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ABSTRACT 

Selecting negative training sites is an important challenge to resolve when utilizing machine 
learning (ML) for predicting hydrothermal resource favorability because ideal models discriminate 
between hydrothermal systems (positives) and all types of locations without hydrothermal systems 
(negatives). The Nevada Machine Learning project (NVML) fit an artificial neural network to 
identify areas favorable for hydrothermal systems by selecting 62 negative sites where the research 
team had confidence that no hydrothermal resources exist. We compare the implications of the 
expert selection of negatives (i.e., the NVML strategy) against a random sample strategy, where it 
is assumed that areas outside the favorable structural ellipses defined by NVML are negative. 
Because hydrothermal systems are sparse, it is highly probable that, in the absence of a favorable 
geological structure, hydrothermal favorability is low. We compare three training strategies using: 
1) the positive and negative labeled examples from NVML; 2) the positive examples from NVML 
with randomly selected negatives in equal frequency as NVML; and 3) the positive examples from 
NVML with randomly selected negatives reflecting the expected natural distribution of 
hydrothermal systems relative to the total area. We apply these training strategies to the NVML 
feature data (input data) using two ML algorithms (XGBoost and logistic regression) to create six 
favorability maps for hydrothermal resources. When accounting for the expected natural 
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distribution of hydrothermal systems, we find that XGBoost performs better than the NVML 
neural network and its negatives. Model validation was less reliable using F1 scores, a common 
performance metric, than comparing probability estimates at known positives, likely because of 
the extreme natural class imbalance and the lack of negatively labeled sites. This work 
demonstrates that expert selection of negatives for training in NVML likely imparted modeling 
bias. Accounting for the sparsity of hydrothermal systems and all the types of locations without 
hydrothermal systems allows us to create better models for predicting hydrothermal resource 
favorability.  

1. Introduction 
The mean electric output capacity for conventional hydrothermal resources (identified and 
undiscovered) for Nevada’s portion of the Great Basin region is estimated to be ~5.7 GWe 
(Williams et al., 2008). Challenges associated with identifying viable geothermal resources 
(Richards and Blackwell, 2002) are evidenced in that only about 10% of resources have been 
developed (Ayling, 2020) and that many of the remaining undiscovered resources are blind (i.e., 
no easily identifiable surface expression; Coolbaugh et al., 2007). Research seeking to identify 
geothermal resources in the Great Basin has advanced from methods that relied dominantly upon 
expert decisions for the Nevada Play Fairway Analyses (Nevada PFA; Faulds et al., 2015a; Faulds 
et al., 2015b; Faulds et al., 2016; Faulds et al., 2017; Faulds et al., 2021b) to more recent data-
driven approaches, like the Nevada Machine Learning Project (NVML; Brown et al., 2020; Faulds 
et al., 2020; Faulds et al., 2021a; Smith, 2021; Smith et al., 2023), though fundamental challenges 
(e.g., low number of training data for the known presence or absence of a hydrothermal system) 
are still being addressed by infusion of expert knowledge to aid in the selection and engineering 
of input features and during the careful evaluation of model results.  

The NVML research team applied machine learning (ML) techniques to the dataset compiled 
under the Nevada PFA using an artificial neural network (ANN) to identify favorable areas for 
geothermal exploration (Fig. 1). In doing so, the NVML team labeled 83 known hydrothermal 
systems as positive and recognized that they needed negative sites for the ANN to develop a model 
that could separate the two classes. Hence, the NVML team selected 62 negative sites where the 
NVML research team had confidence that no hydrothermal resources existed.  

