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Abstract

In multiple-input multiple-output (MIMO) radar settings, it is often desirable to transmit power only

to a given location or set of locations defined by a beampattern. Transmit waveform design is a topic

that has received much attention recently, involving synthesis of both the signal covariance matrix, R, as

well as the actual waveforms. Current methods involve a two-step process of designing R via iterative

solutions and then using R to generate waveforms that fulfill practical constraints such as having a

constant-envelope or drawing from a finite alphabet. In this paper, a closed-form method to design R

for a uniform linear array is proposed that utilizes the discrete Fourier transform (DFT) coefficients

and Toeplitz matrices. The resulting covariance matrix fulfills the practical constraints such as positive

semidefiniteness and the uniform elemental power constraint and provides performance similar to that

of iterative methods, which require a much greater computation time. Next, a transmit architecture is

presented that exploits the orthogonality of frequencies at discrete DFT values to transmit a sum of

orthogonal signals from each antenna. The resulting waveforms provide a lower mean-square error than

current methods at a much lower computational cost, and a simulated detection scenario demonstrates

the performance advantages achieved.
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Beampattern, discrete Fourier transform (DFT), multiple-input-multiple-output (MIMO) radar, wave-

form design.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) radar has been a topic of interest for researchers in recent

years due to the performance advantages offered over standard phased-array radar, including improved

parameter identifiability and transmit beampattern matching [1]–[6]. For a MIMO system with widely-

separated antennas [5], the spatial diversity of a target can be captured, resulting in improved signal-

to-noise ratios (SNR) and high resolution target localization. In the case of co-located antennas [6], it

has been shown that for a MIMO system with NT transmit antennas, the number of targets that can be

uniquely identified is NT times the number of identifiable targets in a phased-array system. Moreover, the

use of co-located antennas allows the user to design the signal covariance matrix such that the antennas

transmit power only in a specified region [7]–[12]. In the traditional phased-array setup, each transmit

antenna transmits a phase-shifted version of the same baseband waveform. In this case, the probing

signals are fully correlated and the transmit covariance matrix is equal to unity everywhere, resulting in

a single beam focused at the origin. A common MIMO setup is that of orthogonal or omnidirectional

signaling, in which the antennas transmit mutually orthogonal waveforms. Here the transmit covariance

matrix is equal to the identity matrix, and equal power is transmitted in all directions. The topic of

transmit beampattern design lies between these two extremes and is the subject of this paper.

In the transmit beampattern design problem, the user wishes to transmit power exclusively to one

or more prespecified regions of interest (ROIs). Previous work on beampattern design relies largely on

iterative methods of solution [8]–[12]. In [9], the authors present a closed-form solution based on a

least-squares cost function. However, the resulting covariance matrix is not positive semidefinite and

therefore requires the use of eigenvalue or singular value decomposition. The solution also fails to fulfill

the uniform elemental power constraint (i.e., it does not have constant values along the main diagonal).

Another closed-form solution, which does fulfill these constraints, was presented in [7]. However, this

method shows significant performance degradation compared with iterative methods, especially in the case

of wide ROIs, and is only capable of transmitting power to a single ROI. One further method of closed-

form beampattern design was presented as an initial guess in [11]. This method involves a summation of

phased-array beams, but has the drawbacks of slow roll-off and high sidelobe levels. Efficient numerical

solutions have been presented in [8], [10], [11], though for large array sizes these methods require a

nontrivial amount of calculation time.
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Once the covariance matrix has been designed, the next step is to design the actual waveforms to

be transmitted that have the desired cross-correlations [13]–[15]. In [13], the authors extend the work

of [8] to generate waveforms that fulfill realistic constraints such as the constant-envelope (CE) or low

peak-to-average-power ratio (PAPR). However, the designed signals come from an infinite alphabet, and

the method requires the use of an iterative solution. In [14], a mapping of Gaussian random variables into

binary phase-shift keying (BPSK) and quadrature-phase shift keying (QPSK) CE waveforms is described.

However, this method does not guarantee a positive semidefinite covariance matrix, and thus a second

algorithm is proposed to generate BPSK waveforms that approximate a given covariance matrix. The

work in [15] extends this method to QPSK signals. In both cases, iterative methods are again required,

and the resulting beampatterns suffer from high sidelobe levels.

This paper involves two contributions. First, we present a novel closed-form method to synthesize the

covariance matrix for the desired beampattern under the setting of a uniform linear array (ULA). The

method relies on the simple procedure of choosing discrete Fourier transform (DFT) coefficients to have

nonzero values, and then generating a Toeplitz matrix based on the corresponding discrete time signal.

