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Abstract—Hypothesis testing presents an efficient means of
partitioning the seabed into regions of similar geoacoustic
properties. Ambient sound collected by an autonomous vehicle
towing a vertical line array (VLA) can be used to characterize the
seabed over large regions of interest. However, additional sound
sources such as passing ships result in low-rank interference that
can make accurate hypothesis testing impossible. We present a non-
convex optimization procedure for removing low-rank interference
from covariance matrices formed from a VLA. We describe an
alternating optimization algorithm and an intelligent initialization
procedure that allows us to efficiently recover the uncorrupted
covariance matrix. On synthetic data, we show that our approach
can allow for reliable hypothesis testing even in the presence of
very strong interference. We also demonstrate that recordings
from the New England Shelf Break Acoustics experiment contain
low-rank interference that disrupts hypothesis testing, and that
our method can adequately mitigate this interference, restoring
the area under the receiver operating characteristic curve to 1.0.

Index Terms—ambient noise, covariance estimation, low-rank
approximation, hypothesis testing, geoacoustic inversion

I. INTRODUCTION

The geoacoustic parameters of the ocean floor are known
to impact the propagation of sound, playing a critical role in
sonar performance prediction [1]. To enable seabed characteri-
zation over large spatial regions, researchers have developed
methods for geoacoustic inversion from passive sources such as
crashing waves [2]. Since these methods do not rely on active
sources, they can utilize data recorded from drifting buoys
or autonomous vehicles [3], [4], making them amenable to
characterization over large spatial regions. However, results on
real-world data indicate that methods such as that proposed in
[2] lack robustness due to model mismatch. Among the leading
causes of such mismatch are disturbances to the ambient noise
field, especially those due to passing ships.

We consider the problem of partitioning the seabed according
to the types defined by the High Frequency Environmental
Acoustics (HFEVA) dataset [5]. When the ambient sound
is dominated by crashing waves, this may be framed as a
hypothesis testing problem, which was studied extensively
in [6]. However, low-rank interference from sources such as
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passing ships can cause large deviations from the underlying
model, degrading the performance of hypothesis testing and
geoacoustic inversion. Historically, such deviations are handled
through robust hypothesis testing methods, which aim to allow
for accurate testing in the presence of model mismatch [7].
These methods tend to emphasize deviation from a nominal
distribution (e.g., Gaussian), with the goal of providing strong
performance without normal assumptions [8], [9] or in high-
dimensional settings [10], [11]. While these methods may have
applicability to our setting, they do not provide a way to
mitigate interfering signals such as those considered here.

In this work, we present an approach to mitigating low-rank
interference for vertical line arrays (VLAs) with uniform inter-
element spacing. We leverage the fact that, for such arrays, the
ideal covariance matrix has Toeplitz structure [12], enabling us
formulate interference mitigation as a non-convex optimization
problem that can be solved by alternating methods. We provide
an intelligent initialization for this problem that allows us to
dramatically improve hypothesis testing performance, even in
the presence of very strong interferers. We demonstrate the
efficacy of our approach on both simulated ambient sound
and experimental data from the New England Shelf Break
Acoustics (NESBA) experiment [3], [13].

II. PROBLEM FORMULATION

Consider a VLA with M elements and uniform inter-element
spacing. In the ideal setting, the ambient sound is generated by
crashing waves at the surface and has well-understood statistical
properties that can be leveraged for geoacoustic inversion [2].
Let the N -dimensional vector of geoacoustic parameters of
interest be θ ∈ RN . In this case, the Fourier-transformed
snapshots at a single frequency are vectors x ∈ CM and are
assumed to be circularly-symmetric Gaussian with zero mean
and covariance

Kθ = E[xxH ] = σ2
sΓθ + σ2

nI, (1)

where σ2
s is the power in the ambient noise, σ2

n is the non-
acoustic sensor noise variance, and Γθ is the signal covariance
matrix obtained from a model of the ambient sound [12]. This
signal covariance matrix is normalized so that tr (Γθ) = M .