Mordensky et al. (2023) completed a similar analysis for hydrothermal favorability of the entire 
western United States using the input features of Williams et al. (2008). Similarly, Mordensky et 
al. (2023) had known positives (278) but no known negatives. Instead of selecting known 
negatives, it was assumed that due to the sparseness of hydrothermal systems (i.e., having few 
positives with most of the area as negative), most locations other than known hydrothermal 
systems are negative. These other locations were sampled randomly and assigned as negative, then 
this process was repeated many times to make sure an unlucky random sample did not bias the 
final model. Mordensky et al. (2023) also accounted for class imbalance (i.e., the unequal 
distribution) of positive to negative hydrothermal systems. Both the random sampling of negatives 
and class imbalance problems were addressed by using a custom training strategy tailored for 
geothermal systems. The results from Mordensky et al. (2023) demonstrated that ML algorithms 
could be used to remove or minimize the need for expert decisions employed previously in 
Williams et al. (2008).  
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In the context of supervised ML classification, a lack of examples can potentially lead to overfitting 
(see generally Mordensky et al. 2022 for additional information regarding supervised ML 
classification with geoscience data). Overfitting occurs when the algorithm ‘memorizes’ the 
training data and performs poorly when faced with new, unseen testing data. Hence, we ask how 
the differences between the NVML and Mordensky et al. (2023) training strategies influence 
model predictions when using the PFA data, and we seek to identify the best strategy for detecting 
hydrothermal resources using ML techniques. 

 

Figure 1: Nevada Machine Learning project (NVML) a) study area and b) favorability map. White points are 
negative training/testing examples defined through expert decisions. Red points are the positive examples 
(i.e., known hydrothermal systems). Favorability scores from the artificial neural network (ANN) have 
been normal score transformed for easy comparison with the results below from our study. The base 
map has been made using data from Natural Earth. 
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2. Methods 
We conduct our comparison of the NVML and Mordensky et al. (2023) training strategies using 
two supervised ML algorithms: logistic regression and eXtreme Gradient Boosting (XGBoost). 
Logistic regression is a simple, linear classification algorithm that produces a probability value for 
every example and then classifies the example as positive or negative using a decision threshold 
(commonly chosen to be 0.5; Berkson, 1944; Berkson, 1951). XGBoost is a non-linear, boosted 
decision-tree approach, in which a series of decision trees (i.e., estimators) produce a probability 
for each example and then classify the example using a decision threshold (again, commonly 
chosen to be 0.5; Chen and Guestrin, 2016). Because logistic regression, XGBoost, and ANNs all 
create probabilities differently and in ways that may not be directly comparable, all favorability 
maps shown herein are the normal score transform (see generally Pyrcz and Deutsch, 2018) of the 
model-specific predicted probabilities. The post-transformed prediction values are shown as 
geothermal favorability. Because a normal score transform is a quantile-to-quantile transform, 
most and least favorable parts of a map occupy the same total area, allowing for an easy 
comparison where methods agree about the most favorable locations.  

For the remainder of this section, we briefly describe the data processing, exploratory data analysis, 
training strategies, and hyperparameter optimization. 

2.1 Data Processing and Exploratory Data Analysis 

NVML gridded 96,000 km2 of the Great Basin into 1,728,000 250-m-by-250-m cells, in which 83 
cells contain a known hydrothermal system and were labeled as positive (Smith et al., 2021); 62 
cells were labeled as negative by expert examination. The remaining cells were unlabeled. The 
labeled and unlabeled cells were populated with data from 11 features (i.e., independent input 
datasets). Ten of the 11 features were interpolated maps of the following geologic properties: strain 
rate, elevation, distance to nearest Quaternary fault, fault recency, horizontal gravity gradient, 
seismic density, heat flow, magnetic field gradient, slip rate, slip and dilation tendency (Fig. 2). 
The eleventh feature was crafted by defining ellipses that contain geologic structures deemed by 
experts to be favorable for the occurrence of hydrothermal systems (i.e., known favorable 
structural setting; Fig. 3; Faulds et al., 2016; Brown et al., 2020). 
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Figure 2: Maps of the ten Nevada Machine Learning project (NVML) input features used for analysis herein. 
Red represents high values. Blue represents low values. Positives (red dots) and negatives (white dots) 
are training data used by NVML. 
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Figure 3: Map of the eleventh Nevada Machine Learning project (NVML) feature (favorable structural setting 
ellipses [red areas]) used for the artificial neural network (ANN) model (Fig. 1), but not used as an input 
feature for analyses herein. For random negative sampling strategies, negatives were selected from areas 
outside of ellipses (i.e., blue areas). Positive (red dots) and negative (white dots) show training data used 
by NVML. 