This method has the following advantages:

• The only operations involved are the computation of the DFT via the FFT algorithm and the

generation of a Toeplitz matrix, both of which are computationally efficient.

• The practical constraints on R are shown to be fulfilled in the general case.

• The beampattern matching performance is similar to that achieved by iterative methods.

Second, we present a radar architecture that sums phase-shifted orthogonal signals in order to match

the desired beampattern for the ULA. The proposed architecture provides a number of advantages over

currently existing methods of waveform design, which are:

• The architecture does not require the generation of partially correlated waveforms or the use of

iterative methods to do so, allowing for rapid generation of arbitrary beampatterns.

• The waveforms can be designed directly, allowing the user to omit the usual first step of designing

the covariance matrix, R.

• The achieved transmit beampattern matches exactly the theoretical beampattern calculated by the

first algorithm.

This architecture has been demonstrated in the digital communications setting in [16], [17] and recently

presented in the MIMO radar setting in [18]–[20]. In [18], the author uses a combination of phased-array

beams as the basis to design the weight matrix and investigates the connections between this architecture
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and classical (receive) array processing techniques. Our paper differs from this work in that we:

• Draw another important connection, namely between frequency sampling filter design and MIMO

radar transmit beamforming, and then show how this relates to the standard phased-array beamformer.

• Consider the major practical concern of such a system, which is that of high PAPR, and provide a

first analysis of the system.

• Demonstrate the benefits of the weighted orthogonal signaling over direct signal design through a

detection scenario.

In [19], the design is focused on the application of subspace detection methods, such as multiple signal

classification (MUSIC) and estimation of signal parameters via rotational invariance techniques (ESPRIT).

Both closed-form and iterative solutions are presented. In this case, the closed-form solution fails to

fulfill the uniform elemental power constraint, while the iterative solution has the obvious drawback of a

higher required computational complexity. The work in [20] extends this paper to show how previously

developed, iterative MIMO beamforming methods can be applied to the new architecture, but again

invokes a costly computational burden. Neither paper includes an analysis of PAPR.

The remainder of this paper is organized as follows. Section II describes the MIMO radar signal

model and the problem setup. Section III describes the proposed method for covariance matrix design

and Section IV details the design of the actual transmit signals, which does not require the synthesis

of the covariance matrix. Section V provides the theoretical computational complexity of the proposed

algorithms. Simulation results are shown in Section VI, with conclusions given in Section VII.

II. PROBLEM FORMULATION AND PREVIOUS WORK

Consider a MIMO radar system with NT co-located transmit antennas in a ULA having interelement

spacing d and transmission wavelength λ. Define the transmitted baseband signal vector as

x(n) =
[

x1(n) x2(n) ... xNT
(n)
]T
. (1)

Assuming the transmitted probing signals are narrowband and that the propagation is nondispersive, the

signal received by a target located at an angle θ at time n can be written as

r(n; θ) = aHT (θ)x(n), (2)

where (·)H denotes the conjugate transpose and aT (θ) represents the transmit steering vector, given by

aT (θ) =
[

1 e−j 2πd

λ
sin(θ) ... e−j

2(NT −1)πd

λ
sin(θ)

]T
. (3)
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The transmitted power at location θ can then be found as

P (θ) = E
{

aHT (θ)x(n)xH(n)aT (θ)
}

= aHT (θ)RaT (θ), (4)

where R is the covariance matrix of the transmitted waveforms and E {·} denotes the expectation operator.

The objective is to design R such that the transmitted power matches a desired beampattern as closely

as possible while fulfilling the following constraints

C1 : R ≥ 0

C2 : R(m,m) = c, m = 1, 2, ..., NT ,

where c is a constant equal to the power transmitted by each antenna. C1 denotes the positive semidefinite

constraint and C2 denotes uniform elemental power constraint.

Previous work utilizes optimization techniques to minimize a variety of cost functions. The work in

[8] formulates this problem as a semidefinite quadratic program (SQP) with a cost function involving a

beampattern matching term and a cross-correlation term. In this paper, we ignore the cross-correlation

term, in which case the objective function corresponds to the least-squares minimization problem defined

as

J(R) =

L
∑

l=1

(

aHT (θl)RaT (θl)− αPd(θl)
)2
, (5)

where Pd(θl) is the desired beampattern defined over the grid points {θl}
L
l=1, and α is a scaling factor.

Minimization of this cost function can be achieved using freely available software [21], [22], where the

constraints C1 and C2 can be trivially added.

