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Abstract—Adaptive sampling theory has shown that, with
proper assumptions on the signal class, algorithms exist to
reconstruct a signal in Rd with an optimal number of samples. We
generalize this problem to the case of spatial signals, where the
sampling cost is a function of both the number of samples taken
and the distance traveled during estimation. This is motivated
by our work studying regions of low oxygen concentration in
the Great Lakes. We show that for one-dimensional threshold
classifiers, a tradeoff between the number of samples taken and
distance traveled can be achieved using a generalization of binary
search, which we refer to as quantile search. We characterize both
the estimation error after a fixed number of samples and the
distance traveled in the noiseless case, as well as the estimation
error in the case of noisy measurements. We illustrate our results
in both simulations and experiments and show that our method
outperforms existing algorithms in a large range of sampling
scenarios.

Index Terms—Active learning, adaptive sampling, autonomous
systems, mobile sensors, path planning.

I. INTRODUCTION

Intelligently sampling signals of interest has been a fun-
damental topic in the signal processing community for many
years, the most recent advances in this area being compressed
sensing [1] and active learning [2]. In these and other scenar-
ios, the goal is typically to recover a signal from a given class
(e.g., bandlimited signals or the Bayes decision boundary for
0/1 signals) using as few samples as possible. However, in the
modeling of spatial phenomena, such as oxygen concentration
in lakes, the sampling cost is a function of both the number of
samples required and the cost to travel to the sample locations.
Therefore, the design of provably efficient algorithms to detect
spatial phenomena is an important open problem and is the
topic of this paper.

Consider our motivating problem, in which we wish to
estimate the boundary of a hypoxic region (i.e., a region of
oxygen concentration below 2.0 ppm [3]) in the central basin
of Lake Erie using an autonomous watercraft with a speed
ranging from 0.5-4 m/s. Fig. 1 shows an interpolated estimate
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Fig. 1: Dissolved oxygen concentrations in Lake Erie. Points
represent sample locations and solid black lines delineate the
central basin.

of the oxygen concentration based on a small number of
samples taken throughout the lake, where the hypoxic zone
is denoted by the dark region (in color: blue/purple region).
Oxygen concentration is a strong indicator of the health of
the Great Lakes [3] and the spatial extent of such regions is a
topic of interest for researchers in the field [4], [5]. We assume
the hypoxic region is connected with a smooth boundary and
that the boundary remains relatively stationary over the course
of a few days. The problem of estimating the boundary can
then be viewed as a binary classification problem, in which
spatial points receive a label 0 if they are hypoxic and 1
otherwise, and the desired spatial extent corresponds to the
Bayes decision boundary. Our goal is to learn the decision
boundary in as little time as possible.

While the application of optimal active learning algorithms
such as [6], [7] minimizes the number of samples required
to estimate the boundary, little attention has been given to
additional penalties that affect the cost of sampling. In the case
of sampling in Lake Erie, the distance traveled between all
sampling locations is on the order of hundreds of kilometers,
and thus algorithms such as [6], [7], which require a coarse
sampling of the entire feature space, are not applicable.

In this paper, we present an active learning algorithm called
quantile search that achieves a tradeoff between the number
of measurements and distance traveled to estimate the change
point of a one-dimensional step function. At its two extremes,
quantile search minimizes either the number of samples or
the distance traveled to estimate the decision boundary, with
a tradeoff achieved by varying a search parameter. We derive
the expected number of samples required and distance traveled
in the noiseless case and bound the number of samples
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Fig. 2: Example step function with θ = 1/3 with corresponding measurements (marked by an x) taken using binary search
(left) and quantile search with m = 5 (right).

required in the case of noisy measurements. We also show
how a series of one-dimensional estimates can be used to
estimate the two-dimensional boundary of interest. This paper
is an extension of our previous work [8]. Our contributions
beyond [8] are as follows. We provide detailed proofs of our
theoretical results in the supplemental material [9]. We present
a novel generalization in the case of noisy measurements that,
unlike our previous work, is equivalent to the noiseless case
when the probability of measurement error is zero. We also
provide two algorithmic improvements for the problem of
interest and show in simulations that these greatly reduce the
required sampling time. Our simulations are more realistic,
including real bathymetry data from Lake Erie provided by
the National Oceanic and Atmospheric Administration [10].
We also compare the performance of our algorithm to a version
of proactive learning [11]. Finally, we include results of our
experiments performed on Third Sister Lake in Ann Arbor, MI
with an autonomous watercraft controlled using a cloud-based
architecture.

II. PROBLEM FORMULATION & RELATED WORK

Determining the spatial extent of the hypoxic region shown
in Fig. 1 can be interpreted as learning a two-dimensional
Bayes decision boundary. Following [16], we split our two-
dimensional problem into several one-dimensional intervals,
a process that is described further in Section IV and can be
viewed in Fig. 7a-7d. The idea here is that we can carve a two-
dimensional boundary fragment (indeed any d-dimensional
boundary fragment class) into several one-dimensional interval
problems, piecing the solutions together for a full boundary
estimate.1

Having reduced the problem to several one-dimensional
problems, on each interval we must find a threshold beyond
which the lake is hypoxic. Define the step function class

F = {f : [0, 1]→ R|f(x) = 1[0,θ)(x)}

where θ ∈ [0, 1] is the change point and 1S(x) denotes the
indicator function, which is 1 on the set S and 0 elsewhere.

1As we discuss in Section II-A, this is order-optimal in terms of sample
complexity. Our heuristic algorithmic improvements of Section III-C allow us
to more intelligently sample from one interval to the next.

An example function belonging to F with θ = 1/3 is
shown in Fig. 2. In contrast to the standard active learning
scenario, our goal is to estimate θ while minimizing the
total time required for sampling, a function of both the
number of samples taken and the distance traveled. Denote the
observations {Yn}Nn=1 ∈ {0, 1}

N as samples of an unknown
function fθ ∈ F taken at sample locations on the unit interval
{Xn}Nn=1. With probability p, 0 ≤ p < 1/2, we observe an
erroneous measurement. Thus

Yn =

{
fθ(Xn) with probability 1− p
1− fθ(Xn) with probability p

= f(Xn)⊕ Un,

where ⊕ denotes summation modulo 2, and Un ∈ {0, 1} are
Bernoulli random variables with parameter p. While other
noise scenarios are common, here we assume the Un are
independent and identically distributed and independent of
{Xn}. This noise scenario is of interest as the motivating
data (oxygen concentration) is a thresholded value in {0, 1},
where Gaussian noise results in improper thresholding of the
measurements. The extension to nonuniform noise (e.g., a
Tsybakov-like noise condition as studied in [7]) remains as
a topic for future work.

