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ABSTRACT 

We train five models using two machine learning (ML) regression algorithms (i.e., linear 
regression and XGBoost) to predict hydrothermal upflow in the Great Basin. Feature data are 
extracted from datasets supporting the INnovative Geothermal Exploration through Novel 
Investigations Of Undiscovered Systems project (INGENIOUS). The label data (the reported 
convective signals) are the difference between the background conductive heat flow and the well 
heat flow. The reported convective signals contain outliers that may affect upflow prediction, so 
the influence of outliers is tested by constructing models for two cases: 1) using all the data (i.e., -
91 to 11,105 mW/m2), and 2) truncating the range of labels to include only reported convective 
signals between -25 and 200 mW/m2. Because hydrothermal systems are sparse, models that 
predict high convective signal in smaller areas better match the natural frequency of hydrothermal 
systems. Preliminary results demonstrate that XGBoost outperforms linear regression. For 
XGBoost using the truncated range of labels, half of the high reported signals are within < 3 % of 
the highest predictions. For XGBoost using the entire range of labels, half of the high reported 
signals are within < 13 % of the highest predictions. Although this implies that the truncated 
regression is superior, the all-data model better predicts the locations of power-producing systems 
(i.e., the operating power plants are in a smaller fraction of the study area given by the highest 
predictions). Even though the models generally predict greater hydrothermal upflow for higher 
reported convective signals than for lower reported convective signals, both XGBoost models 
consistently underpredict the magnitude of higher signals. This behavior is attributed to low 
resolution/granularity of input features compared with the scale of a hydrothermal upflow zone (a 
few km or less across). Trouble estimating exact values while still reliably predicting high versus 
low convective signals suggests that an alternate strategy such as ranked ordinal regression (e.g., 
classifying into ordered bins for low, medium, high, and very high convective signal) might fit 
better models, because doing so reduces problems introduced by outliers while preserving the 
property of larger versus smaller signals. 
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1. Introduction 
The U.S. Geological Survey is developing a geothermal assessment update for the Great Basin. As 
part of these efforts and in support of the INnovative Geothermal Exploration through Novel 
Investigations Of Undiscovered Systems project (INGENIOUS; e.g., Ayling et al., 2022a), 
DeAngelo et al. (2022) produced a map representing the estimated conductive heat flow for the 
region that allowed for differences between the modeled conductive heat flow and the heat flow 
measurements from the wells used to produce the model of conductive heat flow (Fig. 1). We term 
these differences as the reported convective signal. Larger reported convective signals are assumed 
to be indicative of convective hydrothermal upflow. In total, the heat flow model by DeAngelo et 
al. (2022) created 3,869 convective signals ranging in value from -91 to 11,105 mW/m2 (Figs. 1,2).  

Past conventional hydrothermal energy assessments used classification strategies to construct 
favorability maps (e.g., the presence or absence of a hydrothermal system; e.g., Williams and 
DeAngelo, 2008), but these assessment workflows suffered from not having confirmed sites with 
known hydrothermal systems (i.e., reliable negatives) for use during model fitting. The reported 
convective signals from DeAngelo et al. (2022) allow for the use of regression strategies to fit 
using example sites with low and high signals that can then predict the magnitude of the differences 
from conductive heat flow imparted by hydrothermal systems. 
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Figure 1. Oblique perspective of the conductive heat flow surface modeled by DeAngelo et al. (2022). Black 
points represent heat flow measurements from wells. The dashed lines represent the convective signal 
(i.e., difference in heat flow between the modeled conductive heat flow and the well measurements). The 
z-axis is not to scale. The reported convective signals depicted here are only a small subset of high 
reported convective signals from DeAngelo et al. (2022). 
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Figure 2. Distribution of reported convective signals by DeAngelo et al. (2022). Note that bin size changes at 
200 mW/m2, 1,000 mW/m2, and 6,000 mW/m2. Modified from Figure 4 of DeAngelo et al. (2023). 

In general, the upper limit for regional heat flow across the western United States is often roughly 
estimated as 35 to 80 mW/m2, where heat flow > 50 mW/m2 above regional trends suggests some 
form of hydrothermal component (e.g., Burns et al., 2015). Although some volcanic complexes 
(e.g., Yellowstone Volcano, WY; Medicine Lake Volcano, CA) require higher heat flow estimates 
(e.g., > 150 mW/m2), regional heat flow nonetheless remains bound in the hundreds of mW/m2 at 
most hydrothermal systems. Yet, some of the well data used by DeAngelo et al. (2022) report heat 
flow values in excess of thousands of mW/m2, thereby suggesting that these high measured heat 
flow values are from actively convecting hydrothermal systems. Reciprocally, the heat flow within 
several hundreds of mW/m2 above conductive heat flow more likely represents heat flow 
measurements from wells in the vicinity of convective hydrothermal upflow. In the context of 
regressing a convective signal, the influence of these two different types of heat flow 
measurements remains unknown.  