In [11], the authors present unconstrained cost functions that can be solved using gradient-descent

methods and do not necessarily rely on a quadratic cost function. In this case, C1 is fulfilled by solving for

the square-root matrix U, such that R = UHU, and C2 is fulfilled via a transformation to a hyperspherical

coordinate system in order to force the norm of each column of U to be equal to c. The spherical

transformation is represented by the parameterization of U by ψ =
[

ψ21 ψ31 ψ32 . . . ψM,M−1

]T

(see [11] for further details). In this case, the cost function (5) is replaced by

J1(Θ) =

L
∑

l=1

(P (ψ, θl)− αPd(θl))
2 , (6)

where Θ =
[

ψTα
]T

and P (ψ, θl) = aHT (θl)U
H(ψ)U(ψ)aT (θl). The authors also demonstrate the

superior performance achieved by the 1-norm minimization by minimizing the cost function

J2(Θ) =

L
∑

l=1

|P (ψ, θl)− αPd(θl)| . (7)
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While many existing solutions rely on iterative methods to design the covariance matrix, closed-form

solutions exist as well. In [7], rather than minimizing a cost function, the authors directly provide the cross-

correlation between signals, which can be used to generate the covariance matrix. The cross-correlation

is given as

rlm =
sin [πβ(l −m)]

sin [πβ(l −m)/NT ]
. (8)

In this case, the beamwidth of the resulting pattern is proportional to β, which can be varied from 0 to

1. The other closed-form method for generating covariance matrices appears in [11], but serves only as

an approximation to the desired beampattern. The method utilizes a summation of phased-array beams

at the angles within the desired ROIs, yielding the covariance matrix

R =
1

L

L
∑

l=1

Pd(θl)aT (θl)a
H
T (θl). (9)

While both of these methods provide closed-form solutions that fulfill both C1 and C2, neither results in

performance that is comparable to that of the iterative methods. The motivation of the proposed work is

therefore to provide a closed-form solution to the transmit beampattern matching problem that provides

similar performance to iterative methods. We first propose a method of designing the covariance matrix

through the use of DFT coefficients, and then show how the results can be used to design a system that

can achieve arbitrary beampatterns through a combination of uncorrelated signals.

III. DFT-BASED COVARIANCE MATRIX DESIGN

In this section, we describe the proposed method of covariance matrix design, which exploits the DFT.

By specifying a rectangular window (or set of windows) of varying width in the frequency domain,

the user can equivalently achieve beampatterns of varying widths in the spatial domain. The method is

similar to the familiar frequency sampling method for finite impulse response (FIR) filter design, which

was noted as a method of receive (classical) beamforming in [23]. This further reinforces the similarities

between filter design and MIMO radar transmit beamforming described in [7].

To establish the relationship between the rectangular window in the frequency domain and the desired

beampattern, let {H(k)}NT−1
k=0 denote the frequency domain samples and {h(n)}NT−1

n=0 be the correspond-

ing time domain samples obtained after applying the inverse DFT. The relationship between them can
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be described by the NT -point DFT operation as

H(k) =

NT−1
∑

n=0

h(n)e−j2πkn/NT (10)

h(n) =
1

NT

NT−1
∑

k=0

H(k)ej2πkn/NT . (11)

Using (10) and (11), the following lemma can be obtained.

Lemma 1: If H(k) is an element of the set {0, 1} for all k and R is the Toeplitz matrix formed using

the samples {h(n)} as

R =























h(0) h(1) · · · h(NT − 1)

h∗(1) h(0) · · · h(NT − 2)

h∗(2) h∗(1) · · · h(NT − 3)
...

...
. . .

...

h∗(NT − 1) h∗(NT − 2) · · · h(0)























, (12)

then it can be easily proved that R will be positive semidefinite with maximum amplitude along the

diagonal.

Proof: We begin by transforming R into a more convenient notation. Stack the elements {h(n)} to

obtain the column vector h with nth element

[h]n =
1

NT

NT−1
∑

k=0

H(k)ej2πkn/NT . (13)

It can be noted here that for any window choice [h]0 =
1
NT

∑NT−1
k=0 H(k), which has maximum amplitude

over all n. Let hk be the contribution to the summation in (13) due to the kth value, i.e.,

[hk]n =
1

NT
H(k)ej2πkn/NT . (14)

Then

h =

NT−1
∑

k=0

hk, (15)

and it is shown in Appendix A that

hH
k hl =

1

NT
H(k)2δkl, (16)

where δkl is the Kronecker delta. Next, let {pi}
P
i=1 be the set of values of k for which H(k) is nonzero.