 

To conduct a true comparison between training strategies while minimizing expert decisions, we 
use the same 10 features interpolated from maps for all models developed herein (Fig. 2). As is 
common practice in ML, standardized features are used as input for each ML model (i.e., subtract 
the mean and divide by the standard deviation of each input feature). 

As part of exploratory data analysis, we inspect the linear correlation of the standardized features 
using the Pearson correlation coefficient (see generally Lee Rodgers and Nicewander, 1988). The 
Pearson correlation is a statistical measure that quantifies the linear relationship between two 
variables by providing values between -1 and 1, where -1 indicates a strong negative correlation, 
1 indicates a strong positive correlation, and 0 indicates no correlation. 

We compare the distribution of NVML labeled data to the full range of the input features using 
cumulative distribution functions (CDFs). A CDF represents the distribution of data, so comparing 
CDFs for positive, negative, and unlabeled data allows a visual evaluation of whether most positive 
and negative data plot in discrete intervals within the larger range of the input feature. 

2.2 Training Strategies 

We compare three training strategies: 1) the NVML training strategy; 2) an intermediary strategy 
that implements random sampling with an equal number of positives and negatives to the NVML 
strategy (the Random Sampling training strategy); and 3) the training strategy from Mordensky et 
al. (2023) that implements random sampling and accounts for class imbalance (the Natural Class 
Imbalance training strategy). The NVML strategy uses the same negative and positive examples 
from NVML (i.e., 62 negative sites and 83 positive sites). The Random Sampling and Natural 
Class Imbalance strategies use the same known positives as the NVML strategy, but randomly 
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select negative sites from outside the favorable structural ellipses (blue area on Fig. 3). The 
Random Sampling strategy samples 62 negatives, and the Natural Class Imbalance strategy selects 
the number of negative sites corresponding to the expected positive-negative natural class 
imbalance (i.e., a roughly 1:5,100 positive-to-negative ratio). Following Mordensky et al. (2023), 
we estimate that one in four hydrothermal systems have already been found in the study area. 
Although this estimate is approximate, Mordensky et al. (2023) demonstrated that the 
corresponding model predictions are insensitive within the expected range of uncertainty (see 
Mordensky et al. 2023 for complete details).  

2.3 Hyperparameter Optimization 

We optimize hyperparameters using 60 80:20 train-test splits with five-fold cross-validation to 
prevent possible bias from any singular train-test split. For the Random Sampling and Natural 
Class Imbalance strategies, new sets of random negatives are selected with each train-test split.  

We optimize each model by maximizing the F1 score given in Equation 1 as: 

 𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑆𝑆𝑇𝑇𝑆𝑆 𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃

𝑇𝑇𝑆𝑆𝑇𝑇𝑆𝑆 𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃 + 1
2 (𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑆𝑆 𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑆𝑆 𝑁𝑁𝑆𝑆𝑁𝑁𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃)

 (1) 

Final hyperparameters are selected by finding the set of hyperparameters that give the largest F1 
score from all of the models considered. We fit a final model using all the labeled data, the median 
optimal hyperparameters from the 60 train-test splits, and one last random sample of negative sites 
for the Random Sampling and Natural Class Imbalance strategies. 

To test and prevent overfitting with XGBoost, we impose loss-of-generalization early stopping 
(see generally Prechelt, 2002). With generalization loss, the fitting of new estimators stops 
immediately after the loss (a metric that is penalized by decreased model performance) increases. 
We train a final model for each XGBoost approach using the median estimator at which early 
stopping is engaged from the 60 train-test splits.  