A. Related Work

A number of active learning algorithms designed to esti-
mate θ exist; however, these algorithms typically assume the
sampling cost is due only to the measurements themselves.
Most similar to our algorithm is the method of binary bisection
and its extensions [7], [12]–[17]. In the noiseless case, binary
bisection estimates the change point of a step function on the
unit interval by successively halving the space of potential
classifiers, termed the hypothesis space. An example of this
search procedure is shown in the left-hand plot of Fig. 2. A
noise-tolerant version of this algorithm was first presented in
[12], where measurements are flipped with known probability
p. A discretized version of this algorithm was analyzed in [13]
and shown to be minimax optimal in [7] under the Tsybakov
noise condition. Further, the authors of [7] use the discretized
algorithm to show that a series of one-dimensional threshold
estimates can be used to estimate functions belonging to the
boundary fragment class in d dimensions at a minimax optimal
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rate. The original algorithm presented in [12] was recently
shown to converge at a geometric rate in [17]. Binary bisection
has also been used to obtain optimal rates in optimization
[18] and in the noisy 20 questions problem [19]. In [16],
the authors give a spatial sampling problem as motivation for
the probabilistic binary search (PBS) algorithm. However, a
simple analysis shows that in the noiseless case, to estimate the
threshold of a step function on the unit interval, binary search
travels the entire unit interval. Hence, while the worst-case
number of samples required is minimized, the total distance
traveled is the worst possible. In the motivating problem given
above, the central basin of Lake Erie has a width of roughly
80 km, making this approach prohibitive.

More sophisticated active learning algorithms have been
widely studied, achieving optimal rates for piecewise constant
functions in [7] and for the linear support vector machine
in [20]. In both cases, the algorithm begins by uniformly
sampling the entire feature space. Again considering the
problem of interest, the central basin of Lake Erie has an area
of approximately 14,000 km2, making this approach infeasible.
In contrast, the algorithm studied in [7] was used in [6] to
measure the hydrodynamics of Lake Wingra in Madison, WI,
which has an area of 1.3 km2.

Nonuniform sampling costs are studied in [11], [21]–[23].
In [21], the authors use the uncertainty sampling heuristic to
determine the most informative points and penalize for spatial
costs using the traveling salesman problem with profits. The
work of [22] uses both uncertainty and diversity to select
points and also penalizes for arbitrary costs. In both cases, the
algorithm proceeds in batches, i.e., by iteratively requesting
a set of labels and retraining the classifier. This approach
suffers the same pitfalls as [6] in that the algorithm can require
traversing the entire feature space multiple times. Further,
neither algorithm is accompanied by theoretical guarantees. In
[23], the authors present and analyze a greedy algorithm for
active learning with nonuniform costs. However, in our case
the cost associated with each point is the distance from the
previous point, so the costs in question are both nonuniform
and dynamic. A somewhat similar algorithm, known as proac-
tive learning, is presented in [11], where the proposed strategy
chooses at each round the point maximizing the difference
between or ratio of informativeness and cost to label the point.
In Section IV, we compare with this algorithm using mutual
information as our metric for informativeness.

The problem of sampling spatial phenomena using mobile
robots has been studied in signal processing and robotics
literature as well. In [24], [25], the authors study the case
where the sampling cost is near-zero and show that equispaced
parallel lines result in the minimum distance required to
reconstruct a variety of practical signals. Mutual information
is also used as a metric for informativeness in [26], where
the authors impose a Gaussian process model to perform
path planning for robots used to track a variety of spatial
phenomena. A greedy algorithm is presented with theoretical
guarantees based on submodularity [27]. However, the model
imposed is not appropriate for determining the boundary of
a region of interest. The recent work of [28] considers the
measurement cost and travel time to estimate the location of

point targets using mobile robots but does not easily extend to
the case of estimating the boundary of a region of interest.
The algorithm in [29] is similar to the one described in
[11], with the main difference being that in early stages the
algorithm emphasizes regularity of samples (i.e., encourages
early samples to be taken uniformly throughout the feature
space).

III. QUANTILE SEARCH

In this section, we present our algorithm quantile search,
an extension of binary search and ideas in [13], [16] to
penalize both the sample complexity and distance traveled
during the estimation procedure. The basic idea behind this
algorithm is as follows. We wish to find a tradeoff between
the number of samples required and the total distance traveled
to achieve a given estimation error for the change point of a
step function on the unit interval. As we know, binary bisection
minimizes the number of required samples. On the other hand,
continuous spatial sampling minimizes the required distance
to estimate the threshold. Binary search bisects the feasible
interval (hypothesis space) at each step. In contrast, one can
think of continuous sampling as dividing the feasible interval
into infinitesimal subintervals at each step. With this in mind,
a tradeoff becomes clear: one can divide the feasible interval
into subintervals of size 1/m, where m is a real number
between 2 and ∞. Intuition would tell us that increasing m
would increase the number of samples required but decrease
the distance traveled in sampling. In what follows, we show
that this intuition is correct in both the noise-free and noisy
cases, resulting in two novel search algorithms.

A. Deterministic Quantile Search

We first describe and analyze quantile search in the noise-
free case (p = 0), here referred to as deterministic quantile
search (DQS). To estimate the change point of a step function,
deterministic binary bisection travels either forward or back-
ward (depending on the measurement) a fraction 1/2 into the
feasible interval. In contrast, the DQS algorithm presented here
travels 1/m forward or backward, where m ∈ [2,∞). While
the DQS measurements for m > 2 are less informative than in
binary bisection, we expect that the distance traveled during
the estimation procedure will be reduced, since we can pass the
change point by a fraction at most 1/m. The search procedure
for the case of m = 5 is shown in the right-hand plot of Fig. 2.
Note that in contrast to binary search, quantile search does not
overshoot the change point θ = 1/3 by a significant amount.
A formal description of the procedure is given in Algorithm 1.
In the following subsections, we analyze the expected sample
complexity and distance traveled for the algorithm and show
the required number of samples increases monotonically with
m, and the distance traveled decreases monotonically with m,
indicating that the desired tradeoff is achieved.

