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Abstract—We propose a sampling approach for guiding an
autonomous underwater vehicle to adaptively collect ambient
acoustic sound, with the goal of partitioning the seabed according
to its geoacoustic properties. Existing approaches to adaptive
sampling are based on heuristic policies that aim to balance
exploration of the entire region with refinement of the existing
partition estimates. We utilize behavioral cloning, which trains a
neural network to imitate an expert policy from simulated data,
training the policy to maximize the area under the curve of F1
score versus distance traveled. Results on synthetic and real-world
sediment data show our approach outperforms existing methods
in terms of sampling efficiency.

Index Terms—adaptive sampling, ambient noise, autonomous
vehicle, behavioral cloning, Gaussian processes, geoacoustic
inversion, reinforcement learning

I. INTRODUCTION

Obtaining an accurate understanding of the geoacoustic
properties of the seabed is a topic of interest to scientists and
engineers, with applications in sonar performance prediction
and the impact of ocean noise on marine life [1]. To obtain
estimates of these properties over large regions of interest,
recent research has considered the use of autonomous under-
water vehicles (AUVs) tasked with partitioning the ocean floor
according to similar seabed types [2]. An example of one such
partitioning is shown in Fig. 1(a), where each color corresponds
to a distinct sediment type defined in the High Frequency
Environmental Acoustics (HFEVA) dataset [3]. Since AUVs
have strict power requirements, they cannot actively transmit
acoustic signals and therefore must utilize the ambient sound
in the ocean to perform estimation. Further, to obtain high
spatial resolution, these vehicles can benefit from determining
their sampling paths adaptively, i.e., choosing sample locations
based on all previous locations and measurements.

Existing approaches to adaptive sampling utilize a variety of
heuristics to balance exploration (discovering new connected
components of like seabed type) with exploitation (refining
the boundary between discovered components). The former is
achieved by sampling locations of high uncertainty, while the
latter involves sampling locations near the current boundary
estimate. In [2], the authors propose a means of balancing
these goals by sampling locations that are likely to have the
maximal impact on uncertainty reduction. This is achieved by
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Fig. 1. Example seabed partitioning according to HFEVA sediment types in
the northern Pacific Ocean. (a) Colors depict distinct seabed types. The goal
is to discover all light/dark blue regions, which differ significantly from the
background seabed types clay (yellow) and medium silt (green). (b) Conversion
of (a) to level set estimation problem, where color indicates sublevel set (yellow)
and superlevel set (blue).

a lookahead method that estimates the possible reduction in
uncertainty by bounding the range of values that measurements
from a given location can fall in. While this approach obtains
state-of-the-art performance on seabed identification tasks, the
bounding technique used is loose, resulting in inaccurate esti-
mates of uncertainty reduction. Further, uncertainty reduction
is still a heuristic that is tied to estimation accuracy but does
not capture it directly.

In this work, we present a reinforcement learning approach
to adaptive sampling that aims to directly maximize the area
under the curve (AUC) of F1 score versus distance traveled.
We demonstrate how an expert policy can be formed using
simulated data, and then train a neural network to imitate this
expert, predicting the AUC after sampling at a given location.
Our policy then samples the location with the highest predicted
AUC, resulting in significant performance improvements over
existing methods, even on fields that differ significantly from
the training data. We demonstrate these benefits on both
synthetic and real-world sediment data.