Herein, we present our ongoing research describing methods to regress a convective signal for 
hydrothermal upflow across the Great Basin. We compare models produced by two different 
algorithms (i.e., linear regression and XGBoost [Chen and Guestrin, 2016]) using the entire range 
of reported convective signals as labels and datasets related to INGENIOUS as features. To remove 
the potential influence of heat flow measurements from actively convecting systems, we also 
implement a third modeling approach using XGBoost and a truncated range of reported convective 
signals (-25 to 200 mW/m2).  

2. Methods 
We implement three modeling approaches (referred to as Linear Regression, All-Data XGBoost, 
and Truncated-Data XGBoost) to create five new machine learning (ML) models that predict the 
magnitude of convective hydrothermal upflow across the Great Basin using the reported 
convective signals from DeAngelo et al. (2022) as the label data and 16 datasets supporting 
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INGENIOUS as the feature data. The first approach (Linear Regression) uses linear regression and 
the entire range of the reported convective signals to fit a single model. The second approach (All-
Data XGBoost) uses XGBoost and the entire range of reported convective signals to fit two 
models. The third approach (Truncated-Data XGBoost) uses XGBoost and only reported 
convective signals between -25 and 200 mW/m2 to fit two models. This approach presumes that: 
1) extremely negative convective signals (< -25 mW/m2) represent a process other than no 
convection or potential hydrothermal convection, perhaps possible downward convection; and 2) 
extremely positive label values (> 200 mW/m2) represent different conditions than convective 
hydrothermal upflow in the general vicinity (e.g., potentially fault-driven fluid pathways). 

In the remainder of this section, we detail the selection, preprocessing, and exploration of the data, 
describe the training approaches and why each XGBoost approach requires two models, and 
conclude with measures of feature importance. 

2.1 Labeled Data 

We infer three general components in the values for the reported convective signals. The first 
component is defined by the wells having no or a low convective signal in DeAngelo et al. (2023). 
These low convective signals have a symmetrical distribution about a mean of nearly 0 mW/m2 
with a standard deviation of nearly 25 mW/m2 (see Section 3.2 in DeAngelo et al., 2023); hence, 
we define wells with a reported convective signal within 25 mW/m2 (i.e., one standard deviation) 
of 0 mW/m2 as having a low reported convective signal. We define wells with a reported 
convective signal two standard deviations greater than 0 mW/m2 (i.e., > 50 mW/m2) as having a 
high reported convective signal. Likewise, we regard wells with values of 25 to 50 mW/m2 as 
having an intermediate reported convective signal.  

We use the INGENIOUS grid of 250-m-by-250-m cells across most of the Great Basin and 
INGENIOUS study area (Ayling et al., 2022c) so that there are 7,814,099 cells that serve as 
examples. Of these grid cells, 3,869 have a reported convective signal (i.e., a label). To account 
for bias potentially imparted by the smoothly varying feature data, we remove labeled examples 
with a low reported convective signal that are within a specified distance to a labeled example with 
a high reported convective signal; we choose a distance of 4 km with consideration for the scale 
at which structural perturbations influence permeability (e.g. faults; Barbour, 2015; Xue et al., 
2016). The remaining examples without heat flow measurements serve as unlabeled examples. 

2.2 Feature Data 

For the feature data, we use select datasets that support the INGENIOUS project (Table 1; e.g., 
Ayling et al., 2022a; Ayling et al., 2022b; DeAngelo et al., 2022; Glen et al., 2022; Peacock and 
Bedrosian, 2022; Kreemer and Young, 2023). We standardize each feature (i.e., subtract the mean 
and divide by the standard deviation of each dataset) to bring each feature to the same unitless 
scale. The cumulative distribution of values from each dataset is compared to the cumulative 
distribution of values at the sites with reported convective signals from DeAngelo et al. (2022), 
allowing for an evaluation of sample bias (e.g., are only high heat flow areas sampled?). 
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Table 1. Features and their data sources. 