1) Convergence of Estimation Error: We analyze the ex-
pected error after a fixed number of samples for the DQS algo-
rithm. The main result and a sketch of the proof are provided
here. An expanded proof can be found in the supplemental
material [9].
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Algorithm 1 Deterministic Quantile Search (DQS)

1: Input: search parameter m, stopping error ε
2: Initialize: X0 ← 0, Y0 ← 1, n← 1, a← 0, b← 1
3: while b− a > 2ε do
4: if Yn−1 = 1 then
5: Xn ← Xn−1 + 1

m (b− a)
6: else
7: Xn ← Xn−1 − 1

m (b− a)
8: end if
9: Yn ← f(Xn)

10: a = max {Xi : Yi = 1, i ≤ n}
11: b = min {Xi : Yi = 0, i ≤ n}
12: θ̂n ← a+b

2
13: end while

Theorem 1. Consider a deterministic quantile search with
parameter m and let ρ = m−1

m . Begin with a uniform prior
on θ. The expected estimation error after n measurements is
then

E[|θ̂n − θ|] =
1

4

[
ρ2 + (1− ρ)2

]n
. (1)

Proof. (Sketch; see complete proof in [9]) The proof proceeds
from the law of total expectation. Let Zn = |θ̂n− θ|. The first
measurement is taken at 1/m, and hence the expected error
can be calculated when θ ≤ 1/m and θ > 1/m.

E[Z1] = E
[
Z1|θ ≤

1

m

]
P
(
θ ≤ 1

m

)
+

E
[
Z1|θ >

1

m

]
P
(
θ >

1

m

)
=

1

4

[
(1− ρ)2 + ρ2

]
.

Similarly, after the second measurement is taken, there are
four intervals, two which partition the interval [0, 1/m], and
two which partition (1/m, 1]. These result in four monomials
of degree 4, one of which is (1 − ρ)4, one which is ρ4, and
two which are (1−ρ)2ρ2. The basic idea is that each “parent”
interval integrates to (1−ρ)iρj and in the next step gives birth
to two “child” intervals, one evaluating to (1 − ρ)i+1ρj and
the other (1−ρ)iρj+1. The proof of the theorem then follows
by induction.

Consider the above result when m = 2. In this case, the
error becomes E[|θ̂n−θ|] = 2−(n+2). Comparing to the worst
case, we see that the average case sample complexity is exactly
one sample better than the worst case, matching the well-
known theory of binary search. In Section IV we confirm this
result through simulation.

2) Distance Traveled: Next, we analyze the expected dis-
tance traveled by the DQS algorithm in order to converge to
the true θ. The proof is similar to that of the previous theorem
in that it follows by the law of total expectation. After each
sample, we analyze the expected distance given that the true
θ lies in a given interval. The result and a proof sketch are
given below, with the full proof included in the supplemental
material [9].

Theorem 2. Let D denote a random variable representing the
distance traveled during a deterministic quantile search with
parameter m. Begin with a uniform prior on θ. Then

E[D] =
m

2m− 2
. (2)

Proof. (Sketch, see full proof in [9]) We first consider the
expected distance traveled before the algorithm reaches a
point x1 > θ. Let D1 be a random variable denoting this
distance. Once the algorithm passes this point, it moves in the
reverse direction until reaching x2 < θ, moving a distance D2.
This process repeats until convergence. Let Dn be a random
variable denoting the distance required to move to the right of
θ for the

⌈
n
2

⌉
th time when n is odd, and to the left of θ for

the n
2 th time when n is even. In this case, we have that

E[D] =
∞∑
n=1

E[Dn]. (3)

First, we would like to find E[D1]. Let Ai denote the interval[
1
m

∑i−1
p=0

(
m−1
m

)p
, 1
m

∑i
p=0

(
m−1
m

)p)
, where A0 =

[
0, 1

m

)
,

so that the Ai’s form a partition of the unit interval whose
endpoints are possible values of the sample locations Xj . Now
note that

E[D1] =

∞∑
i=0

E[D1|θ ∈ Ai]P(θ ∈ Ai).

Then since we assume θ is distributed uniformly over the unit
interval,

P(θ ∈ Ai) =
1

m

i∑
p=0

(
m− 1

m

)p
− 1

m

i−1∑
p=0

(
m− 1

m

)p
=

1

m

(
m− 1

m

)i
.

Next, note that

E[D1|θ ∈ Ai] =
1

m

i∑
p=0

(
m− 1

m

)p
= 1−

(
m− 1

m

)i+1

.

Thus we have

E[D1] =
∞∑
i=0

E[D1|θ ∈ Ai]P(θ ∈ Ai)

=
∞∑
i=0

[
1−

(
m− 1

m

)i+1
][

1

m

(
m− 1

m

)i]
=

m

2m− 1
.

The proof proceeds by rewriting the above in terms of
ρ = (m − 1)/m and then calculating E[Dn]. This is done
by dividing each Ai into subintervals which form partitions of
Ai. By induction we get

E[Dn] =
m

(2m− 1)n
, (4)

and the result then follows from the infinite sum of (3).
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3) Sampling Time: Using the above results, we wish to find
the optimal tradeoff for a given set of sampling parameters.
Let γ be the time required to take one sample and η be the
time required to travel one unit of distance. The total sampling
time T is then

T = γN + ηD, (5)

where N denotes the number of samples required. Given
a fixed sampling time and desired error, (5) can be used
to estimate the sample budget N . However, this approach
differs from our goal of minimizing the total sampling time.
Alternatively, the average value of N can be estimated nu-
merically and used to optimize the expected value of T . We
show examples of this approach in Section IV for both the
deterministic and probabilistic versions of quantile search.

As a final note, one may wonder about the relation to what is
known as m-ary search [30]. In contrast to quantile search, m-
ary search is tree-based. To make the difference clear, consider
an example with θ = 3/8 and let m = 4. In this case, both
algorithms take their first sample at X = 1/4. However,
after measuring Y = 1, quantile search takes its second
measurement at X = 7/16, while m-ary search proceeds to
X = 1/2. One may then expect that both algorithms would
achieve the desired tradeoff, with m-ary search using fewer
samples and more distance for the same value of m. We
focus on quantile search for two reasons. First, quantile search
does not require m to be an integer and therefore gives more
flexibility in the resulting tradeoff. Second, quantile search
as described is the natural generalization of PBS and lends
itself to the analysis of [13], [16] in the case where the
measurements are noisy. A comparison to noisy m-ary search
is a topic for future work.