Motivated by interfering sound, such as that generated by a
passing ship, we wish to mitigate strong low-rank interference.
In this setting, we model the received snapshots as y = x+ z,



where z ∈ CM has covariance E[zzH ] = σ2
iQQH for some

Q ∈ CM×r normalized so that tr
(
QQH

)
= M , yielding an

interference strength σ2
i . Assuming x and z are uncorrelated,

the interfering ship results in the covariance

K̄θ = σ2
sΓθ + σ2

nI + σ2
iQQH = Kθ + σ2

iQQH . (2)

As stated in the introduction, we consider the problem of
hypothesis testing for changes in the geoacoustic parameters
of the seabed, where we wish to test whether these parameters
are equal at two locations w0 and w1. Under the zero-
mean complex normal assumption above, this becomes a test
for equality of covariance, for which Box’s M Test is the
classical solution [14]. Suppose two collections of snapshots{
y
(0)
1 , . . . , y

(0)
L

}
and

{
y
(1)
1 , . . . , y

(1)
L

}
are obtained at locations

w0 and w1, respectively, yielding sample covariance matrices
K̂0 and K̂1. Box’s M Test yields the test statistic

Λ = 2L log det
(
K̂pool

)
− L log det

(
K̂0

)
−L log det

(
K̂1

)
, (3)

where K̂pool =
1
2

(
K̂0 + K̂1

)
is the pooled covariance matrix.

Hypothesis testing proceeds by comparing (3) to some fixed
threshold, chosen either by bootstrapping or by the asymptotic
distribution of the test statistic, which is known to be χ2 [15].
While hypothesis testing has been applied successfully to dif-
ferentiate between distinct seabed types [6], strong interference
can cause the performance of hypothesis testing to deteriorate
rapidly. This is especially pertinent when performing sensing
from ambient sound, where the signal-to-noise ratio (SNR)
is much lower than when actively transmitting. Therefore,
methods for mitigating such interference are essential for
facilitating large-scale exploration of the geoacoustic properties
of the seabed.

III. INTERFERENCE MITIGATION APPROACH

We now present an optimization procedure for mitigating
low-rank interference of the form laid out above. Let K̂ be
the observed sample covariance from some location containing
both a signal and interference portion, as well as additive noise.
To recover the uncorrupted covariance only, we wish to remove
the rank-r interference defined by Q, solving

min
K∈CM×M

Q∈CM×r

∥∥∥K̂ −K −QQH
∥∥∥2
F

subject to K ∈ S ∩ T ,
where S and T are the sets of positive semidefinite (PSD)
and Toeplitz matrices, respectively. The above problem is non-
convex, since it contains a fourth-order term in Q. However,
by using variable splitting we arrive at the following bi-convex
problem

min
K∈CM×M

Q,W∈CM×r

∥∥∥K̂ −K −QWH
∥∥∥2
F

(4)

subject to K ∈ S ∩ T (5)
Q = W,

Algorithm 1 Initialization procedure for covariance and
interference estimation.
Input: observed sample covariance K̂, interference rank r,
slope parameter ℓ
Output: initial estimates K(0), Q(0),
W(0)

1: obtain eigenvalue decomposition K̂ =
∑M

i=1 λiuiu
H
i

2: λ̄i ← λi, i = r + 1, . . . ,M
3: s← estimated slope of eigenvalues λr+1, . . . , λr+ℓ

4: for i = r, . . . , 1 do
5: λ̄i ← λr+1 + (r − i+ 1)s

6: γi ←
√
max

{
1× 10−6, λi − λ̄i

}
7: end for
8: K(0) ←

∑M
i=1 λ̄iuiu

H
i

9: Q(0) ←
∑r

i=1 γiui

10: W(0) ←
∑r

i=1 γiui

which is convex in Q for a fixed K and W , and likewise
is convex in W for a fixed K and Q. Although still non-
convex, this formulation facilitates the application of alternating
minimization procedures such as alternating direction method of
multipliers (ADMM) [16]. Consider the augmented Lagrangian

J(K,Q,W, β) =
∥∥∥K̂ −K −QWH

∥∥∥2
F
+ βH(Q−W )

+
ρ

2
∥Q−W∥2F , (6)

where ρ > 0 is a tuning parameter and β ∈ CM×r is the
matrix of Lagrange multipliers. Optimization of (6) proceeds
in an alternating fashion, sequentially minimizing over each
variable while keeping the others fixed. In the case of K, the
PSD and Toeplitz constraint is satisfied by projecting the result
onto the set S ∩ T via Dykstra’s method [17]. For both Q
and W , the problem admits a closed form solution. Beginning
with initial guesses for K(0), Q(0),W(0) described below and
β(0) = 0M×r, this approach follows the iterations

K(k+1) = PS∩T

(
K̂ −Q(k)W

H
(k)

)
Q(k+1) =

[
2
(
K̂ −K(k+1)

)
W(k) − β(k) + ρW(k)

]
(
2WH

(k)W(k) + ρI
)−1

W(k+1) =
[
2
(
K̂ −K(k+1)

)
Q(k+1) + β(k) + ρQ(k+1)

]
(
2QH

(k+1)Q(k+1) + ρI
)−1

β(k+1) =β(k) + ρ
(
Q(k+1) −W(k+1)

)
,

where PS∩T (A) denotes the projection of the matrix A onto
the intersection of PSD, Toeplitz matrices.