In this case, h can be rewritten as

h =

P
∑

i=1

hpi
, (17)
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and it can be shown by inspection that the resulting Toeplitz matrix created using h is equivalent to

R = NT

P
∑

i=1

h∗

pi
hT
pi
. (18)

For any arbitrary vector g of corresponding length, we can write

gHRg = NT

P
∑

i=1

gHh∗

pi
hT
pi
g

=

P
∑

i=1

|gHhpi
|2

which is real and nonnegative for all g. Thus the proposed matrix is positive semidefinite for all H(k) ∈

{0, 1}. Also note that since R is a summation of P rank-1 matrices, its rank will be at most P .

Lemma 2: If H(k) is real and R is the Toeplitz matrix formed using the samples {h(n)} as in Lemma

1, then it can be easily proved that

eH(k)Re(k) = NTH(k), (19)

where

e(k) =
[

1 e
−j 2πk

NT ... e
−j

2πk(NT −1)

NT

]T
(20)

is the Fourier vector corresponding to frequency k.

Please see Appendix B for proof.

Using Lemma 2, we can write

NT−1
∑

k=0

(

eH(k)R̃e(k)−
NT

h(0)
H(k)

)2

= 0, (21)

where the matrix R̃ = R

h(0) is the normalized covariance matrix. Since e(k) is similar to the steering

vector aT (θk) and R̃ is a covariance matrix, the expression (21) is similar to the cost function (5) of

the beampattern design problem to synthesize the covariance matrix. Therefore, considering H(k) as

the desired transmit beampattern and eH(k)R̃e(k) as the designed beampattern at discrete point k, the

transmit beampattern design problem can be mapped onto (21) to find the waveform covariance matrix.

In order to map the discrete frequency point, k, onto the positive and negative spatial locations of θk,

note that k denotes both positive and negative frequency points. The following relationship can be used

to map the frequency components onto the spatial domain for an even number of transmit antennas

θk =











sin−1
(

λk
dNT

)

, k = 0, . . . , NT

2

−sin−1
(

λ(NT−k)
dNT

)

, k = NT

2 + 1, . . . , NT − 1

. (22)
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Fig. 1. Resulting beampattern in frequency and spatial domains using the proposed DFT design method with NT = 10 and

H(k) = 1, k = 0, 1, 9.

Simlarly, the mapping for an odd number of transmit antennas is

θk =











sin−1
(

λk
dNT

)

, k = 0, . . . ,
⌊

NT

2

⌋

−sin−1
(

λ(NT−k)
dNT

)

, k =
⌈

NT

2

⌉

+ 1, . . . , NT − 1

, (23)

where ⌊·⌋ and ⌈·⌉ denote the floor and ceiling, respectively.

Given the above mappings, it can be seen that a window in the frequency (k) domain results in a window

of proportional width in the spatial (θ) domain. In the two extremes of a single nonzero point at k = 0 and

a vector of all non-zero points, the beampattern results in the phased-array and omnidirectional patterns,

respectively. Fig. 1 shows the frequency domain and spatial domain power in the case of NT = 10

with half-wavelength interelement spacing and a window with H(k) = 1, k = 0, 1, 9. The resulting

beampattern has amplitude 10 at 0◦ and ±11.54◦.

While the beampattern matches (19) for spatial values corresponding to integer values of k, the function

does not describe the beampattern for other values of θ. We now demonstrate that choosing the positive

coefficients in the window function is equivalent to adding phased-array beams with centers at the given

locations. We begin by noting that a covariance matrix to generate P phased-array beams with centers
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located at {θi}
P
i=1, can be equivalently designed by creating a Toeplitz matrix as in (12) using the vector

ã =

P
∑

i=1

a∗T (θi)

=

P
∑

i=1

[

1 ej
2πd

λ
sin(θi) ... ej

2(NT −1)πd

λ
sin(θi)

]T
, (24)

to define the first row, or through a summation of phased-array covariance matrices

R =

P
∑

i=1

aT (θi)a
H
T (θi). (25)

It has been shown [24] that for receive beamformers, many widely used methods are composed of a

summation of conventional (uniformly weighted) beamformers with centers at various locations. On the

transmit side, the conventional beamformer corresponds to the phased-array beam (see Appendix C).