B. Probabilistic Quantile Search

In this section, we extend the idea behind Section III-A
to the case where measurements may be noisy (i.e., p ≥ 0).
In [13], the authors present an algorithm referred to in the
literature as probabilistic binary search (PBS). The basic
idea behind this algorithm is to perform Bayesian updating
in order to maintain a posterior distribution on θ given the
measurements and locations. Rather than bisecting the interval
at each step, the algorithm bisects the posterior distribution.
This process is then iterated until convergence and has been
shown to achieve optimal sample complexity throughout the
literature [7], [15]. We now extend this idea using the quantile
methodology of the previous section, resulting in what we term
probabilistic quantile search (PQS).

The idea behind PQS is straightforward. Starting with a
uniform prior, the first sample is taken at X1 = 1/m. The
posterior density πn(x) is then updated as described below,
and θ̂n is chosen as the median of this distribution. The
algorithm proceeds by taking samples Xn such that∫ Xn+1

0

πn(x)dx =
1

m
.

For m = 2, the above denotes the median of the posterior
distribution and reduces to PBS, while in general this denotes

Algorithm 2 Probabilistic Quantile Search (PQS)

1: Input: search parameter m, probability of error p
2: Initialize: π0(x) = 1 for all x ∈ [0, 1], n← 0
3: while not converged do
4: choose Xn+1 such that

∫Xn+1

0
πn(x)dx = 1

m
5: Yn+1 ← f(Xn+1)⊕ Un+1, where Un+1 ∼ Ber(p)
6: if Yn+1 = 0 then
7:

πn+1(x) =

(1− p)
(

m
1+(m−2)p

)
πn(x), x ≤ Xn+1

p
(

m
1+(m−2)p

)
πn(x), x > Xn+1

8: else
9:

πn+1(x) =

p
(

m
1+(m−2)p

)
πn(x), x ≤ Xn+1

(1− p)
(

m
1+(m−2)p

)
πn(x), x > Xn+1

10: end if
11: n← n+ 1
12: end while
13: estimate θ̂n such that

∫ θ̂n
0
πn(x) = 1/2

sampling at the m-quantile of the posterior. A formal descrip-
tion is given in Algorithm 2.

We derived the update for PQS in our previous work [8], and
it can be seen in steps 7 and 9 of Algorithm 2. Here we derive
a more general version of the update that will be referred to in
Section IV-B. Begin with the first sample. We have π0(x) = 1
for all x and wish to find π1(x). Let f1(x|X1, Y1) be the
conditional density of θ given X1, Y1. Applying Bayes rule,
the posterior becomes:

f1(x|X1, Y1) =
P(X1, Y1|θ = x)π0(x)

P(X1, Y1)

For illustration, consider the case where θ = 0. We now take
the first measurement at X1 = φ (note φ = 1/m for PQS).
Then

P (X1 = φ, Y1 = 0|θ = 0) = 1− p

and
P (X1 = φ, Y1 = 1|θ = 0) = p.

In fact, this holds for any θ < φ. Now examine the denomi-
nator:

P(X1 = φ, Y1 = 0) = φ(1− p) + (1− φ)p

:= φ ∗ p,

We then update the posterior distribution to be

π1(x) =

{
(1−p)
φ∗p x ≤ φ
p
φ∗p x > φ.

The equivalent posterior density can be found for when Y1 =
1. The process of making an observation and updating the prior
is then repeated, yielding general formula for the posterior
update. When Yn+1 = 0, we have

πn+1(x) =

{
(1−p)
φ∗p πn(x) x ≤ Xn+1

p
φ∗pπn(x) x > Xn+1.
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Similarly, for Yn+1 = 1, we have

πn+1(x) =

{
p
φ∗pπn(x) x ≤ Xn+1
(1−p)
φ∗p πn(x) x > Xn+1.

1) Convergence of Estimation Error: Analysis of the above
algorithm has proven difficult since its inception in 1974, with
a first proof of a geometric rate of convergence appearing
only recently in [17]. Instead, the authors and those following
use a discretized version involving minor modifications. We
follow this strategy, with the discretized algorithm given in
the supplemental material [9]. In this case, the unit interval
is divided into bins of size ∆, such that ∆−1 ∈ N. The
posterior distribution is parameterized, and a parameter α is
used instead of p in the Bayesian update, where 0 < p < α.
The analysis of rate of convergence then centers around the
increasing probability that at least half of the mass of πn(x)
lies in the correct bin. A formal description of the algorithm
can be found in the supplemental material [9]. Given this
discretized version of PQS, we arrive at the following result.

Theorem 3. Under the assumptions given in Section II, the
discretized PQS algorithm satisfies

sup
θ∈[0,1]

E[|θ̂n − θ|] ≤ 2

(
m− 1

m
+

2
√
p(1− p)
m

)n/2
. (6)

The proof can be found in the supplemental material [9].
In the case where m = 2, the above result matches that of
[13], [16] as desired. One important fact to note is that in
contrast to the deterministic case, the result here is an upper
bound on the number of samples required for convergence as
opposed to an expected value. As this seems to be the case for
all analyses of similar algorithms [13], [16], [17], we instead
rely on Monte Carlo simulations to choose the optimal value
of m. Finally, the bound here is loose. For clarity, consider
the case where p = 0 and m = 2. Then the above becomes

sup
θ∈[0,1]

E[|θ̂n − θ|] ≤ 2

(
1

2

)n/2
.

As noted in [7], we can see by inspection that

sup
θ∈[0,1]

E[|θ̂n − θ|] ≤
(

1

2

)n+1

,

indicating that we lose a factor of about n/2, even for the
PBS algorithm bound in [7]. However, in [7], the authors use
this result when m = 2 to show rate optimality of the PBS
algorithm. This fact suggests that despite the discrepancy, the
result of Thm 3 may still be useful in proving some sort of
optimality for the PQS algorithm.