II. PROBLEM FORMULATION & RELATED WORK

Consider an AUV equipped with an array of M receivers
used to capture ambient sound and traveling over a region of
interest (domain) D ⊂ R2. For a reference location x0 ∈ D,
our goal is to discover all locations whose seabed type is
significantly different from the reference location while mini-



mizing the distance traveled. To accomplish this, time-series
pressure recordings are Fourier transformed to obtain single-
frequency snapshots z

(t)
1 , . . . , z

(t)
L ∈ CM , which, for a given

location xt ∈ D, are assumed to be drawn from a circularly-
symmetric complex normal distribution with zero mean and
covariance Σt. The similarity between x0 and xt is obtained by
exponentiating the Jeffreys divergence (symmetrized Kullback-
Leibler divergence) between the estimated distributions at each
location. Let Σ̂0 and Σ̂t be the sample covariance matrices
obtained from L snapshots collected at each of the locations x0

and xt, respectively. A noisy estimate of the similarity between
these locations is then obtained as

st = exp
(
−J

(
Σ̂0||Σ̂t

)
/ℓ2

)
, (1)

where J(·||·) denotes the Jeffreys divergence and ℓ > 0 is a
tuning parameter used to control the scale of the similarities.
Our goal is to estimate the sublevel set of locations that are
dissimilar to the reference location

L = {x ∈ D : s(x0, x) ≤ τ} , (2)

where τ > 0 is the similarity threshold and s(x0, x) is the
similarity between the locations according to the true (unknown)
distributions. Since the major cost to sampling with autonomous
vehicles is due to the distance traveled between sampling
locations, we wish to obtain an accurate estimate of L while
minimizing the distance traveled.

Partitioning D into its sublevel and superlevel sets is a
problem known as level set estimation (LSE), and adaptive
sampling for LSE has been a topic of extensive study [4]–[7].
An example partitioning of a region into sublevel and superlevel
sets is shown in Fig. 1(b), where the reference location is the
bottom left corner and the sublevel set is depicted in yellow.
To perform LSE, we estimate the similarities across the entire
domain D using Gaussian process (GP) regression [8]. At time
t, we have visited a set of locations x1, . . . , xt and obtained the
corresponding similarity estimates s1, . . . , st. Let k(x, x′) be
the kernel function that defines the similarity between locations
x and x′, and define Kt ∈ Rt×t to be the matrix whose
i, jth entry is k(xi, xj). Let kx,t = [k(x, x1), . . . , k(x, xt)],
and yt = [s1, . . . , st]. Under the assumption that the similarities
are corrupted by Gaussian noise with zero mean and variance
γ, we estimate the similarity between the reference location
and any location x ∈ D via the prediction

µt(x) = kTx,t (Kt + γI)
−1

yt. (3)

For each estimate, the F1 score can be computed by comparing
L̂t = {x ∈ D : µt(x) ≤ τ} with the true sublevel set L.

In addition to the predicted mean (3), the GP model
also provides a posterior variance σ2

t (x), which provides the
uncertainty at each location and can be computed as

σ2
t (x) = k(x, x)− kTx,t (Kt + γI)

−1
kx,t. (4)

When samples are collected sequentially, the above matrix
inverse can be updated efficiently following [9], [10]. The

standard approach to GP-LSE is to utilize the confidence
bounds derived in [4] to form the certain sets

Lt = {x ∈ D : µt(x) + ησt(x) ≤ τ} (5)

Ht = {x ∈ D : µt(x)− ησt(x) ≥ τ} (6)

whose level set membership is correct with high probability
for some η > 0. The remaining points belong to the uncertain
set

Ut = D \ (Lt ∪Ht), (7)

which is the set of points whose level set membership cannot
be determined at time t.

Various approaches aim to reduce the cardinality of the
uncertain set by sampling points near the level set boundary,
of high posterior variance, or some combination of the two
[4], [11]. Since the posterior variance at location x does not
depend on the measurement value, the authors of [5] show
that sampling locations based on the reduction in posterior
variance leads to strong LSE performance. Extending this
idea further, the lookahead uncertain set reduction (LUSR)
algorithm [2] estimates the reduction in cardinality of Ut

directly. While this results in further performance benefits,
these methods all treat the distance traveled while sampling
myopically, either normalizing by the distance from the current
location [5] or by selecting from among the nearest neighbors
in Ut [2]. In [12], the authors show that treating distance
traveled nonmyopically allows even very simple algorithms
to outperform GP approaches to LSE, though this approach
only applies to simply-connected sublevel sets. In [13], the
authors formulate distance-penalized LSE as a stochastic
shortest path problem that can be efficiently solved via dynamic
programming for a very simple sublevel set model. In this
work, our goal is to utilize reinforcement learning to allow for
nonmyopic distance penalization in realistic environments.