The method presented in [11] (defined by (9)) shows that the sum of phased-array beams provides a

suitable guess at the covariance matrix needed to match a given beampattern. However, in this case the

sidelobes levels are high and the main lobe suffers from slow roll-off due to the high number of beams

in the summation. Thus, performance benefits can be achieved by choosing a lower number of beams to

sum. For the frequency-domain window with P unity coefficients at locations {pi}
P
i=1, the transformed

coefficients are

h(n) =
1

NT

P
∑

i=1

ej2πpin/NT

=
1

NT

P
∑

i=1

ej
2πdn

λ
sin(θi), (26)

where {θi}
P
i=1 is the set of locations corresponding to {pi}

P
i=1 and is found by solving (22). Vectorizing

over all values of n, we obtain the frequency and spatial domain vectors

h =
1

NT

P
∑

i=1

[

1 ej2πpi/NT . . . ej2πpi(NT−1)/NT

]T
(27)

=
1

NT

P
∑

i=1

[

1 ej
2πd

λ
sin(θi) . . . ej

2πd(NT −1)

λ
sin(θi)

]T
. (28)

It is easily seen that h as described in (28) corresponds to a scaled version of (24). For this reason,

we conclude that the method of choosing beam locations using P DFT coefficients is equivalent to a

sum of P phased array beams. Since the DFT coefficients represent mutually orthogonal frequencies, the

resulting beams are placed at the nulls of the other beams in the sum, resulting in a smooth function
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Algorithm 1 Method of choosing {pi}
P
i=1 for a given ROI

input: Pd(θ)

θmax = max{θ ∈ ROI}

θmin = min{θ ∈ ROI}

solve (22) or (23) to obtain kmax corresponding to θmax and kmin corresponding to θmin

k+ ← ⌊kmax⌋

k− ← ⌈kmin⌉

{pi} = {k ∈ Z | k− ≤ k ≤ k+}

within the window and overlapping sidelobes and nulls outside the ROI. In order to choose the values

of k that define {pi}
P
i=1 for a given ROI, Algorithm 1 can be employed.

The main drawback of the method as proposed is that there are only NT degrees of freedom available

for beampattern design. Therefore, arrays with a low number of transmit antennas will only be able to

transmit beams with a limited number of widths. However, with recent advances in sensor technology,

the number of transmit antennas in systems has grown significantly. In such systems, the achievable

resolution will be sufficient. The available resolution can be characterized by the null-to-null beamwidth,

BWNN . For a single phased-array beam, it is proved in Appendix C that

BWNN−PA = 2sin−1

(

2λ

dNT

)

. (29)

This describes the minimum beamwidth achievable for any radar setup. Let θk+ be the greatest value of

θ in the ROI, corresponding to k = k+ as defined by (22) or (23). Similarly, let θk− be the smallest

value of θ in the ROI, corresponding to k = k−. Since the proposed method involves a summation of

phased-array beams, the overall beamwidth is easily found to be

BWNN = θk=k++1 + θk=k−

−1. (30)

For example, for the beampattern pictured in Fig. 1, k+ = 1 and k− = 9, and therefore

BWNN = θk=2 + θk=8

≈ 47.16◦. (31)

The other problem with the proposed method is that the resulting covariance matrix is rank-deficient

and equal to the number of nonzero values of H(k) (see proof of Lemma 1), reducing the total number

of resolvable targets. However, since beamforming is often performed to account for some ambiguity in
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...

...

Fig. 2. Architecture of proposed system capable of matching a desired beampattern using orthogonal waveforms.

the location of a single target or limited number of targets [12], we conclude that the rank deficiency is

a worthwhile tradeoff given the computational gains achieved by the proposed method.

IV. TRANSMIT SIGNAL DESIGN

In this section, a method of directly designing transmit waveforms to achieve the beampattern which

is obtained by synthesizing R in the previous section is described. While it is possible to stop with

the covariance matrix designed in Section III and use the techniques presented in [13]–[15] to select

waveforms, the architecture presented here does not rely on iterative methods of solution and can thus

be employed for rapid transmission of arbitrary beampatterns.

Consider an arbitrary H(k) used to define a desired transmit window and its corresponding vector h

as described by (27). As demonstrated in (18) and (16), the transmit covariance matrix can be written

as a sum of P rank-1 matrices defined by mutually orthogonal column vectors. Because of this fact,

the beampattern can be achieved by transmitting a combination of P orthogonal sets of symbols drawn

from any modulation scheme (e.g., BPSK or QPSK). Let xi(n) represent the symbol at time n that is

weighted by the vector hpi
, and let hpi

(m) denote the mth element of hpi
. The proposed architecture,
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as shown in Fig. 2, transmits the following signal from antenna m at time n

vm(n) =

P
∑

i=1

xi(n)hpi
(m). (32)

The average power transmitted from antenna m is then found to be

Pavg(m) = E {vm(n)v∗m(n)} (33)