While the rate of convergence for PQS can be derived
using standard techniques, the expected distance or a useful
bound on the distance is more difficult. The technique used in
Section III-A becomes intractable as the values of Xn are no
longer deterministic. The approach of examining the posterior
distribution after each step and calculating the possible loca-
tions has been examined, but at the nth measurement, there
are 2n−1 possible distributions. Further, PQS as described
above has the undesirable property that it does not always

travel toward the median of the distribution—a problem we
overcome in the next section—and hence the distance traveled
is higher than strictly necessary, making analysis of its distance
properties of minimal practical importance.

2) Truncated PQS: Probabilistic quantile search as pre-
sented in Algorithm 2 is not a strict generalization of DQS
in the sense that the two algorithms are not equivalent in the
noiseless case. Moreover, in some cases, PQS will choose a
sample location farther away from the current location than
the median. This choice is suboptimal, as the median of the
posterior is the most informative point (in an information-
theoretic sense), and hence traveling farther to obtain less
information is contrary to our overall goal. For these reasons,
we propose the following variant of PQS, which has a sample
complexity and distance traveled no worse than the PQS
algorithm in Algorithm 2. The algorithm satisfies the statement
of Thm. 3 (see [9]), and we show the improved performance in
terms of both distance and sample complexity in Section IV.
Instead of taking a sample at the m-quantile of the posterior,
we instead truncate the posterior distribution in such a way to
maintain the median as well as guarantee that the m-quantile
of this truncated posterior is moving our sampling location
towards the median of the posterior (the most informative
point). We refer to this algorithm as Truncated PQS (TPQS).

Truncated PQS begins by sampling at the m-quantile as in
PQS. For subsequent samples, we first define

χ = min

{∫ Xn

0

πn(x)dx,

∫ 1

Xn

πn(x)dx

}
,

the probability in the tail of the distribution that would possibly
cause us to move away from the median point. We then define
the truncated distribution to be the normalized form of

π̃n(x) =


0,

∫ x
0
πn(z)dz ≤ χ

0,
∫ 1

x
πn(z)dz ≤ χ

πn(x), otherwise
.

Finally, the sample location is chosen as

Xn+1 = arg min
X∈{X̃0,X̃1}

|Xn −X| ,

where∫ X̃0

0

π̃(x)dx =
1

m
and

∫ 1

X̃1

π̃(x)dx =
m− 1

m
.

Analogous to traveling “forward” or “backward” in DQS, this
process guarantees that we always choose sample locations
that are in the direction of the median of the posterior. This
fact ensures that the information gain is at least that of the
PQS algorithm, while choosing the nearer of the two locations
results in a distance no greater than that of PQS. Note that we
continue to use πn(x) as the posterior distribution of θ and
update this distribution according to Algorithm 2, i.e., we only
use π̃n(x) when choosing the sample locations. Further, for
the case of m = 2, this generalization and PQS are equivalent,
both resulting in the PBS algorithm.
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Fig. 3: Example of set belonging to boundary fragment class
and piecewise linear estimation of boundary.

3) Stopping Criterion: Previous work on PBS centers
around the case where there is a fixed sample budget, avoiding
the need for a stopping criterion for this algorithm. However
in our application, while we need to further reduce sampling
resources, we only stop sampling once we have reached a
desired accuracy. In this case, one natural choice of stopping
criteria for PBS would be to stop when the distance between
successive samples is smaller than some predetermined value.
However, in the case of PQS with high m, the step size may
be very small from the start, resulting in early termination. In
the case of DQS, the width of the feasible interval provides
a direct measure of the absolute error in estimating θ. While
there is no such width in the case of PQS, the certainty in our
estimate of θ is quantified via the posterior distribution πn(x),
which is discretized in our implementation. In light of this, we
terminate PQS (or its generalized version) when there exists
an xi such that πn(xi) ≥ 0.9.

C. Algorithmic Improvements

In this section, we describe two heuristics that can be
used to further reduce the sampling time. These heuristics
are appropriate in the case where the decision boundary is
smooth in some sense and is estimated using a series of
successive quantile searches. Consider the boundary fragment
class on [0, 1]d defined informally in [7] as the collection
of sets in which the Bayes decision boundary is a Hölder
smooth function of the first d− 1 coordinates. In [0, 1]2, this
implies that the boundary is crossed at most one time when
traveling on a path along the second coordinate. The boundary
can be estimated by dividing the problem into strips along
the first dimension, estimating the change point of each strip,
and estimating the boundary as a piecewise linear function of
the estimates, as shown in Fig. 3. For simplicity, we motivate
the heuristics in this section by restricting f to the class of
Lipschitz functions (a subset of Hölder smooth functions).
Recall that a function f : [0, 1]d → R is said to be Lipschitz
with constant L ≥ 0 if for all x1 6= x2

|f(x1)− f(x2)| ≤ L ‖x1 − x2‖ .

Returning to Fig. 3, we see that a great deal of time would
be wasted by returning to the origin after estimating the
boundary at each strip. In this section, we leverage the assumed

smoothness to intelligently initialize quantile search, resulting
in significantly reduced sampling times, as shown in the
simulations.

1) Initialization Using Previous Estimate: Assume we split
the region of interest into K strips, each of which is a step
function on the unit interval whose change point we wish to
estimate. Let the true change point of the kth strip be θk

and the estimate be θ̂k. The smoothness assumption implies
that θk+1 is not “too far” from θk. For example, if f is
Lipschitz with constant L and two successive strips are located
at xk and xk+1, we know that |θk − θk+1|/|xk − xk+1|≤ L.
For this reason, our first proposed improvement is to let the
first sample location of the k + 1st strip X0 be the previous
estimate θ̂k. Note that if we further assume a uniform prior
on the subinterval allowed by the smoothness assumption,
we are choosing our first sample as the minimum absolute
error estimate, i.e., the median of the distribution. For later
reference, we refer to this initialization as Improvement 1 (I-1).
We show in Section IV that this simple heuristic dramatically
reduces the required sampling time of our algorithm.