Feature Reference 
Conductive Heat Flow  DeAngelo et al. (2022) 
Distance to Nearest Quaternary Fault  Ayling et al. (2022a) 
Distance to Nearest Quaternary Magmatic Activity  Ayling et al. (2022b) 
Magnetic Field  Glen et al. (2022) 
Isostatic Gravity  Glen et al. (2022) 
Depth-to-Basement  Glen et al. (2022) 
Shear Strain Rate  Kreemer and Young (2023) 
Dilation Strain Rate  Kreemer and Young (2023) 
Second Invariant of Strain-Rate Tensor  Kreemer and Young (2023) 
Independent Seismic Density 
(> 2M, ≤ 30-km depth, n = 200, α = 0.05) Kreemer and Young (2023) 

Foreshock/Aftershock Seismic Density 
(> 2M, ≤ 30-km depth, n = 200, α = 0.05) Kreemer and Young (2023) 

Electrical Surface Conductance (2 - 12 km) Peacock and Bedrosian (2022) 
Electrical Middle Crust Conductance (12 - 20 km) Peacock and Bedrosian (2022) 
Electrical Lower Crust Conductance (20 - 50 km) Peacock and Bedrosian (2022) 
Electrical Upper Mantle Conductance (50 - 90 km) Peacock and Bedrosian (2022) 
Electrical Mantle Conductance (90 - 200 km) Peacock and Bedrosian (2022) 

 

In order to understand the correlative relationships of the reported convective signals and features, 
we examine the Pearson and Spearman correlation coefficients. The Pearson and Spearman 
correlation coefficients provide measures of correlation between the labels and features (see 
generally Lee Rodgers and Nicewander, 1988). The Pearson correlation coefficient provides a 
measure of linear correlation between features. The Spearman correlation coefficient provides a 
measure of correlation between the ranked values of features. Both have a minimum and maximum 
of negative one and one, corresponding to negative and positive correlation, respectively. The 
greater the absolute correlation coefficient, the greater the degree of correlation.  

2.3 Three Modeling Approaches 

We apply three modeling approaches (Linear Regression, All-Data XGBoost, and Truncated-Data 
XGBoost) to predict convective signals across the Great Basin. Below, we provide more details 
about these approaches. 

2.3.1 Linear Regression 

We select linear regression for its simplicity and linearity; that is, linear regression provides a 
baseline against which to compare more complex approaches. We define multiple linear regression 
in Equation 1 as 
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where 𝑦𝑦𝑛𝑛 is the label of the nth example, 𝑥𝑥𝑛𝑛,𝑚𝑚 is the mth feature value of the nth example, 𝛽𝛽𝑚𝑚 is the 
weight (i.e., fitting parameter) of the mth feature. Linear regression aims to fit the labels 𝑦𝑦𝑛𝑛 as a 
linear function of the n feature vectors (or examples). Let the ith example be 𝑥𝑥𝑖𝑖 with corresponding 
label 𝑦𝑦𝑖𝑖 and 𝑦𝑦𝑦𝑖𝑖 be the corresponding prediction; linear regression then minimizes the following 
equation for root mean square error (RMSE), provided in Equation 2 as 
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2.3.2 XGBoost 

We select XGBoost (Chen and Guestrin, 2016) because Mordensky et al. (2023b) identified 
XGBoost as a superior ML algorithm when fitting models using geothermal data from the 2008 
U.S. Geological Survey Geothermal Resource Assessment (Williams and DeAngelo, 2008; 
Williams et al., 2008) due to its boosted tree-based architecture, which allows for a non-linear 
predictor without the need for excessively large datasets. The XGBoost algorithm functions by 
sequentially adding estimators (i.e., decision trees) to an ensemble, where the goal of each new 
estimator is to account for the errors of the current ensemble. The final prediction is then a 
weighted combination of each estimator in the ensemble. 

Mean absolute error (MAE) is a common error metric that is insensitive to outliers and is defined 
in Equation 3 as 
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 (3) 

in which 𝑛𝑛 is the number of cells, 𝑖𝑖 is the ith cell, 𝑦𝑦 is the label, and 𝑦𝑦𝑦 is the prediction. However, 
MAE is undifferentiable at zero and, therefore, cannot be used as a loss function with XGBoost. 
To obtain additional robustness to outliers, we select the Pseudo-Huber function (Huber, 1964) as 
the loss function for the XGBoost approaches because the Pseudo-Huber function is not as 
sensitive to outliers as RMSE but remains differentiable across its entirety. The Pseudo-Huber 
function is given by Equation 4 as 
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in which 𝑃𝑃𝑃𝑃δ is the error by the Pseudo-Huber loss function, 𝑛𝑛 is the number of labeled examples, 
𝑖𝑖 is the ith cell, 𝑦𝑦 is the label, 𝑦𝑦𝑦 is the prediction, and δ is a user-set parameter. In the Pseudo-Huber 
loss function, we set δ equal to 1. By setting δ to 1, differences between the reported convective 
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signals from DeAngelo et al. (2023) and the predicted convective signals from the XGBoost 
models that are less than 1 produce error values similar to that of RMSE and differences greater 
than 1 produce error values similar to that of MAE. Hence, the Pseudo-Huber loss function with δ 
= 1 is differentiable about zero while remaining insensitive to outliers. A similar outlier-robust 
loss could be used for linear regression. However, the relationship between examples and labels is 
inherently non-linear (see Section 3.2 Feature Data), we hypothesize that a more robust loss would 
provide minimal improvement to the performance of linear regression. 