= E







∣

∣

∣

∣

∣

P
∑

i=1

xi(n)hpi
(m)

∣

∣

∣

∣

∣

2






= E

{

P
∑

i=1

P
∑

l=1

xi(n)x
∗

l (n)hpi
(m)h∗pl

(m)

}

=

P
∑

i=1

P
∑

l=1

E {xi(n)x
∗

l (n)}hpi
(m)h∗pl

(m)

=

P
∑

i=1

hpi
(m)h∗pi

(m)

=
P

N2
T

, (34)

where we have made use of (16) to eliminate the double summation, set H(k) = 1 for k ∈ {pi}
P
i=1,

and assumed the transmitted symbols to be orthonormal. From (34), one can see that the transmitted

power is independent of the antenna number, demonstrating that the uniform elemental power constraint

is fulfilled. The instantaneous power transmitted by antenna m at time n is

Pinst(m;n) = vm(n)v∗m(n) =

P
∑

i=1

P
∑

l=1

xi(n)x
∗

l (n)hpi
(m)h∗pl

(m). (35)

Another important practical consideration is that of PAPR, which is defined for antenna m by

PAPR(m) =
maxn Pinst(m;n)

Pavg(m)
. (36)

When transmitting BPSK symbols, the peak instantaneous power occurs when all symbols are equal to

one, resulting in

Ppeak(m) =

P
∑

i=1

P
∑

l=1

hpi
(m)h∗pl

(m)

=
1

N2
T

P
∑

i=1

P
∑

l=1

e
j

2πm(pi−pl)

NT . (37)

From (37), it can be seen that the maximum instantaneous power occurs when m = NT , in which case

the instantaneous power is P 2/N2
T and the resulting PAPR is P . However, for m 6= NT , the PAPR is

less than P .
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Using this setup, the signal received by a target located at angle θ at time n becomes

r(n; θ) =

P
∑

i=1

hT
pi
aT (θ)xi(n). (38)

Let S be the total number of symbols transmitted and xi be the column vector of S symbols. Define the

symbol and weight matrices as

X =
[

x1 x2 . . . xP

]T

P×S
(39)

and

H =
[

hp1
hp2

. . . hpP

]T

P×NT

, (40)

respectively. Vectorizing the received symbols, the received signal from angle θ can be written as

r(θ) =
[

r(0; θ) r(1; θ) · · · r(S − 1; θ)
]T

= XTHaT (θ). (41)

The power delivered to angle θ is then

P (θ) = E
{

aHT (θ)HHX∗XTHaT (θ)
}

= aHT (θ)HHHaT (θ). (42)

The resulting system is a cross between phased-array and MIMO systems in which the number of

uncorrelated waveforms is P ≤ NT . The proposed system provides benefits over the waveform design

methods presented in [13]–[15] in that it does not require the generation of partially correlated symbols and

therefore has a much lower computational cost. Rather, the transmitted signals can be designed directly,

and the initial step of designing the covariance matrix can be omitted. In addition, transmission of truly

orthogonal signals (e.g., BPSK symbols drawn from Hadamard code sequences) allows the transmitted

beampattern to match the theoretical beampattern achieved by the covariance design procedure in the

previous section.

V. COMPUTATIONAL COMPLEXITY

A. Covariance Matrix Design

The only operations required for the proposed covariance matrix design are the FFT and the generation

of a Toeplitz matrix. The complexity of the N -point FFT is well known and equal to O (N log(N))

computations. The complexity of generating a Toeplitz matrix is considered negligible, yielding an overall

complexity of O (NT log(NT )). As a comparison, the SQP algorithm from [8] has a complexity of

O
(

log
(

1
η

)

N3.5
T

)

for a prefixed accuracy of η [14].
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Fig. 3. Comparison of beampatterns achieved by proposed method of covariance matrix design with H(k) = 1, k = 0, 1, 2, 8, 9

and SQP method. The ROI is θ ∈ [−30◦, 30◦] and NT = 10.
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Fig. 4. Beampattern achieved through covariance matrix design for NT = 50 with H(k) = 1, k = 8 − 18, 34 − 44. The

corresponding ROIs are θ ∈ [−44,−15] ∪ [15, 44].