Training RL agents can be a difficult task due to various
decisions related to the design of the state space, reward
function, as well as the various hyperparameters required by RL
algorithms. One simple approach to RL is known as behavioral
cloning (BC), in which the goal is to train a neural network to
imitate the behavior of an expert agent [14], [15]. While simple
to train, BC agents often fail when encountering states not
seen in the training data, and the sub-optimal approximations
of expert actions can lead to a shift in the distribution of the
encountered states, resulting in poor real-world performance.
In our setting, we have two advantages that allow for BC to
obtain strong performance. First, the GP model is inherently
smooth, i.e., sampling nearby locations has a similar impact
on the uncertain set, making the impact of sampling easy to
approximate with a neural network. Second, we can incorporate
prior knowledge into the state space via the predicted reduction
in variance. Since the posterior variance update (4) does not
depend on the measurement value itself, the reduction in
variance can be included as a feature when learning to mimic
expert behavior. This latter benefit distinguishes our application
of BC from existing approaches and likely results in the strong



performance achieved by our approach, even on data whose
state distribution differs significantly from the training data.

III. PROPOSED SAMPLING APPROACH

To apply BC to our setting, we first require an expert policy
that the RL agent will learn to imitate. We compare our sublevel
set estimate with the ground truth using F1 score, which is a
measure of accuracy that is sensitive to class imbalance. We
then score a sampling policy using the AUC of F1 score versus
distance traveled. Since an ideal policy will obtain an accurate
estimate without traveling a large distance, we aim to maximize
this AUC.

To derive an expert policy, we use an approach in the
spirit of rollout [16], where the value of sampling a given
location is based on the immediate reward of sampling that
location plus the estimated rewards after following some sub-
optimal base policy. Let the distance traveled up to time
t be dt, and define α(xt) to be the marginal AUC over
the interval [dt−1, dt]. Our goal is to maximize

∑T
t=1 α (xt),

where T is the unknown stopping time at which a distance
dmax has been traveled and d0 = 0. Since maximizing the
AUC directly via dynamic programming is computationally
intractable, we follow an approximation approach. At time
t, let Vt(xt) = α(xt) +

∑T
i=t+1 α(xi) be the remaining

AUC after sampling location x and then following the base
policy to select locations xt+1, . . . , xT . While calculating
Vt(xt) is computationally feasible, it still may incur a large
computational cost when t is small. To overcome this issue,
we use a limited lookahead approach with terminal cost
approximation. In particular, we sample the location x, follow
the base policy for ∆ steps, and then estimate the remaining
AUC assuming no further accuracy improvements. The resulting
estimated AUC is then

V̂t(xt) = α(xt)+

t+∆+1∑
i=t+1

α(xi)+(dmax −dt+∆+1)α(xt+∆+1).

(8)
Eq. (8) can be broken into three terms: (1) the immediate
improvement in AUC after sampling location x, (2) the AUC
after sampling ∆ steps according to the base policy, and (3)
the approximation of the AUC after sampling until traveling
a distance dmax. At each step, the expert policy chooses the
location xt ∈ Ut that maximizes V̂t(xt). Pseudocode for this
policy is given in Alg. 1. Note that computing α(xt) requires
knowledge of the true sublevel set, and hence this expert policy
cannot be applied in practice. However, by simulating numerous
sublevel set examples, we can obtain millions of

(
xt, V̂t(xt)

)
pairs that can be used to train a neural network to mimic the
expert’s behavior.