2.4 Measures of Feature Importance 

For every modeling approach, we evaluate the relative importance of each input feature (Fig. 2) in 
making predictions. We use three measurements of feature importance in this study to explore the 
variability between measures: 1) sensitivity analysis using an F1 score; 2) sensitivity analysis using 
the area under the receiver operating characteristic curve (i.e., ROCAUC), and 3) Shapely Additive 
exPlanation (i.e., SHAP) values (see Mordensky et al., 2023 for a more detailed summary). To 
allow comparison between the different measures, each measure is min-max normalized to a zero-
to-one scale. 

 

3. Results 
In this section, we briefly describe the input feature data, present model performance, provide 
favorability predictions, and supply feature importance. 
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3.1 Exploratory Data Analysis 

The distribution of NVML values for NVML-labeled positive and negative sites generally serve 
as upper and lower bounds for the distribution of unlabeled data for five features (e.g., strain rate, 
seismic density, heat flow, fault distance, and slip rate; Fig. 4). However, the values for NVML 
positives and negatives do not bound the distributions of unlabeled values for five features (i.e., 
elevation, magnetics, fault recency, gravity, and slip and dilation tendency. 

In terms of the Pearson correlation coefficient, strain rate is the feature most correlated with the 
greatest number of other features (e.g., seismic event density and elevation; -0.59 and 0.33, 
respectively; Fig. 5). Fault distance and gravity are least correlated with other features (e.g., ≤ |-
0.15| and |-0.20|, respectively).  
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Figure 4: Cumulative distributions of the standardized features. The shaded blue area corresponds to the 
unlabeled examples. The red line corresponds to positive-labeled examples. The black line corresponds 
to the negative examples selected by the Nevada Machine Learning project (NVML). Separation of 
cumulative distribution functions show that distributions are markedly different, so a difference between 
the positive and negative lines implies the feature may be useful for discriminating between the positive 
and negative training sites. 
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Figure 5: Pearson correlation matrix of the different features for all examples. Brighter colors indicate a higher 
correlation between pairs. Blue indicates a negative correlation, and red indicates a positive correlation. 

 

3.2 Optimal Hyperparameter Values and Model Performance 

We provide the median optimal hyperparameter values and loss-vs-estimator relationships of the 
60 train-test splits for early stopping in Appendix A.  

The NVML training strategy has the best performance in terms of F1 scores (Fig. 6). The Natural 
Class Imbalance strategy produces the lowest F1 scores and only correctly predicts a small number 
of known positives (Table 1). By measure of the F1 score, XGBoost outperforms logistic 
regression on the NVML and Natural Class Imbalance strategies (Fig. 6), although the differences 
in the performance in F1 score is statistically significant only for the NVML strategy (p-value < 
0.002). A more detailed view of the models’ classification performance (Table 1) reveals that 
training strategies with randomized selection of negatives sites (i.e., the Random Sampling and 
Natural Class Imbalance strategies) results in a higher predicted number of false positives resulting 
in lower F1 scores (see Equation 1). 
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Figure 6: Box-and-whisker plots of F1 score for test data for each machine learning strategy with their 
corresponding algorithm across 60 train-test splits grouped by training strategy. Logistic regression is 
blue, and XGBoost is red. Boxes extend from the first quartile (Q1) to the third quartile (Q3) with a red 
line at the median. The whiskers extend 1.5 times the inter-quartile range (i.e., 1.5 × [Q3 – Q1] while F1 
score > 0). Flier points are individual points with values beyond the whiskers. Mean F1 scores are 
provided in the same column as their respective box-and-whisker plot. Abbreviations: NVML Strat: 
Nevada Machine Learning Strategy, RS Strat: Random Sampling Strategy, NCI Strat: Natural Class 
Imbalance Strategy. 
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Table 1: Confusion matrices of training and testing for logistic regression and XGBoost for the three strategies 
plus/minus one standard deviation. True Positive corresponds to a positive-labeled cell predicted 
correctly by the model. True Negative corresponds to a negative-labeled cell predicted correctly by the 
model. False Negative corresponds to positive labels wrongly predicted as negatives. False Positive 
corresponds to a negative-labeled cell wrongly predicted as positive. We note that there are no True 
Negatives or False Positives with the Random Sampling and Natural Class Imbalance strategies because 
the labeled negatives are truly unlabeled examples that may contain unlabeled positives, but we refer to 
positives predicted from unlabeled cells as False Positives and negatives predicted from unlabeled cells 
as True Negatives. Abbreviations: TN: True Negative, TP: True Positive, FP: False Positive, FN: False 
Negative, NVML Strat: Nevada Machine Learning Strategy, RS Strat: Random Sampling Strategy, NCI 
Strat: Natural Class Imbalance Strategy. 