For non-convex problems such as (4), the choice of ini-
tialization has a major impact on the resulting solution, and
initialization close enough to the global optimum can often
result in global convergence results [18], [19]. Further, we
note that there is an identifiability issue with the problem
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Fig. 1. ROC curves when testing HFEVA Type 5 vs. Type 8 in the presence of interference of varying rank. (a) Interference rank r = 2, (b) r = 4, (c) r = 8.
The proposed recovery method achieves an AUC above 0.9 for both (a) and (b).

(4), since a portion of the matrix QWH may lie in the set
S ∩ T . Fortunately, as long as the interference covariance is
sufficiently low-rank relative to the signal covariance Kθ, an
accurate estimate can be obtained. To obtain such an estimate,
note that a strong rank-r interferer following the model (2)
will result in r eigenvalues that are larger than all others,
making the interference subspace is easy to identify. However,
removing this subspace entirely may destroy the ability to
perform hypothesis testing if the interferer is correlated with
the principal eigenvectors of either signal covariance matrix.
To estimate the strength of the interference, we utilize the fact
that for a Wishart matrix, the eigenvalues follow a Marchenko-
Pastur distribution in the limit and are therefore smoothly
increasing. We estimate this increase as a linear function whose
slope is taken as the average slope of eigenvalues r + 1 to
r + ℓ for some ℓ > 0. Our initial K(0) is then formed by
reducing the first r eigenvalues to maintain a linear slope,
with Q(0) = W(0) formed by taking the rank-r estimate of
the residual. In practice, we set ℓ = 10 and do not find the
result to depend heavily on this choice. Pseudocode for this
procedure is given in Alg. 1. In practice, we set ℓ = 10 and
do not find the result to depend heavily on this choice.

IV. EMPIRICAL RESULTS

We evaluate our recovery method on both synthetic data
and recordings from the NESBA experiment [3]. For synthetic
data, we generate snapshots using the multidimensional ambient
noise model (MDANM) [20], which is an implementation of the
Harrison model [12], assuming a 32-element VLA with 0.15 m
element spacing and a frequency of 4.5 kHz. We assume a SNR
of 10, setting σ2

s = 10 and σ2
n = 1 in (1). To generate synthetic

interference, we follow the approach of [21] and optimize the
interference covariance to make hypothesis testing as difficult
as possible (i.e., to minimize the likelihood ratio test statistic).
When applying our recovery algorithm, we set the parameter
ρ = 1× 104 and iterate until ∥Kk −Kk+1∥F < 1× 10−6.

We show the receiver operating characteristic (ROC) curves
for testing HFEVA sediment Type 5 (Very Coarse Gravel) vs.
Type 8 (Gravelly Muddy Sand) in Fig. 1, where “interferer
removed” denotes the ROC curve after applying our recovery
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Fig. 2. ROC curves under a rank-10 interferer when testing (a) Type 11 vs.
Type 6 and (b) Type 11 vs. Type 14. In both cases, the proposed recovery
method returns the AUC to above 0.98.

method. In the rank-2 case, the area under the curve (AUC)
is reduced to 0.96 by the interference and returned to 1.0 by
applying our approach. For a rank-4 interferer, the AUC is
reduced to 0.82 and returned to 0.99 by our method. Finally, for
a rank-8 interferer, the AUC is reduced to 0.65 and returned
to 0.88, indicating that our proposed recovery method can
make hypothesis testing feasible to some degree even for very
significant corruptions.

Fig. 2 shows the ROC curves for testing HFEVA Type 11
(Fine Sand) against (a) Type 6 (Muddy Sandy Gravel) and (b)
Type 14 (Clayey Sand). Since these seabed types are more
easily distinguished, we consider a rank-10 interferer. In both
cases, the interference reduces the AUC to 0.84. Likewise,
our recovery method returns the AUC to 0.99 for Type 11 vs.
Type 6 and to 0.98 for Type 11 vs Type 14. Although not
pictured, we tested our recovery approach across a wide variety
of seabed types and found similar results, with the degree of
recovery depending on the interference rank as in Fig. 1.