Having developed an expert policy above, our second step
is to learn a policy that mimics expert behavior but only
utilizes information available to the AUV in real time. In
particular, we wish to train a neural network to approximate
V̂t(xt) for any potential sampling location xt ∈ Ut. For each(
xt, V̂t(xt)

)
pair computed by the expert policy, we form the

feature/example tensor consisting of a three-channel image.

Algorithm 1 Expert LSE policy used for behavioral cloning.
Input: previous sample locations x1, . . . , xt−1 and similarities
s1, . . . , st−1

Output: next sample location x∗
t

1: compute µt(x) and σ2
t (x) according to (3) and (4)

2: compute uncertain set Ut according to (7)
3: for xt ∈ Ut do
4: compute V̂t(xt) according to (8)
5: end for
6: x∗

t = arg maxxt∈Ut
V̂t(xt)

The first channel is the absolute distance between the current
estimate µt(x) and the threshold τ . This feature gives an
indication of points that lie near the level set boundary and
therefore whose level set membership is difficult to determine.
The second channel is the current posterior variance σ2

t (x),
which provides the degree of uncertainty about the level set
estimates. The third channel is the reduction in uncertainty after
sampling location xt, which provides specific information about
the benefit of taking this particular action. This third channel
differentiates our approach from traditional BC, which aims to
predict the expert action directly from the state information,
which would correspond to the first two channels in our setting.
The target corresponding to this image is the resulting AUC
estimate (8). From the perspective of reinforcement learning,
this network can be viewed as a Q-network [17]; however,
unlike Q-learning approaches, we are able to learn directly
from an expert sampling policy, saving significant computation
time and algorithm tuning.

IV. EMPIRICAL RESULTS

To imitate the expert policy, we use a MobileNetV3
architecture [18], learning from 7,680 unique fields of size
30× 30 generated by thresholding a two-dimensional GP with
radial basis function kernel and a lengthscale of 0.2 over
the domain D = [−1, 1] × [−1, 1]. We allow the sampler to
travel a distance of dmax = 20 units per field, resulting in
approximately one million training examples. We compare
our approach to sampling the location of maximum variance
(VAR) and that of [2] (LUSR), choosing sample locations only
among the 100 nearest neighbors in Ut at each round. We
also compared to margin-based sampling and the approaches
of [4] and [5], but we did not find any of these methods to
consistently outperform VAR or LUSR and hence these results
are omitted. The expert policy uses VAR as the base policy
when computing the lookahead steps in (8).

Fig. 2 shows four example GP fields, where plots (a) and
(b) (top row) correspond to fields with a lengthscale of 0.2,
i.e., fields from the same distribution as the training data.
These fields tend to have numerous connected components,
some of which are only a few pixels in area, making LSE
more challenging. The fields in plots (c) and (d) (bottom
row) are drawn from a GP with lengthscale 0.5, resulting
in fewer connected components and smoother boundaries.
We first consider performance on 100 synthetic GP fields
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Fig. 2. Example level sets used for training and evaluation. Plots (a) and (b)
are drawn from the training distribution, which is a GP with RBF kernel and
lengthscale 0.2. Plots (c) and (d) are drawn from a GP with lengthscale 0.5.
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Fig. 3. Performance on synthetic GP fields with a lengthscale of 0.2 (same as
training data). (a) F1 score as a function of distance. (b) Relative uncertainty
as a function of distance.

with lengthscale 0.2. We generate similarities according to a
truncated normal distribution with support [0, 1], with means
one and zero for within-class and across-class similarities,
respectively, and a standard deviation of 0.05. We set η = 0.5
and the level set threshold τ = 0.5. To ensure that we are
testing scenarios not encountered by the expert policy, we
allow the samplers to travel a distance of dmax = 30, i.e.,
50% farther than the training data. Fig. 3(a) shows the median
F1 score versus distance traveled along with the interquartile
range. Our learned approach achieves the highest final F1 score,
though the value is slightly lower in the initial stages. This
behavior is due to the fact that the proposed approach “tracks”
the boundary closely, as shown by an example sampling path
in Fig. 6(b). The resulting AUC scores are 0.70 for VAR, 0.69
for LUSR, and 0.72 for our proposed approach, indicating
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Fig. 4. Performance on synthetic GP fields with a lengthscale of 0.5 (different
from training data). (a) F1 score as a function of distance. (b) Relative
uncertainty as a function of distance.