NVML Strat. Logistic Regression NVML Strat. XGBoost 
Training Training 

TN 38 ± 7 FP 13 ± 7 TN 38 ± 5 FP 13 ± 5 
FN 9 ± 5 TP 58 ± 6 FN 2 ± 1 TP 65 ± 3 

Testing Testing 
TN 9 ± 2 FP 5 ± 3 TN 8 ± 2 FP 5 ± 2 
FN 4 ± 2 TP 14 ± 2 FN 2 ± 2 TP 16 ± 3 

RS Strat. Logistic Regression RS Strat. XGBoost 
Training Training 

TN 27 ± 7 FP 23 ± 6 TN 29 ± 7 FP 22 ± 7 
FN 6 ± 3 TP 61 ± 4 FN 2 ± 2 TP 65 ± 3 

Testing Testing 
TN 5 ± 2 FP 7 ± 2 TN 5 ± 2 FP 8 ± 3 
FN 3 ± 1 TP 15 ± 2 FN 3 ± 2 TP 15 ± 3 

NCI Strat. Logistic Regression NCI Strat. XGBoost 
Training Training 

TN 1,362,217 
± 1897 

FP 5,680 ± 
1897 

TN 1,366,237 ± 
971 

FP 1659 ± 971 

FN 61 ± 2 TP 6 ± 2 FN 31 ± 26 TP 36 ± 26 
Testing Testing 

TN 86,433 ± 
126 

FP 362 ± 126 TN 86,688 ± 62 FP 107 ± 62 

FN 17 ± 1 TP 1 ± 1 FN 17 ± 1 TP 1 ± 1 
 

3.3 Model Predictions 

The maps created using the NVML training strategy with logistic regression and XGBoost exhibit 
a west-east trend in predicted geothermal favorability (Fig. 7). Both approaches show a general 
inclination to predict the west side of the study area as being more favorable to hydrothermal 
activity than the east side of the study area. When using the Random Sampling training strategy 
high predictions instead correspond to locally low elevation (i.e., basins) and low favorability 
corresponds to locally high elevation (i.e., ranges; Fig. 8). The prediction maps resulting from the 
Natural Class Imbalance strategy appear much like those from the Random Sampling strategy (Fig. 
9). 
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Figure 7: Geothermal favorability maps from using the Nevada Machine Learning training strategy (NVML 
Strategy) with a) logistic regression; and b) XGBoost with early stopping (at 13 estimators). Geothermal 
favorability is the normal score transform of probability. 
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Figure 8: Geothermal favorability maps from using the Random Sampling training strategy with a) logistic 
regression; and b) XGBoost with early stopping (at 5 estimators). Geothermal favorability is the normal 
score transform of probability. 
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Figure 9: Geothermal favorability maps from using the Natural Class Imbalance training strategy with a) 
logistic regression; and b) XGBoost with early stopping (at 50 estimators). Geothermal favorability is the 
normal score transform of probability.  

3.4 Feature Importance 

The relative ranking of feature importance by different measures (Fig. 10) depicts a strong 
inclination of all models for one of two features (elevation or strain rate). For the NVML strategy, 
strain rate is the dominant feature, whereas elevation is the dominant feature for the Random 
Sampling and Natural Class Imbalance strategies. 
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Figure 10: Median normalized feature importance values from the 60 train-test splits using the different 
strategy-algorithm approaches. Abbreviation: NVML Strat. LR (red) – Nevada Machine Learning 
strategy Logistic Regression; RS Strat. LR (orange) – Random Sampling strategy Logistic Regression; 
NCI Strat. LR (yellow) – Natural Class Imbalance strategy Logistic Regression; NVML Strat. XGB 
(green) – Nevada Machine Learning strategy XGBoost; RS Strat. XGB (blue) – Random Sampling 
strategy XGBoost; NCI Strat. XGB (purple) – Natural Class Imbalance strategy XGBoost; ROCAUC 
(triangle) – Area Under the Receiver Operating Characteristic Curve; SHAP (diamond) – Shapely 
Additive explanation. 