For hyperparameter optimization, we tune the number of estimators, maximum depth of each 
estimator, learning rate, and number of leaves per node across 120 train-test splits. We fit final 
models using all the labeled examples per that approach and the median hyperparameter values 
from the 120 train-test splits using the U.S. Geological Survey high-performance computer 
DENALI (Falgout et al., 2021). 

To check and prevent against overfitting in the final models, we develop a variant of the low 
progress method for early stopping (see generally Tian and Zhang, 2022) by comparing the change 
in testing loss and training loss per new estimator in the 120 train-test splits. During the addition 
of early estimators, the rates of improvement in the training and testing data are similar, but 
eventually, the rate of improvement in the testing data slows compared to the rate of improvement 
in the training data, indicating that overfitting is beginning. Specifically, we define early 
improvement as the improvement between estimators 1 and 2, and we compare that initial ratio to 
the ratio from each sequential estimator as the Relative Reduction in Slope (RRiS) given in 
Equation 5 as: 
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where 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛𝑡𝑡 is the testing loss, 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑡𝑡 is the training loss, and 𝑖𝑖 is the ith estimator. 
Conceptually, we say that the model is beginning to overfit when the ratio of improvement of the 
testing to training data is some defined fraction of the initial improvement of this ratio from the 
addition of sequential estimators. We implement early stopping before the ith estimator at which 
the median RRiS from the 120 train-test splits falls below that defined fraction. In practice, we 
choose two fractions, an upper fraction of ½ and a lower fraction of ¼, respectively denoted as 
RRiS1/2 and RRiS1/4, resulting in two final models per XGBoost approach. Producing these two 
variations of final models for a single approach allows for a comparison of the predictive skill 
resulting from the change in model complexity. The goal is that the final model at RRiS1/2 might 
be slightly underfit while the final model at RRiS1/4 might be slightly overfit, allowing an analysis 
of robustness of model estimates (e.g., do both models substantially agree over most of the area?). 
The two critical fractions are verified based on plots of the 120 train-test splits to ensure that there 
is a reasonable confidence that the range of produced models are slightly under- and over-fit. 
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2.4 Feature Importance 

We evaluate feature importance for each of the modeling approaches using two algorithm-agnostic 
measures of feature importance (MAE sensitivity and SHapely Additive exPlanation [SHAP] 
values; Lundberg and Lee, 2017) with the final models. 

MAE sensitivity analysis functions by randomly shuffling the values of a single feature while the 
other features remain unshuffled, using the model to make new predictions, and then comparing 
these new predictions with the predictions from the originally unshuffled data and the impact on 
MAE. By sequentially completing this process through all the features, sensitivity analysis gauges 
the magnitude of the contribution of each feature toward a prediction. 

SHAP values operate similarly to sensitivity analysis at a conceptual level but with some 
fundamental differences. The SHAP function varies values for every possible combination of 
feature sets, whereas sensitivity analysis sequentially shuffles only one feature at a time. Also, 
SHAP measures the differences between predictions and does not rely on a specific performance 
metric. More specifically, every sample for every feature with consideration for every combination 
of features is assigned a SHAP value that is the difference between the original and permutated 
predictions, and the sample SHAP values are then averaged by feature to provide the mean feature 
SHAP values (Lundberg and Lee, 2017).  

3. Results 
In this section, the label and feature data used for fitting are presented, the optimal hyperparameters 
for XGBoost are reported, and the predicted convective signals from all five models are given and 
compared. Lastly, feature importance is provided. 

3.1 Label Data 

Pre-processing reduces the total number of labeled examples from the initially available 3,869 
reported convective signals. After removing examples with low reported convective signals within 
4 km of a high reported convective signal, 3,275 convective signals remain. The remaining 
reported convective signals span -91 to 11,105 mW/m2 and have a right-skewed distribution with 
a median of 262 mW/m2 and a standard deviation of 784 mW/m2 (Fig. 3). After truncating the data 
to only include reported convective signals between -25 and 200 mW/m2, only 2,156 convective 
signals remain. The convective signals for the truncated range still have a right-skewed distribution 
but with a median of 46 mW/m2 and a standard deviation of 56 mW/m2. 
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Figure 3. Cumulative distribution functions (CDFs) for reported convective signals: a) over the entire range of 

reported convective signals; and b) over the range of reported convective signals used for Truncated-
Data XGBoost. Dashed curve: CDF for reported convective signals for Linear Regression and All-Data 
XGBoost; Solid line: CDF for reported convective signals for Truncated-XGBoost. Dashed box in a) 
provides extent of b). 