B. Transmit Signal Design

Once the orthogonal symbols are obtained, the proposed radar architecture requires P complex mul-

tiplications and P complex additions per symbol for each antenna. Therefore, the total number of
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Fig. 5. Complexity required to generate R as a function of the number of transmit antennas.

operations required for S symbols transmitted from NT antennas is SPNT real multiplications and

SPNT real additions. Since this method does not require R to be generated before the transmit signals

are designed, this represents the total computational complexity of the architecture. In comparison, the

algorithm proposed in [13] requires O
(

S + 3SN2
T

)

operations per iteration after generating R (incurring

the computational cost described above). The efficient algorithm presented in [14] requires an overall

complexity of
∑NT

m=3m + NT (N2
T−NT )
2 + L

(

(NT−1)(N2
T−NT )

2 + (2N2
T + 4NT )

)

operations per iteration

and O
(

N3
T + SN2

T

)

real multiplications to find both the covariance matrix and the BPSK symbols.

VI. SIMULATION RESULTS

In this section we present numerical examples to demonstrate the performance of the design methods

described. Simulations assume a uniform linear array with half-wavelength interelement spacing and a

mesh grid with spacing of 0.1◦.

We begin by demonstrating the performance of the method for covariance matrix design presented in

Section III. Fig. 3 shows the resulting beampattern with NT = 10 transmit antennas for the ROI defined

by θ ∈ [−30◦, 30◦]. Employing Algorithm 1, we obtain {pi} = {0, 1, 2, 8, 9} and set H(k) = 1 for these

values of k. The solution found using the SQP as presented in [8] is also included for comparison. The

total transmit power is normalized to unity. The theoretical BWNN for the proposed method is

BWNN = θk=3 + θk=7 ≈ 73.7◦, (43)
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Fig. 6. Computational time required to generate R as a function of the number of transmit antennas.

which matches the simulated value exactly. For the SQP method, the resulting BWNN ≈ 74.6◦. It

can be seen that the proposed method provides similar performance to the iterative solution. Define the

mean-squared error (MSE) as

MSE =
1

L

L
∑

l=1

[P (θl)− αφ(θl)]
2 , (44)

where α is found using the SQP method. The resulting mean-squared errors (MSEs) are 0.0322 for the

proposed method and 0.0311 for the SQP method. Thus, we conclude that the proposed method provides

performance which is comparable to that achieved by iterative methods while incurring a fraction of

the computational cost. Fig. 4 shows the resulting beampattern for NT = 50 with ROIs defined by

θ ∈ [−44◦,−15◦] ∪ [15◦, 44◦]. Employing Algorithm 1 results in H(k) = 1, k = 8 − 18, 34 − 44.

The resulting MSEs are 0.0230 and 0.0175 for the proposed and SQP methods, respectively. Fig. 5

shows the computational complexity (as defined in Section V) as a function of the number of transmit

antennas for both the proposed and SQP methods with η = 0.0311. The results are shown in subfigures

due to the difference in scale, and the figures demonstrate the clear computational advantage of the

proposed method, especially as the number of transmit antennas becomes large. To further demonstrate

the difference in required computational time, we show a comparison of average run time required to

generate the beampattern pictured in Fig. 3. Fig. 6 shows the average run time required over 500 Monte

Carlo simulations on a personal computer running MATLAB. The figure reinforces the computational

advantage of the proposed method.
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Fig. 7. Beampatterns achieved by transmitting symbols via the proposed architecture and the CE waveforms obtained using

the cyclic algorithm from [13].
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Fig. 8. MSE of transmitted power as a function of the number of samples when transmitting symbols via the proposed

architecture and the cyclic algorithm from [13] with PAPR = 1.

Next, we demonstrate the performance achieved by the proposed radar architecture in Section IV. Fig.

7 shows the beampattern generated using the proposed method with orthogonal BPSK symbols drawn

from Hadamard code sequences of length 128. The resulting beampattern formed using the CE waveforms

described in [13] with PAPR = 1 is included for comparison (note that these waveforms come from an
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Fig. 9. Receive beampatterns after applying the MVDR beamformer for multiple targets of interest using the proposed

architecture and the CE waveforms generated by [13].

infinite alphabet). The desired beampattern is the same as in Fig. 3, and the resulting MSEs obtained by

averaging over 100 Monte Carlo trials are 0.0322 for the proposed method and 0.0328 for the SQP. Thus,

the proposed method provides a lower MSE and utilizes symbols from a finite alphabet while incurring

a much lower computational cost. Fig. 8 shows the MSE as a function of the number of samples when

transmitting via the proposed method and the method presented in [13]. Since it is possible to generate

truly orthogonal BPSK symbols, the proposed method results in a uniform MSE regardless of the number

of samples. The proposed method also requires a negligible computational time compared to the iterative

methods used in [13]–[15]. Moreover, the proposed architecture does not require the user to generate

the theoretical covariance matrix prior to designing the actual waveforms, which can present a large

computational cost as demonstrated in Fig. 5.