4. Discussion 
Although F1 scores might suggest the poorest performer is the Natural Class Imbalance training 
strategy (Fig. 6), the F1 scores may be partially misleading because the “false positives” upon 
which the metric relies (see Equation 1) may not truly be false positives in the Random Sampling 
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and Natural Class Imbalance training strategies because these “labeled negatives” may contain 
unlabeled positives. Therefore, we consider another metric of success - the map that gives the 
majority of the known hydrothermal systems the highest favorability scores implicitly associates 
known hydrothermal systems with the smallest geographical area. If the goal is to identify discrete 
areas for exploration, then this map reduces the effort to only this smaller area. This metric, first 
proposed in Faulds et al. (2016), compares the relative predictions of known positives with the 
greater distribution of the unlabeled examples (see Mordensky et al. 2023 for additional details). 
Curves for known positive and unlabeled cells with greater overlap indicate more alike 
distributions of predicted values, whereas curves for known positive cells that overlap less with 
the curve for unlabeled cells indicate better prediction of the known positive cells. Under this 
metric the Natural Class Imbalance strategy with XGBoost outperforms all other strategies (Fig. 
11) and has the narrowest zone for high favorability compared to all maps (Fig. 9) demonstrating 
that accounting for the expected natural class imbalance in randomized sites in hydrothermal 
systems leads to better predictions and results in better models for predicting geothermal 
favorability. 

The NVML ANN is the second best-performing model we consider, with its known positives (83) 
and negatives (62) outperforming all but the Natural Class Imbalance strategy with XGBoost 
approach (Fig. 11). This greater performance could be explained in part because the NVML team 
included structural information as expert-identified ellipses (Fig. 3) as an input feature to their 
ANN (Fig. 1). The structural ellipses have two functions: 1) encapsulating the positive sites (i.e., 
most NVML positive sites are within ellipses); and 2) narrowing the potential geospatial 
distribution of positives (i.e., positive sites are located within favorable structural settings). These 
two factors combined allow the ANN to better select areas for the occurrence of potential (i.e., 
undiscovered) positive sites that are consistent with the structures associated with hydrothermal 
systems in the study area (Faulds et al., 2006; Faulds et al., 2011; Faulds and Hinz, 2015). 

Overall, all resulting maps (Figs. 7, 8, 9) exhibit to some degree a west-east bias in the favorability 
prediction, regardless of the randomization of the negative sites. The analysis of feature importance 
(Fig. 10) shows that elevation and strain rate rank as the most important features. However, these 
features are correlated to each other (Fig. 5), and both have a general east-west trend (Fig. 2). The 
biased predictions may reflect, in part, the spatial distribution of positive sites being primarily in 
the west (controlled by basin-bounding faults that govern most geothermal systems in the Great 
Basin; Faulds et al., 2011; Faulds and Hinz, 2015) that result in the algorithms associating 
conditions in the west (i.e., high strain rate, low elevation) with positive predictions, and limiting 
the models’ ability to learn from other local variation in feature values.  