 

3.2 Feature Data 

The feature data at the reported convective signals generally cover the same range of values as that 
for the unlabeled examples (Fig. 4) with values having a low rate of change per unit distance. That 
is, feature maps generally appear smooth despite the resolution of the INGENIOUS grid (i.e., 250-
m by 250-m; Fig. 5); however, the seismic density data do not share this characteristic and, instead, 
have small areas of elevated values.  
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Figure 4. Cumulative distribution functions (CDFs) of standardized unlabeled examples (solid line) compared 
with CDFs of standardized labeled examples (i.e., examples with reported convective signals; dashed 
line). Steeper slopes on a CDF indicate a greater density of examples with that feature value. Shallower 
slopes on a CDF indicate a lower density of examples with that feature value. Differences between lines 
indicate sample bias relative to the input feature distribution. For example, thermal gradient wells used 
to construct the heat flow maps from DeAngelo et al. (2022) preferentially sample regions with higher 
conductive heat flow (upper left panel).  
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Figure 5. Standardized feature maps for the 16 features from the datasets supporting INGENIOUS. The extent 
of the study is defined by the complete overlap of the different features. The base map has been made 
using data from Natural Earth. 

 

In general, most features share moderate or strong correlation with at least one other feature. There 
are three groups of correlated variables: 1) features from geodetic methods, seismic derivatives, 
and distance to nearest Quaternary magmatic activity; 2) conductance features; and 3) features 
from geophysical methods (Fig. 6). The reported convective signals have low correlation with any 
feature. 
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Figure 6. Pearson and Spearman correlation coefficients between input features. Red corresponds to positive correlation coefficients. Blue corresponds 
to negative correlation coefficients. Fitting from features with extremely high correlation (e.g., 0.95) may negatively impact model performance 
(e.g., Mordensky et al., 2023a). Abbreviations: Ind. – Independent; Dep. – Dependent; Cond. – Conductance. 
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3.3 Hyperparameters and Predictions for Convective Hydrothermal Upflow 

In this section, we provide optimal hyperparameters and then evaluate model performance by 
comparing reported and predicted convective signals. Prediction maps detail the geospatial 
distribution of predicted convective signals. Lastly, we report feature importance. 

The median optimal hyperparameter values from the 120 train-test splits are provided in Table 2. 
The median ith estimator for early stopping at RRiS1/2 and RRiS1/4 from the 120 train-test splits are 
provided in Table 2 and Fig. 7. All-Data XGBoost uses fewer estimators (5 and 8 for RRiS1/2 and 
RRiS1/4, respectively) than Truncated-Data XGBoost (14 and 24 for RRiS1/2 and RRiS1/4, 
respectively), but the estimators for All-Data XGBoost are more complex (18 nodes deep) than 
Truncated-Data XGBoost (12 nodes deep). 

Table 2. Hyperparameters for the XGBoost models. 

 

i 
Estimators Max Depth Learning Rate Max Leaves 

ith Estimator for 
Early Stopping 

at RRiS1/2 

ith Estimator for 
Early Stopping 

at RRiS1/4 
All-Data XGBoost 15 18 0.05 1 5 8 

Truncated-Data XGBoost 40 12 0.05 1 14 24 
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Figure 7. Loss-vs-Estimator relationships depicting workflow to identify when to engage early stopping. 
Training loss (pink) and testing loss (green) per estimator are provided in a) and b). The RRiS (Eq. 5) in 
c) and d) provides the relative changes in slope from a) and b), respectively, as estimators are added in 
each of the approaches. The ith-estimator intersect at which the RRiS of a train-test split is at half of its 
initial RRiS (i.e., RRiS1/2; blue bins) and a quarter of its initial RRiS (i.e., RRiS1/4; orange bins) from the 
120 train-test splits are provided in e) and f). Overlap of the blue bins for RRiS1/2 and orange bins for 
RRiS1/4 is depicted as brown. The median ith-estimator intersect for these distributions (i.e., when early 
stopping is employed) for RRiS1/2 (blue dashed line) and RRiS1/4 (orange dashed line) overlay each 
subplot. Abbreviation: Est. – Estimator. 

 

All the modeling approaches underpredict the highest reported convective signals. Linear 
Regression is the worst performing of the three approaches with its predictions having a roughly 
Gaussian distribution about a value of 260 mW/m2 (Fig. 8), whereas the two XGBoost approaches 
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consistently predict high convective signals as high and low reported convective signals as low 
(Figs. 9, 10). Of the two XGBoost approaches, All-Data XGBoost predicts the highest convective 
signals (>2000 mW/m2) and Truncated-Data XGBoost never predicts above 125 mW/m2. The 
more-complex models (i.e., with i estimators corresponding to RRiS1/4) predict higher than the less 
complex model variants (i.e., with i estimators corresponding to RRiS1/2). 