2) Nonuniform Priors: Our second proposed algorithmic
improvement involves assigning a nonuniform prior when
beginning the search. Similar to the previous improvement,
we utilize the function smoothness to assign lower starting
probabilities to points unlikely to lie near the decision bound-
ary. Letting θ̂k again be the boundary estimate at the kth strip,
we assign a nonuniform prior whose mean is centered around
θ̂k. We propose the use of either a piecewise uniform or a
Gaussian kernel function and refer to these as I-2.1 and I-2.2,
respectively. Let the strip width |xk − xk+1|= W . We assign
the prior probability for the k + 1st strip to be either

π0(x) =

c1,
∣∣∣x− θ̂k∣∣∣ ≤ LW

c2,
∣∣∣x− θ̂k∣∣∣ > LW

(I− 2.1),

where c1 > c2, or

π0(x) = c3 exp

(
− (x− θ̂k)2

2(LW )2

)
(I− 2.2),

where c3 is a normalization constant so that the prior sums to
1. We discuss the choice of L and W in Section IV.

IV. SIMULATIONS & EXPERIMENTS

In this section, we show the efficacy of our algorithm
through simulations. We first verify the theoretical guarantees
provided in Section III and then compare the performance of
PQS with the generalized version, which we refer to as TPQS.
Next, we compare our method to proactive learning from [11].
We then show how a series of one-dimensional searches can be
used to estimate the boundary of a two-dimensional hypoxic
region in Lake Erie. We conclude with experimental results
from Third Sister Lake in Ann Arbor, MI.

A. Verification of Algorithms

In this section, we verify through simulation the theo-
retical rate of convergence and distance traveled derived in
Section III-A. Further, we present simulated results for the
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Fig. 5: Average simulated values for PQS and TPQS. Left-to-right: distance traveled during estimation and number of samples
required to converge.

PQS and TPQS algorithms and show that the desired tradeoff
is achieved by both algorithms, with TPQS achieving better
overall performance.

We first simulate the the DQS algorithm over a range of
m from 2 to 20, where θ is swept over a 1000-point grid on
the unit interval. The resulting average error after 20 samples
is shown in the left-most plot of Fig. 4, while the average
distance before convergence to an error of ε = 1 × 10−4 is
shown in the middle plot of the same figure. The figures show
the theoretical values for expected error and distance match
the simulated values. The right-most plot of Fig. 4 shows the
number of samples required to converge to the same error.
From the figures, our intuition is confirmed; the number of
samples required is monotonically increasing in m, while the
distance traveled is monotonically decreasing. This indicates
that DQS achieves the desired tradeoff in the noise-free case.

Next, we simulate the PQS and TPQS algorithms with
error probability p = 0.1 over a range of m from 2 to 50,
where θ ranges over a 100-point grid on the unit interval
with 100 random instances run for each value of θ. The left-
hand plot of Fig. 5 shows the average number of samples
required to converge to a mass of at least 0.9 at a single point,
as described in Section III-B3. As in the deterministic case,
the required number of samples increases monotonically with
m. The right-hand plot of Fig. 5 shows the average distance
traveled before converging to the same error value. Again,
the distance decreases monotonically with m, indicating that
the algorithm achieves the desired tradeoff in the noisy case.
Further, we see that TPQS outperforms PQS both in terms of

samples required and distance traveled. Because of this, we
consider only TPQS in all remaining simulations.

B. Application of Proactive Learning

The most competitive algorithm to quantile search is that of
[11] applied to our problem. Of the scenarios explored in [11],
the most relevant is Scenario 3, in which a non-uniform cost
is charged for each label. The authors propose choosing each
sample location to maximize the utility U(X) at each round,
where utility is defined as the difference between the value of
the sample at X and the cost of taking that sample. The authors
alternatively define utility as the ratio of value to cost, lending
to a more natural interpretation that is similar to [29]. However,
we found this version to result in poor performance, and hence
we rely on the first approach. For comparison purposes, we
maintain an estimate of the posterior distribution of θ as in
quantile search. We define the value of a point X as the mutual
information I(θ;X,Y ) [31]. Note that in the noiseless case, Y
is a deterministic function of θ, and hence mutual information
is a misnomer. In this case, we still consider the reduction in
entropy of θ given the measurement Y taken at point X . The
relation of binary search to communicating a noisy sequence
of bits over a binary symmetric channel has been well-studied
[12]. In the noiseless case, we have

H(θ)−H(θ|X,Y ) = Hb(X),

where H(·) denotes the differential entropy and Hb(·) is the
entropy of a Bernoulli random variable with corresponding
probability X .
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The noisy case of Section III-B corresponds to a binary
symmetric channel with non-uniform priors [32]. In this case,
we have

I(θ;X,Y ) = H(θ)−H(θ|X,Y )

= Hb(φ ∗ p)−Hb(p),

where

φ =

∫ X

0

π(x)dx.

Note that for φ = 1/2 (i.e., PBS), the mutual information is
1−Hb(p), which is the capacity of a noisy binary symmetric
channel. We implement the proactive algorithm from [11],
Eqn. (5) with two modifications in order to provide a fair
comparison. First, the non-uniform cost in our case is the
distance between the current location and the point under
consideration, rather than the generic cost described in [11].
Second, we provide a tuning parameter that can be used
similarly to m to balance between the number of samples
and distance traveled during estimation. Pseudocode for this
algorithm is given in Algorithm 3. In both the noiseless and
noisy cases, we use the stopping criteria from DQS and PQS,
respectively.

To obtain a profile of the performance of proactive learn-
ing, we simulate for both noiseless and noisy (p = 0.1)
measurements, where we range λ over 100 points on the
unit interval. We let θ range over a 100-point grid, and
200 random instances are run for each value of θ in the
noisy case. To compare with DQS and TPQS, we simulate
the average time required to perform sampling on the unit
interval under a variety of sampling times and travel times
relevant to our problem of sampling in Lake Erie. We let
the time per sample η in (5) range from 1-60 s per sample.
For travel time, we consider a strip length of 40 km, about
half the size of the central basin of Lake Erie, and let the
velocity range from 0.5-4 m/s. Fig. 6 shows the difference
in sampling time required by quantile search and proactive
learning. The boundary of where quantile search outperforms

Algorithm 3 Proactive Learning with Non-Uniform Costs [11]
applied to one-dimensional threshold estimation

1: Input: search parameter λ ∈ [0, 1], probability of error p
2: Initialize: π0(x) = 1 for all x ∈ [0, 1], n← 0
3: while not converged do
4: Xn+1 = arg maxx I(θ;x, Y )− λ|Xn − x|
5: Yn+1 ← f(Xn+1)⊕ Un+1, where Un+1 ∼ Ber(p)
6: φ =

∫Xn+1

0
πn(x)dx

7: if Yn+1 = 0 then
8:

πn+1(x) =

{
(1−p)
φ∗p πn(x) x ≤ Xn+1

p
φ∗pπn(x) x > Xn+1.