Another perspective to consider is the limitation of the data itself. The input data vary smoothly, 
(Fig. 2) whereas geological conditions do not exhibit this behavior. This smoothness in the input 
data may lead to inaccuracies in interpolated values, reducing their fidelity in representing true 
geological conditions. 
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Figure 11: Cumulative distribution function (CDFs) of favorability scores for known geothermal systems 
relative to most other map locations (i.e., unlabeled cells). CDFs for known hydrothermal systems that 
plot further to the right represent models that predict known systems as being in a smaller area of the 
map composed of the highest favorability scores. Shaded blue provides the cumulative distribution of 
predictions for unlabeled cells. Lines represent the cumulative distributions of predictions for positive-
labeled cells from the different approaches. Abbreviations: NVML Strat. LR (solid green line) – Nevada 
Machine Learning Strategy with Logistic Regression; NVML Strat. XGB (dashed green line) – Nevada 
Machine Learning Strategy with XGBoost; RS Strat. LR (solid black line) – Random Sampling Strategy 
with Logistic Regression; RS Strat. XGB (dashed black line) - Random Sampling Strategy with XGBoost; 
NCI Strat. LR (solid light blue line) – Natural Class Imbalance Strategy with Logistic Regression; NCI 
Strat. XGB (dashed light blue line) - Natural Class Imbalance Strategy with XGBoost; NVML ANN 
(solid yellow line) - Nevada Machine Learning Artificial Neural Network. 

5. Conclusion 

In this study, we compare the predictive performance of different models trained by randomly 
selecting negative sites for highly sparse hydrothermal systems with the Nevada Machine Learning 
Project’s artificial neural network, which used negative sites where the research team had 
confidence that no hydrothermal resources exist. In doing so, we demonstrate that the expert 
selection of negative sites imparted modeling bias to the Nevada Machine Learning Project’s 
artificial neural network. Furthermore, we demonstrate that accounting for the expected natural 
class imbalance in randomized sites leads to better performance with XGBoost emerging as the 
top-performing training approach. 
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Appendix A: Hyperparameters and Early Stopping 

The median optimal hyperparameters from the 60 train-test splits (Table A1) are used to train the 
final models using all the data. 

Table A1: Median optimal hyperparameters from the 60 train-test splits. Abbreviations: Inv. Reg. Str: Inverse 
Regularization Strength, LR: Logistic Regression, XGB: XGBoost, NVML Strat: Nevada Machine 
Learning Strategy, RS Strat: Random Sampling Strategy, NCI Strat: Natural Class Imbalance Strategy, 
GL: Early stopping using generalization loss, Est: Estimator. 

Strategy & Algorithm Class Weight Inverse Reg. Str 
NVML Strat. LR 1.5 ± 0.88 10.2 ± 24.4 
RS Strat. LR 1.9 ± 0.84 2.1 ± 3.5 
NCI Strat. LR 1700 ± 96.31 0.0001 ± 0.04 

 

Strategy & Algorithm Class Weight Learning 
Rate 

Max 
Depth 

GL Est. 

NVML Strat. XGB 1.6 ± 0.3 0.08 ± 0.06 3 ± 0.6 13 ± 9.2 
RS Strat. XGB 2.4 ± 0.7 0.11 ± 0.09 3 ± 0.8 5 ± 4 
NCI Strat. XGB 1800 ± 96.4 0.15 ± 0.03 4 ± 0.9 50 ± 27 

 

The median estimator for early stopping in the 60 train-test splits is used as the max depth in the 
final XGBoost models to prevent overfitting. We investigate one form of early stopping (loss of 
generalization), which is dependent upon loss-vs-estimator relationships. Training loss and 
validation loss generally decrease as early estimators are added (Fig. A1), but training loss 
generally decreases at a faster rate than the validation loss in the NVML and Random Sampling 
strategies. With the Natural Class Imbalance strategy, the validation and training loss decrease at 
roughly the same rate, suggesting that the larger number of selected negatives in the Natural Class 
Imbalance strategy reduces the potential for train-test splits being unrepresentative like some train-
test splits when training with the NVML and Random Sampling strategies. 
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Figure A1: Loss-vs-estimator relationships for XGBoost in the Nevada Machine Learning project (NVML), 
Random Sampling and Natural Class Imbalance training strategies. Training loss (pink) and validation 
loss (green) generally decrease as early estimators are added, but training loss decreases at a faster rate 
than the validation loss in the NVML and Random Sampling training strategies. The median estimator 
for early stopping using loss in generality (GL Est) is marked by a blue dashed line. 
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