 

Figure 8. Cross-plots and stacked marginal histograms for reported convective signals and predicted convective 
signals from the approach for Linear Regression. Marginal histograms provide distribution to 
corresponding axis. Top plot (a) depicts the entire range of the reported convective signals. Bottom plot 
(b) is provided for comparison to predictions using the narrower range of reported convective signals 
with Truncated-Data XGBoost (Fig. 10). 
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Figure 9. Cross-plots and stacked marginal histograms for reported convective signals and predicted convective 
signals from All-Data XGBoost for RRiS1/2 (a,c) and for RRiS1/4 (b,d). Top plots (a,b) depict the entire 
range of the reported convective signals. Bottom plots (c,d) are provided for comparison to predictions 
using the narrower range of reported convective signals with Truncated-Data XGBoost (Fig. 10). 
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Figure 10. Cross-plots and stacked marginal histograms for reported convective signals and predicted 
convective signals from Truncated-Data XGBoost. Predictions for reported connective signals > 200 
mW/m2 are only depicted in the marginal histogram as orange bins to allow for a detailed perspective of 
predictions over the range of convective signals with which this model trained. 

 

Because none of the approaches examined predict reasonably matching values for high convective 
signals (Figs. 8, 9, 10), the prediction maps are presented by categorizing the predicted convective 
signals according to the categorical distinctions from their corresponding reported convective 
signals (Fig. 11; Table 3). More specifically, we refer to predictions as having a low predicted 
convective signal when the predictions are less than the median prediction for examples with 
reported convective signals within 25 ± 5 mW/m2, a high predicted convective signal when the 
predictions are greater than the median prediction for examples with reported convective signals 
within 50 ± 5 mW/m2, and an intermediate predicted convective signal when the predictions are 
between the bounds for the high predicted convective signal and low predicted convective signal. 
In doing so, Linear Regression and All-Data XGBoost predict similar proportions (i.e., roughly 
33%) of the study area as having a high predicted convective signal and Truncated-XGBoost 
predicts the smallest percentage (i.e., roughly 16%) of the study area as having a high predicted 
convective signal (Table 3). The All-Data and Truncated-Data XGBoost approaches have greater 
granularity than Linear Regression (Fig. 11).  
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Table 3: Prediction values defining low convective signal, intermediate convective signal, and high convective 
signal per approach and the corresponding predicted percent of study area. 

Model 

Bound between 
Low and 

Intermediate 
Predicted 

Convective 
Signal 

(mW/m2) 

Bound between 
Intermediate and 

High Predicted 
Convective 

Signal 
(mW/m2) 

Percent 
Area 

with Low 
Predicted 

Convective 
Signal 

Percent Area  
with 

Intermediate 
Predicted 

Convective 
Signal 

Percent 
Area 

with High 
Predicted 

Convective 
Signal 

Linear Regression 232 244 65.1 2.7 32.3 

All-Data XGBoost1/2 6 13 48.9 18.5 32.6 

All-Data XGBoost1/4 9 18 46.8 18.7 34.5 

Truncated-Data XGBoost1/2 16 30 54.0 29.6 16.4 

Truncated-Data XGBoost1/4 22 40 51.8 32.7 15.6 
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Figure 11. Prediction maps from using Linear Regression (a), All-Data XGBoost (b, c), and Truncated-Data 
XGBoost (d, e). Predictions are depicted as Low Predicted Convective Signal (blue), Intermediate 
Predicted Convective Signal (green), and High Predicted Convective Signal (red) because the absolute 
predictions suggest a strong bias in both approaches (i.e., predicted convective signals are consistently 
less than reported convective signals; see Table 3 for categorical boundary thresholds); although, high 
reported convective signals are still predicted as high and low reported convective signals are still 
predicted as low. The base map has been made using data from Natural Earth. Higher-resolution maps 
are available in Appendix A. 
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3.4 Feature Importance 

The most important features predominantly vary by the selection of the algorithm (Fig. 12). The 
shear strain rate and second invariant to the strain rate are the most important features for linear 
regression. Conductive heat flow and distance to nearest Quaternary fault are the two most 
important features for All-Data XGBoost, with the second invariant to the strain rate and distance 
to nearest Quaternary magmatic activity being roughly equal as the third most important feature. 
Conductive heat flow, distance to nearest Quaternary fault, and distance to nearest Quaternary 
magmatic body are the most important features for Truncated-Data XGBoost. 