9: else
10:

πn+1(x) =

{
p
φ∗pπn(x) x ≤ Xn+1
(1−p)
φ∗p πn(x) x > Xn+1.

11: end if
12: n← n+ 1
13: end while
14: estimate θ̂n such that

∫ θ̂n
0
πn(x) = 1/2

proactive learning is shown in black, so that all points “up and
to the right” of the boundary denote sampling regimes in which
proactive learning requires less time than quantile search. The
figure shows that in the majority of relevant cases, quantile
search results in superior performance. However, in the case
of large sampling time and high velocity, proactive learning
generally performs better. Although not shown, we analyzed
figures similar to Figs. 4 and 5 and saw that the number of
samples required for proactive learning to converge reduces
quickly with λ compared to quantile search, while the distance
traveled reduces slowly. Thus, for scenarios in which sampling
is significantly more costly than travel, proactive learning may
be a more appropriate choice. This is likely due to the fact that
proactive learning often takes comparatively large steps early
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x = (a,b)

(a)

(b)

(c)

(d)

Fig. 7: Proposed sampling procedure for detection of hypoxic
region in Lake Erie. (a) Lake Erie with hypoxic region
illustrated in gray and split along x = (a, b). (b) Division of
top portion into strips. (c) Estimation procedure for top of lake
with sample locations shown in blue and estimated boundary
in solid red. (d) Final sample locations and estimation of entire
boundary.
in the measurement process, and investigating the properties
of this algorithm is a topic for our future research.

C. Simulations on Lake Erie

In this section, we apply the quantile search and proactive
learning algorithms to the problem of sampling hypoxic re-
gions in Lake Erie. Fig. 7a shows the lake with an example
hypoxic zone pictured in gray. In [7], the authors show that
for the set of distributions such that the Bayes decision set is a
boundary fragment, a variation on PBS can be used to estimate
the boundary while achieving optimal rates up to a logarithmic
factor. We now describe how the same approach can be used
to estimate the hypoxic region in Lake Erie and demonstrate
the benefits of our algorithm compared to PBS and proactive
learning. The results in this section differ from our previous
work [8] in that we consider a more realistic boundary derived
from bathymetry data retrieved from [10]. To simulate the
boundary of interest, we threshold the bathymetry data at a
depth of 21 m and consider anything at a depth of greater than
21 m hypoxic. Although this may not be directly correlated
with the hypoxic region, the resulting region is sufficiently
irregular to test our algorithm and is visually similar to the
regions found in [33]. Further, we previously considered only

the time required to estimate the strips (described below)
individually, whereas in this work we consider the entire
sampling process.

Consider the instance of a hypoxic region shown in
Fig. 7a. Using models and measurements from previous years
(e.g., historical data from [33]), it is reasonable to assume
we can split the lake into intervals so that the boundary does
not significantly violate the boundary fragment assumption.
Splitting the lake along the line y = b yields the two sets
above and below the dashed line in Fig. 7a. Now we can
further divide the problem into strips along the first dimension,
as shown by the solid red line in Fig. 7b. Along each of
these strips, the problem reduces to change point estimation
of a one-dimensional threshold classifier as we have studied
thus far. After estimating the change point at each strip, the
boundary is estimated as a piecewise linear function of the
estimates, as shown in Fig. 7c. The same procedure is used
for the bottom portion of the lake, with the final estimation
shown in Fig. 7d. In all cases, we choose the optimal m
by estimating the average number of samples and distance
traveled via simulations and note the chosen value in the
tables.

We apply this procedure to the hypoxic region shown in
Fig. 7a using 11 strips for a variety of values for time
per sample and speed of watercraft. To simulate an actual
sampling pattern, we proceed counterclockwise through the
strips, beginning from the top left, and record the total distance
traveled and number of samples taken. We consider several
sampling strategies. As a baseline, we use binary bisection
with no algorithmic improvements, i.e., quantile search with
fixed m = 2. We also show DQS with a fixed m chosen
to optimize the total sampling time using the average scale
factor for the entire lake. Next, we show the sampling time
for proactive learning with λ chosen similarly. Finally, we
consider these scenarios while employing Improvement 1,
where we initialize our search algorithm using the previous
boundary estimate. We forego the application of I-2.1 and I-
2.2, as they will have minimal impact in the noiseless case.
Table I shows the resulting sampling time (in days) required
to estimate the boundary of the hypoxic region. When I-1 is
not in use, binary search outperforms our algorithm. This is
due to the fact that the craft must travel back to the position
1/m at each strip, a significant distance when m is small and
the boundary estimate is not near the origin. However, this
problem is overcome by employing I-1, in which case quantile
search requires roughly half the sampling time required by
binary search. Further, DQS outperforms proactive learning,
even in the scenarios where DQS requires more time on a
single strip. In the case of low sampling time and low velocity,
we see that DQS significantly outperforms proactive learning,
which matches our expectations based on Fig. 6.

Next, we apply the same procedure to the noisy case with a
probability of measurement error p = 0.1 averaged over 100
random instances. Due to the performance benefits shown in
DQS, we employ I-1 in all sampling scenarios. For both I-2.1
and I-2.2, we choose the strip width W based on the number
of strips, which is a function of the desired estimation error.
Choosing W small will result in more accurate estimation but
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Sampling Scenarios Sampling Time (s) 60 60 10 10
Velocity (m/s) 4 0.5 4 0.5

Sampling Parameters m 9.48 43.00 43.00 43.00
λ 0.17 0.13 0.13 0.10

Base Algorithm without Improvements
Bisection 2.14 15.96 2.00 15.82

DQS 2.62 19.97 2.52 19.44
Proactive Learning 2.84 21.20 2.67 20.45

I-1
Bisection 1.99 14.86 1.86 14.73

DQS 1.44 9.41 1.19 9.09
Proactive Learning 1.47 9.99 1.26 9.62

TABLE I: Total sampling time (in days) for various search methods under noiseless measurements and a variety of sampling
times and velocities. Fastest time for each scenario shown in bold.