only a minor performance benefit in terms of AUC. Fig. 3(b)
shows the relative uncertainty versus distance and illustrates
that our approach reduces uncertainty much more quickly than
competing approaches. This is an important feature, as relative
uncertainty may be used as a stopping criterion and is the
only measurable proxy for estimation accuracy in real-world
settings.

We next evaluate performance on synthetic fields with a
lengthscale of 0.5, which is smoother than that seen in the
training data. Fig. 4(a) shows the median F1 score versus
distance traveled for all three methods. On these simpler level
sets, our learned approach yields a significant performance
improvement, obtaining an F1 score above 0.99 after traveling
16.36 units. In contrast, neither VAR nor LUSR obtains this
score even after traveling the full maximum distance. The
resulting AUCs are 0.83, 0.86, and 0.88 for VAR, LUSR, and
our learned approach, respectively. This figure demonstrates the
important fact that our approach provides strong performance
even on states that are not seen in the training data, making
BC a practical approach for this problem. Fig. 4 shows the
relative uncertainty versus distance traveled and indicates that
our approach reduces uncertainty very rapidly on these simpler
level sets, dramatically outperforming competing approaches.

Finally, we demonstrate the performance of our approach
on realistic ambient acoustic data generated using the mul-
tidimensional ambient noise model (MDANM) [19], which
uses the Harrison model [20] to simulate ambient sound for
ocean environments. We use an array of size M = 32, set
the signal-to-noise ratio to 10, and use L = 1500 snapshots
per location when calculating the sample covariance matrices.
We consider a region in the northern Pacific Ocean containing
HFEVA sediment types 3, 9, 17, 18, and 23. Using the bottom
left corner (type 23, clay) as a reference location, we set the
level set threshold τ = 0.5 and the similarity parameter ℓ = 3,
so that the sublevel set consists of types {17, 18, 23}. As shown
in [21], these sediment types are nearly indistinguishable from
an information-theoretic standpoint. The region of interest and
resulting sublevel/superlevel sets are shown in Fig. 1. We set
η = 0.08 and evaluate performance over 32 random instances of
collected samples. Fig. 5 shows (a) the F1 score and (b) relative
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Fig. 5. Performance on seabed data from the northern Pacific Ocean. (a)
F1 score as a function of distance. (b) Relative uncertainty as a function of
distance.

uncertainty as a function of distance traveled on this dataset.
Our method again obtains higher accuracy and significantly
lower uncertainty for the same distance traveled, despite the
fact that these similarities do not follow a truncated normal
distribution and there is no guarantee the level set boundaries
are well represented in the training data. Hence, we conclude
that our approach successfully utilizes the GP model to train a
robust BC agent. Example sampling paths for (a) LUSR and
(b) our approach are shown in Fig. 6. While LUSR does focus
samples near the level set boundaries. This “tracking” behavior
is likely due to the inclusion of lookahead steps in our expert
policy, which allows for nonmyopic treatment of the distance
traveled.

V. CONCLUSION

We have demonstrated that a form of reinforcement learning
known as behavioral cloning can be used to train an agent
to efficiently classify large regions of the ocean according
to seabed type. The success of this process relies on (1)
developing an expert policy to imitate, and (2) including
action-specific information as features when training our model.
Our proposed method outperforms the state-of-the-art on both
synthetic datasets and realistic ambient acoustic data, even when
evaluated on data that differs significantly from the training
set. To accomplish this, we transform seabed classification
into a level set estimation problem, which is essentially binary
classification. Extending our approach to handle multiclass
classification settings is an important topic for future research.
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