrast.

The PSI method with a common threshold of 4.8 stan-
dard deviations and a 20-second segment length gave good
performance across our subject population, detecting all but
one seizure. Note that the false detection rate decreases very
rapidly until about five standard deviations (Fig. 4) and then
tends to flatten out; the number of standard deviations required
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TABLE III
DETECTION PERFORMANCE FOR EACH PATIENT AT THE THRESHOLD OF 100% SEIZURE DETECTION AND ZERO FALSE DETECTIONS USING 20- AND

60-SECOND SEGMENT LENGTHS

Patient Seizures
per hour

Maximum c for detection
of all seizures

False detections per hour
when all seizures are detected

Minimum c for zero false
detections

Seizure detection percentage
when false detection is zero

T = 20
sec

T = 60
sec T = 20 sec T = 60

sec
T = 20

sec
T = 60

sec T = 20 sec T = 60
sec

1 0.13 17 21 0 0 11 6.7 100 100
2 0.12 13 7.8 0.05 0.07 21 14 40 67
3 0.24 2.7 0.8 9.7 7.5 15 21 6.7 0
4 0.13 4.8 5.5 1.9 0.26 22 12 0 40
5 0.24 4.9 4.8 0.66 0.43 12 17 67 54

(a) (b) (c)

(d) (e) (f)

Fig. 7. Plot of the average seizure evolution PSI Λ̃l
i defined in (13) using 20-second segment lengths for configurations with at least five seizures. (a) Patient

1. (b) Patient 2. (c) Patient 3. (d) Patient 4: 2nd electrode configuration. (e) Patient 5: 1st electrode configuration. (f) Patient 5: 2nd electrode configuration.
The horizontal long dashed lines are the clinically-identified leading channels.

TABLE IV
DETECTION PERFORMANCE FOR EACH PATIENT AT A THRESHOLD

CALCULATED USING T = 20 SECONDS WITH c = 4.8 IN (9) FOR PSI
METHOD, AND d = 2.1 IN (12) FOR THE POWER METHOD

Patient Seizures
per hour

Seizure detection
percentage

False detections per
hour

PSI
method

Power
method

PSI
method

Power
method

1 0.13 100 100 0.15 14

2 0.12 100 100 0.42 13

3 0.24 93 100 0.89 10

4 0.13 100 100 1.9 19

5 0.24 100 93 0.76 13

TABLE V
CHANNELS WITH THE LARGEST AVERAGE PSI OUTFLOW (13)

CORRESPONDING THE THE SEIZURE EVOLUTION GRAPHS IN FIG. 7

Patient
Channels with five

largest
∑

l Λ̃l
i

(Equation (13))

Clinically-
identified leading
channel numbers

1 49, 50, 57, 60, 52 57
2 67, 76, 74, 68, 65 65, 73
3 55, 36, 48, 105, 125 58, 64

4 (2nd electrode
configuration) 50, 87, 124, 80, 19 45, 46, 47

5 (1st electrode
configuration) 82, 88, 91, 90, 80 83, 86, 89

5 (2nd electrode
configuration) 85, 67, 75, 69, 59 69, 76, 83
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to obtain zero false detections is quite large (Table III). Correct
detection performance begins to degrade beyond five standard
deviations (Fig. 4, Table III), which suggests the threshold
should be chosen between four and five standard deviations
for best overall performance. We also informally explored
different data lengths for computing the moving average of
the mean and standard deviation and choose to report results
for 30 minutes because it gave the best overall results of
the variations considered. This time period is long enough to
smooth out short term variations but short enough to respond
to longer term changes in brain state, such as sleep versus
wake.

Our performance evaluation involved ECoG data from five
pediatric patients with different types of epilepsy recorded over
time intervals ranging from 41 to 63 hours and containing
between 5 and 15 seizures each (Table I). With the exception
of patient 3, use of 4.8 standard deviations as global PSI
threshold resulted in detection of 100 percent of the seizures
with 20-second segments (Table III, IV). The rate of false
detections per hour using a common threshold ranges from
0.15 to 1.9. Note that a false detection rate of 1.9 corresponds
to around two falsely detected seizures every hour on average.
In contrast, while global power is able to achieve equivalent
detection performance, the rates of false detection are more
than a factor of 10 worse, ranging from 10 to 19.

The latency at which seizures are detected are comparable
between PSI and power methods (Fig. 6). The average latency
is less than 30 seconds when using 20-second segments for
the PSI approach, except for patient 3 which is less than 50
seconds. The power approach latencies are less than 40 sec-
onds. These results, and the lack of synchronization between
segment locations and seizure times, strongly suggest that the
global PSI increases significantly very soon after the clinically
determined seizure onset. The latency of seizure detection is
generally significantly longer with patient 3, which may also
be related to the increased difficulty of seizure detection for
patient 3.

The absolute detection latencies are biased toward positive
values due to the causal constraints of real-time detection.
First, the epileptologist-marked onset times are identified in
a noncausal manner and thus reflect early indications of
seizure activity, prior to full seizure development. Second,
our reference time is the end of the segment in which the
seizure is detected. The latencies reported in Fig. 6 could
be reduced by using overlapping analysis segments in (5) as
this would effectively synchronize seizure onset times with
segment location.