We conclude this section by demonstrating the receive beampattern after applying the adaptive min-

imum variance distortionless response (MVDR) or Capon beamformer. Consider the scenario in which

there are three targets of interest located at 0◦ and ±15◦ and one interfering target located at −50◦ that we

desire to suppress. Probing signals are transmitted using the proposed radar architecture and the method

presented in [13] with the same desired beampattern as in Figs. 3 and 7. The total transmit power is

equal to 1. The received signal is corrupted by white Gaussian noise with a variance equal to 0.01. Fig.

9 shows the average resulting beampatterns from the two methods after transmitting S = 16 symbols
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over 1000 Monte Carlo simulations. Due to the reliance on perfectly uncorrelated symbols, the proposed

method results in lower sidelobe levels as well as greater attenuation of the interfering target (about 3 dB

in this case). Note that the CE waveforms also incur a downward bias of 6.3 dB for the target located at

−15◦ and 4.93 dB for the target located at 15◦. In contrast, the proposed architecture results in biases

of 1.58 dB and 1.15 dB. Although not pictured, similar results are obtained for S = 256 transmitted

symbols, as well as with higher noise variance.

VII. CONCLUSION

We have demonstrated a closed-form method of covariance matrix design for the MIMO transmit

beamforming problem that exploits the properties of DFT coefficients. The resulting covariance matrix

fulfills both the positive semidefinite and uniform elemental power constraints, is computationally efficient,

and results in similar performance to that achieved by iterative solutions. We have also demonstrated a

radar architecture that can be used with a set of orthogonal signals to match the desired beampattern.

The resulting beampattern matches the theoretical pattern exactly, resulting in superior MSE performance

compared to existing methods. The architecture itself is computationally efficient and allows the user to

forego the usual preliminary step of designing the covariance matrix.

APPENDIX A

ORTHOGONALITY OF hk’S

Consider hk as defined by (14). This yields the resulting inner product

hH
k hl =

H(k)H(l)

N2
T

NT−1
∑

n=0

ej2π(l−k)n/NT

=
H(k)H(l)

N2
T

1− ej2π(l−k)

1− ej2π(l−k)/NT

=
H(k)H(l)

N2
T

sin (π(l − k))

sin
(

π
NT

(l − k)
) . (45)

The above result is clearly zero for l 6= k. In the case of l = k, we invoke L’Hopital’s rule to find the

limit

lim
(l−k)→0

H(k)H(l)

N2
T

sin (π(l − k))

sin
(

π
NT

(l − k)
)

= lim
(l−k)→0

H(k)H(l)

N2
T

πcos (π(l − k))

π
NT

cos
(

π
NT

(l − k)
)

=
H(k)2

NT
.
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The final result is then

hH
k hl =

1

NT
H(k)2δkl, (46)

where δkl denotes the Kronecker delta.

APPENDIX B

PROOF OF LEMMA 2

Consider the k-space steering vector defined in (20). Using the fact that h(n) = h∗(NT −n), it follows

that the vector eH(k)R has elements

[

eH(k)R
]

i
=

NT−1
∑

n=0

h∗(n)e
j 2πk(n+i)

NT , i = 0, ..., NT − 1. (47)

Thus, the power in k-space is

eH(k)Re(k) = NT

(

NT−1
∑

n=0

h(n)e
−j 2πkn

NT

)∗

= NTH
∗(k)

= NTH(k) (48)

APPENDIX C

BWNN FOR PHASED-ARRAY BEAM

For the phased-array beam, the covariance matrix R = 11H , where 1 represents the column vector of

all ones. The resulting power is

P (θ) = aHT (θ)11HaT (θ)

=

NT−1
∑

n=0

ej
2πd

λ
nsin(θ)

NT−1
∑

m=0

e−j 2πd

λ
msin(θ)

=

∣

∣

∣

∣

∣

1− ej
2πd

λ
NT sin(θ)

1− ej
2πd

λ
sin(θ)

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

sin
[

πd
λ NT sin(θ)

]

sin
[

πd
λ sin(θ)

]

∣

∣

∣

∣

∣

2

, (49)

which is the familiar beampattern of the uniformly weighted ULA [24]. The nulls occur where the

numerator is minimized and the denominator is not equal to zero. This is true when

πd

λ
NT sin(θ) = mπ, m = 1, . . . ,

NT

2
, (50)

resulting in nulls at the locations

θ = ±sin−1

(

λm

dNT

)

, m = 1, . . . ,
NT

2
. (51)
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