 

Figure 12. Min-max, 0-to-1 normalized feature importance for final models. 
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4. Discussion 
All models generally express strong bias by underpredicting high reported convective signals, but 
the approaches using XGBoost perform better at predicting high convective signals as high and 
low convective signals as low (Figs. 9, 10) than linear regression (Fig. 8). This general observation 
of predictive behavior is consistent with the relative feature importance (Fig. 12), which suggests 
that the selection of the ML algorithm had a greater effect than the choice of which range of 
reported convective signals to use for fitting. However, identifying the best-performing XGBoost 
approach varies by which measures of performance are considered. 

In terms of minimizing the area predicted as having a high convective signal, Truncated-Data 
XGBoost is the best-performing approach (Fig. 11; Table 3). Truncated-Data XGBoost also has 
greater separation between the distributions of predictions for high and low reported convective 
signals (Fig. 13). More specifically, when predicting for the entire study area, Truncated-Data 
XGBoost predicts half of the examples with high reported convective signals in the top 3 % of 
predictions, whereas All-Data XGBoost requires the top 13 % of predictions to include half of the 
examples with high reported convective signals (Fig. 13). Yet, when evaluating model 
performance by an ability to predict convective hydrothermal upflow at operating geothermal 
power plants, the All-Data XGBoost approach outperforms the Truncated-Data XGBoost 
approach (Fig. 14), suggesting that valuable information was lost by removing labels with values 
> 200 mW/m2 from Truncated-Data XGBoost. 
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Figure 13. Cumulative distribution functions of predicted convective signals for all examples (labeled and 
unlabeled) with distributions of corresponding reported convective signals provided in marginal 
histograms (i.e., red: high reported convective signal, blue: low reported convective signal). Solid red 
lines depict the median high predicted convective signals. Dashed red lines depict the 16th percentile (i.e., 
one standard deviation or one sigma below the median value in a normal distribution) prediction for 
high reported convective signals. Solid blue lines depict the median prediction for low reported 
convective signals. Dashed blue lines depict the 84th percentile (i.e., one standard deviation or one sigma 
above the median value in a normal distribution) prediction for low reported convective signals. Bin size 
is 0.025 on a unitless 0-to-1 scale. 
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Figure 14. Cumulative distribution functions of power-producing hydrothermal systems respective to model 
predictions. Black and red dashed lines depict the percentile of highest predictions (left y-axis; analogous 
to the percent of the study area) required to capture 50 % (9) and 25 % (13), respectively, of the 18 power 
plants with reported > 130°C temperature (right y-axis). Similarly, the black and red text in upper left 
of each subplot corresponds to the dashed lines by color and reports the percentile of highest predictions 
required to capture 50 % (9) and 25 % (13), respectively, of the 18 power plants with reported > 130°C 
temperature. The range of the x-axes are defined by bounding 2.5% and 99% of the total predictions 
specific to the approach depicted. The power production data are from Faulds et al. (2021) and available 
through Mlawsky and Ayling (2021). Red X on right y-axis marks the total number (18) of powerplants 
operating at > 130°C. MW – Megawatts power capacity.  
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Like with performance, neither XGBoost approach has consistent behavior to suggest one 
approach is less susceptible to overfitting as new estimators are added between RRiS1/2 and 
RRiS1/4. In terms of minimizing the percent of the study area predicted as having a high convective 
signal, adding estimators to Truncated-Data XGBoost spreads the distribution of predictions for 
reported high convective signals to relatively lower predictions (i.e., from a median high reported 
convective signal at the 99.77th percentile prediction to the 97.11th percentile prediction; Fig. 13) 
more than the addition of new estimators to All-Data XGBoost (i.e., from a median high reported 
convective signal at the 87.61th percentile prediction to the 87.39th percentile prediction), 
suggesting that All-Data XGBoost is less sensitive to the addition of new estimators. Yet, All-Data 
XGBoost appears more sensitive to the addition of new estimators than Truncated-Data XGBoost 
in terms of percent change of the study area that was predicted as low for RRiS1/2 and high for 
RRiS1/4 (Fig. 15). As additional estimators are added between RRiS1/2 and RRiS1/4, the absolute 
predictions in both XGBoost approaches generally increased (Figs. 9, 10, 13), but the majority 
(i.e., > 99 %) of the resulting changes to the categorical predictions, like those depicted in Fig. 11 
and detailed in Table 3, were only from one category of predicted convective signal to the next 
category of predicted convective signal (i.e., from a low predicted convective signal to an 
intermediate predicted convective signal or from an intermediate predicted convective signal to a 
high predicted convective signal). Although < 1 % of the study area changes from a predicted low 
convective signal to a predicted high convective signal with either XGBoost approach, Truncated 
XGBoost expresses greater stability in generalization with only 0.03 % of the study area changing 
from a predicted low to a predicted high, whereas 0.62 % of the study area changes from a 
predicted low to a predicted high with All-Data XGBoost (Fig. 15). Hence, the high outlying 
reported convective signals in All-Data XGBoost are likely biasing predictions as the model 
complexity of that approach increases. 