Evaluation of PSI-based seizure detection performance is
straightforward compared to evaluation of spatio-temporal
seizure evolution because the clinical information on seizure
evolution is limited to identification of leading channels.
Leading channels are associated with seizure initiation while
the PSI metric represents net activity over a segment of time
once the seizure begins, so differences between the clinical and
PSI based analysis are expected. However, the five channels
with largest PSI outflow included at least one of the leading
channels for three out of the five patients (Table V). Channels
neighboring the leading channels also had large PSI outflow

in many cases.
The average spatio-temporal evolution depicted in Fig. 7

does not have a clinical baseline for comparison. However,
the information contained in this display is informative and
potentially useful for understanding seizure dynamics. We
observe that significant PSI outflow is limited to a small subset
of channels in patients 1 and 2. The leading channels show
peak PSI outflow over a minute after seizure onset, while
other channels have large PSI values closer to seizure onset.
In contrast, the leading channels for patient 5 show peak
PSI outflow in the 20-40 second post-seizure interval. The
challenge of seizure detection for patient 3 is evident in the
relatively diffuse, low-level of PSI outflow across the majority
of channels. The portion of the evolution within 2 minutes
of seizure onset for patient 4 also consists of very low level
PSI outflow, suggesting that there is no consistent outflow
pattern across the five seizures analyzed. These differences
in evolution may be due to the different types of epilepsy
in the patient population. Note that the widespread interaction
between channels suggested by Fig. 2 is less apparent in Fig. 7
due to averaging over seizures. Also, the color scale used here
diminishes the appearance of weaker PSI values.

The spatio-temporal evolution also complements the detec-
tion latency analysis of Fig. 6. In Fig. 7 the segment start
times are synchronized to seizure onset. Patients 1, 2, and 5
have well-defined PSI outflow but show very little significant
activity in the first 20 seconds following the seizure onset.
The most significant PSI outflow begins 20 seconds or more
after seizure onset, even though the seizures are detected with
a mean latency of less than 30 seconds in the absence of
synchrony between segment origins and seizure onset. This
observation is likely a consequence of the development of
seizure activity after clinically defined onset.

The PSI is a pairwise metric of directional interactions,
and thus is subject to ambiguity between direct and indirect
influence. For example, if the PSI from channel A to B and
channel A to C are both significant, it is not possible to
determine whether the influence of channel A on C is direct
or indirectly mediated through channel B. This ambiguity
is a problem for reconstructing network topologies, but is
not significant in the application proposed here. The net PSI
outflow from a channel represents the total impact of that
channel on all other channels, both direct and indirect, and
is a sensible measure of net influence.

The PSI based approach is non parametric and has several
advantages over parametric approaches such as multivariable
autoregressive (MVAR) models, which are used to compute
Granger causality, directed transfer functions, and partially
directed coherence. While the MVAR approach provides much
more information about interaction between channels than the
bivariate PSI approach, the computational cost and model
complexity limit its potential for real-time seizure detection.
The number of parameters in an MVAR model is on the
order of L2p where L is the number of channels and p
is the memory. In the patients considered here there are
approximately L = 100 channels, so the number of parameters
is extremely large even for modest values of p. Reliable
estimation of MVAR models with such large numbers of
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parameters requires significant lengths of stationary data and
much greater computational load than the PSI approach. Each
MVAR model requires estimation and inversion of an Lp-by-
Lp covariance matrix.

Computation of the cross-spectra required by the PSI ap-
proach typically involves averaging the products of discrete
Fourier transforms of windowed versions of the signals. The
discrete Fourier transforms are efficiently computed using a
fast Fourier transform algorithm. Hence, our PSI approach
is amenable to real-time computation. Although the datasets
were post-processed in this paper, the results were obtained
in faster than real time on a standard desktop PC using
MATLAB R© without any consideration to real-time program-
ming constructs.

The performance of any seizure detector depends, of course,
on the data set used for evaluation. As in most studies, we
evaluated performance in typical mesial temporal lobe cases
(patients 1, 2, Table I). In these cases, performance was close
to perfect (Tables IV, V) and the channels showing propa-
gation correspond well with the leading channels identified
by the epileptologist (Table V, Fig. 7a,b). In addition, we
considered more challenging cases (patients 3, 4, 5 in Table
I) that are typical for pediatric-aged patients. As expected,
the performance decreased but remained very good: in two
of the three cases (patients 4, 5) all seizures were detected
while the false detection rate was under two per hour; in
the worst case (patient 3) all but one seizure could still be
detected at reasonable false detection rate (Table IV). The
spatial relationship between propagating channels and leads
identified by the epileptologist was also less strict in the
latter three cases (Table V, Fig. 7c-f). In conclusion, the
PSI approach proposed herein is effective, computationally
efficient, and easy to interpret, and thus shows significant
promise for seizure detection and analysis.
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