Finally, we consider the applicability of our recovery method
in the context of parameter estimation through vertical direc-
tionality and bottom loss curves. We show the corrupted and
recovered vertical directionality curves in the presence of a rank-
2 interferer for a variety of types in Fig. 3. Since estimation is a
more difficult task than hypothesis testing, we set the SNR to 20
dB and set the interference strength 10 dB above the signal level.
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Fig. 3. Estimated vertical directionality curves under absence or presence of rank-2 interference. (a) Type 5 estimates. (b) Type 11 estimates. (c) Type 1
estimates. All recovered curves have a relative error near or below 1%.

We use L = 1, 000 snapshots to reduce the impact of covariance
estimation. Compared with the hypothesis testing results above,
the figure demonstrates that low-rank interference of this
strength makes estimation completely infeasible, resulting in
estimates that differ dramatically from the interference-free
setting. To evaluate the curves quantitatively, we compute the
relative error compared to using Kθ as defined by Eq. 1 directly,
i.e., without using a sample covariance matrix. In the case of
Type 5, the relative errors are 0.43% without interference,
39.91% with interference, and 0.89% after recovery. Similarly,
for Type 11, the relative errors are 0.56%, 44.09%, and 1.02%;
for Type 1 the errors are 0.53%, 45.80%, and 0.57%. These
indicate that our recovery method is able to mitigate the impact
of interference almost completely for this setting.

We next consider recordings from the NESBA experiments,
comparing data collected from the mud patch and shelf break
regions. These experiments were carried out from April-May
2021 and include ambient sound recordings captured by a
drifting buoy towing a VLA with 16 hydrophones, 1 m spacing,
and a sampling frequency of 10 kHz. Recordings from April
26, 2021 were obtained near the mud patch region, while data
from April 30, 2021 was collected near the shelf break. The
sea state for these recordings was 3.

Fig. 4 shows the magnitude of two example covariance
matrices heavily corrupted by low-rank interference, which
destroys the expected Toeplitz structure. In particular, the shelf
break example in Fig. 4(b) shows a strong rank-1 interferer
resulting in a large magnitude signal on hydrophone 16.
Although the cause of this disturbance is unclear, the figure
demonstrates an example of low-rank interference appearing
in real-world recordings. We next perform hypothesis testing
on the NESBA recordings. To do so, we first determine the
null class to be either the mud patch or the shelf break. For
a null class having N0 recordings and an alternate class with
N1 recordings, we compare all unique N0 (N0 − 1) /2 pairs of
same-class recordings, followed by all N0N1 pairs of across-
class recordings. Fig. 5 shows the resulting likelihood ratio test
statistic when comparing covariances when (a) the null class
is the mud patch, and (b) the null class is the shelf break. The
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Fig. 4. Magnitude of covariance matrices for example recordings that are
heavily corrupted by low-rank interference that destroys Toeplitz structure. (a)
Mud patch data, minute 22. (b) Shelf break data, minute 17.
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Fig. 5. Test statistic for hypothesis testing on all unique pairs from NESBA
recordings. (a) Null class is the mud patch. (b) Null class is the shelf break.
Spikes in the test statistic correspond to the covariance shown in Fig. 4(b) and
are eliminated by our proposed method.

presence of low-rank interference hampers hypothesis testing,
creating many false positives among the shelf break data, seen
by the spikes in the first 500 indices of Fig. 5(b). After recovery
using our method, hypothesis testing performance is restored to
an AUC of 1.0, correctly identifying the corrupted recordings
as belonging to the null class.



V. CONCLUSION

In this paper, we have presented a means for removing low-
rank interference from covariance matrices arising from ambient
sound collected by a vertical line array. The proposed approach
aims to solve a non-convex optimization problem, and we
present a method of intelligently initializing this algorithm near
the global minimum. The resulting covariance matrices improve
both hypothesis testing and vertical directionality estimation,
and therefore would likely yield improvements in geoacoustic
inversion as well. It would be of theoretical interest to prove
whether our initialization method is sufficient to guarantee
global convergence under some assumptions (e.g., that the
interference is sufficiently non-Toeplitz). A second topic of
future study would be to optimize the interferer covariance to
maximize the error in vertical directionality estimation in order
to provide an understanding of the impact of interference on
geoacoustic inversion.
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