Sampling Scenarios Sampling Time (s) 60 60 10 10
Velocity (m/s) 4 0.5 4 0.5

Sampling Parameters m 6.40 11.17 10.80 62.16
λ 0.30 0.29 0.29 0.29

I-1
PBS 2.64 19.00 2.38 18.61

TPQS 1.83 10.84 1.38 9.57
Proactive Learning 1.72 11.67 1.48 11.47

I-1, I-2.1
PBS 2.63 18.66 2.37 18.66

TPQS 1.82 10.85 1.38 9.58
Proactive Learning 1.73 11.69 1.47 11.44

I-1, I-2.2
PBS 2.58 18.30 2.33 18.11

TPQS 1.83 10.75 1.37 9.56
Proactive Learning 1.73 11.77 1.49 11.52

TABLE II: Total sampling time (in days) for various search methods under noisy measurements with p = 0.1 and a variety of
sampling times and velocities. Fastest time for each scenario shown in bold.

require more sampling time. In practice one would estimate L
using historical data. We estimate L numerically as

L̂ = arg max
i

|f(xi)− f(xi + δ)|
δ

,

where we choose δ to be 0.1W to prevent the value of L
from being inflated by a single point in f with high derivative.
Note that since we are only using L to generate priors for our
search function, even an aggressive choice will not prevent
our algorithm from finding the true boundary. In some cases,
where the function is very smooth in many places and has
high derivative in a few places, a user may wish to choose
L smaller than the estimated value to reduce sampling time.
In I-2.1, we choose c1 and c2 such that the probability within
LW of θ̂k is 100 times the probability outside this region,
i.e., c1 = 100c2.

Table II shows the resulting sampling times under the
various sampling scenarios. The results of the table across all
sampling parameters indicate that TPQS with a Gaussian prior
is the best sampling strategy in most cases. In the case of a
60 sec sampling time and 4 m/s velocity, proactive learning
outperforms our algorithm, which is consistent with the results
of Fig. 6. Interestingly, the use of nonuniform priors results in
a small benefit in most cases. This is likely due to the fact that
the bottom half of the hypoxic region is extremely smooth, and
hence our value of L is not aggressive enough for these strips.
A better choice may be to choose L separately for the strips
on top and bottom of the lake.

D. Experiments on Third Sister Lake

In this section, we present the implementation and perfor-
mance of the DQS algorithm in the field. The algorithm was

tested on a robotic boat that was deployed at Third Sister
Lake in Ann Arbor, Michigan. Third Sister Lake is a spring-
fed kettle lake with an area of 9.4 acres and a maximum
depth of 17 meters that notably exhibits hypoxic conditions
on an annual basis [34]. The smaller size and calmer waters
of Third Sister Lake posed an ideal test bed for evaluating the
algorithm. Because of the high fidelity of the oxygen sensor
used, only the DQS algorithm was tested in the field. Further,
these experiments are intended as a pilot study to motivate the
use of our algorithm in larger bodies of water, such as Lake
Erie.

The robotic boat platform [35] features an Android cellular
phone for GPS navigation and 3G cellular communications.
The prevalent cell coverage at Third Sister Lake enables bi-
directional communication with the boat for remotely tracking
and delineating the evolution of the hypoxic region in real-
time. For a given GPS coordinate, the boat autonomously
navigates to the destination to collect a sample. The platform
was outfitted with a motorized winch to raise and lower a
suite of water quality sensors to measure dissolved oxygen
throughout the water column at each sampling location. Due to
the low noise level of these sensors, we employed the noiseless
version of the algorithm with I-1.

Leveraging the persistent Internet connectivity of the robotic
boat, the platform was paired with a web-service-based cy-
berinfrastructure [36]. This enabled the same script used to
develop the algorithm to be tested in the field by modifying
the script to open a web connection and directly control the
boat. Time-stamped location and measurement data were im-
mediately accessible to the algorithm to direct where the boat
should sample next. Taking a web-based approach provides the
flexibility more readily interface with any web-enabled robotic
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Fig. 8: Delineated hypoxic region on the western half of Third
Sister Lake.
boat that may be more suitable for increased winds and waves
of more challenging sites.

We present the results from a sampling campaign on
November 17, 2015 in Fig. 8. Third Sister Lake was divided
into five horizontal strips, along which an average of five
samples were taken until GPS precision could no longer
distinguish between two locations. The estimated velocity of
the robotic boat was 0.1 m/s. Due to the need to lower
and raise the winch for each sample location, the average
time to collect a sample was 300 s, resulting in an optimal
sampling parameter of m = 2. We observed that over the
course of five hours, the platform successfully identified and
delineated the hypoxic zone as directed by the algorithm. In
comparison, a uniform sampling at the same resolution would
take an estimated 27 hours. The successful results from the
experiments on Third Sister Lake demonstrate the potential
to extend this algorithm to other lake systems including Lake
Erie.

V. CONCLUSIONS & FUTURE WORK

We have presented an active learning algorithm for spatial
sampling capable of balancing the number of samples and
distance traveled in order to minimize the overall sampling
time. To the best of our knowledge, this is the only nonuni-
formly penalized active learning algorithm accompanied by
theoretical guarantees. We have shown how our algorithm
can be used to estimate a two-dimensional region of hypoxia
under certain smoothness assumptions on the boundary, and
empirical results indicate the benefits of quantile search over
traditional binary search as well as other active learning
methods in the literature.

Several open questions remain. Deriving or bounding the
expected distance for the TPQS algorithm is an important
next step. The boundary fragment class mentioned here is
restrictive [16], and the extension to more general cases would
be of interest. The recent work of [37] describes a graph-based
algorithm that employs PBS to higher-dimensional nonpara-
metric estimation. Extending this idea to penalize distance
traveled is a promising avenue for practical applications of
quantile search. Finally, the PQS algorithm requires knowledge
of the noise parameter p in order to update the posterior. The
algorithms presented in [20], [38] enjoy the property that they

are adaptive to unknown noise levels. The development of a
noise-adaptive probabilistic search would certainly be of great
interest, with potential applications in areas such as stochastic
optimization [38] beyond direct applicability to this problem.
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