The hypothesis that the outliers are impacting bias in more complex All-Data XGBoost models is 
supported by optimizing early stopping using validation data. Although we use testing data to 
optimize early stopping in this study, we note that optimizing early stopping with testing data is 
not considered a best practice. To address this concern, we could optimize early stopping using 
validation data. Preliminary results find that optimizing early stopping with validation data instead 
of testing data reduces model complexity more in the All-Data XGBoost approach than in the 
Truncated-Data XGBoost approach. The greater simplification of model complexity in the All-
Data XGBoost approach may be related to the high outlying reported convective signals used in 
that approach. Because the subset of examples used for optimization decreases from 20% to 16% 
of the labeled data (i.e., from the testing data to the validation data), the outlying label values may 
be forcing fewer estimators in the All-Data XGBoost approach to prevent overfitting.  
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Figure 15. Maps depicting differences in categorical predictions of convective signal between models trained 
with estimators corresponding to RRiS1/2 and RRiS1/4. The absolute ordered differences are provided in 
the top plots (a,b). The bottom plots provide locations predicted as low convective signal at RRiS1/2 but 
as high convective signal at RRiS1/4. The base map has been made using data from Natural Earth. 

 

The comparison of the different supervised ML algorithms strongly demonstrates that non-linear 
approaches (e.g., XGBoost) hold some skill for predicting convective signal, but the performance 
tradeoff resulting from the removal of examples with high outlying convective signals likely 
impairs model performance (Figs. 13, 14). Hence, regression may not be the appropriate class of 
algorithm to predict strong convective signals. Simultaneously, supervised ML classification 
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implicitly does not distinguish between high and very high convective signals (e.g., Mordensky et 
al., 2023b). Therefore, we propose using ordinal regression as a compromise between regression 
and classification. By binning the convective signals, we can isolate high convective signals from 
very high convective signals; thereby allowing models that convey information from all the 
convective signals but without the bias of outlying label values. 

A more discerning approach during feature selection would also likely improve model 
performance. Hitherto, the models we have presented and discussed used feature data without 
regard for their correlative relationships. However, Mordensky et al. (2023a) showed that having 
few labeled examples, like when working with geoscience data, emphasizes the importance of 
using as few features as possible in order to maximize model performance. The high correlation 
between the features in this study (Fig. 6) means that every feature may not be benefitting model 
performance, and there likely is opportunity to omit the less informative features in favor of other 
new, more informative features (e.g., the first derivative of isostatic gravity or the magnetic field).  

5. Conclusion 
In this study, we fit three models to predict the magnitude of hydrothermal upflow across the Great 
Basin using reported convective signals from DeAngelo et al. (2022) as labels, datasets supporting 
INGENIOUS as features, and three machine learning approaches (i.e., linear regression using the 
entire range of reported convective signals, XGBoost using the entire range of reported convective 
signals, and XGBoost using reported convective signals truncated to a specified range [-25 to 200 
mW/m2] so that large outliers are excluded). Linear regression offers only limited meaningful 
predictive skill; however, the XGBoost approach using the truncated range of reported convective 
signals performs the best at predicting high known convective signals as high whereas the 
XGBoost approach fit using all the data performs the best at predicting hydrothermal systems with 
power production. The duality of these two XGBoost approaches and their performance measures 
suggests that very high convective signals have valuable information, but the outlying nature of 
these very high convective signals imparts bias. Therefore, our results suggest using a supervised 
machine learning algorithm that allows for the use of very high convective signals but reduces 
their potential bias (e.g., ranked ordinal regression) to predict the magnitude of convective 
hydrothermal upflow.  
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Appendix A – Higher-Resolution Prediction Maps 

Appendix A provides higher-resolution prediction maps for all the models produced in this study. 

 

Figure A1: Predicted signals from conductive heat flow using linear regression and the entire range of 
convective signals. The base map has been made using data from Natural Earth. 
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Figure A2: Predicted signals from conductive heat flow using XGBoost and the entire range of convective 
signals and RRiS1/2 early stopping. The base map has been made using data from Natural Earth. 
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Figure A3: Predicted signals from conductive heat flow using XGBoost and the entire range of convective 
signals and RRiS1/4 early stopping. The base map has been made using data from Natural Earth. 
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Figure A4: Predicted signals from conductive heat flow using XGBoost and convective signals with label values 
ranging from -25 to 200 mW/m2 and RRiS1/2 early stopping. The base map has been made using data 
from Natural Earth. 
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Figure A5: Predicted signals from conductive heat flow using XGBoost and convective signals with label values 
ranging from -25 to 200 mW/m2 and RRiS1/4 early stopping. The base map has been made using data 
from Natural Earth. 
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