
 1

An Investigation of Tracing Overheads on High End Systems

Kathryn Mohror and Karen L. Karavanic

{kathryn, karavan} @ cs.pdx.edu
Department of Computer Science

Technical Report TR-06-06
Portland State University

P.O. Box 751
Portland, OR 97207-0751

Abstract -- Although event tracing of parallel applications offers highly detailed performance information,
tracing on current leading edge systems may lead to unacceptable perturbation of the target program and
unmanageably large trace files. High end systems of the near future promise even greater scalability
challenges. In this work we identify and quantify the overheads of application tracing. We report results for
two ASC Purple Benchmarks with different communication characteristics: SMG2000, which exhibits an
extremely high message rate, and SPhot, an embarrassingly parallel application with relatively little
communication. We investigate several different sources of overhead related to tracing: instrumentation,
differing trace buffer sizes, periodic buffer flushes to disk, system changes, and increasing numbers of
processors in the target application. Our results show that tracing overhead is affected by differences in
system software, as well as the choice of trace buffer size. As expected, the overhead of instrumentation
correlates strongly with the number of events; however, our results indicate that the overhead of writing
the trace buffer increases with increasing numbers of processors.

1. Introduction
Event tracing of parallel applications offers a highly detailed view of application behavior that can be

used to diagnose an important range of performance problems: for example, patterns of communication
between processes may indicate a poor choice of MPI operation; slow communications between particular
pairs or groups of nodes may indicate a poorly performing communication link or card, or a problem with a
queue. A number of well-documented cases demonstrate that tracing downsized versions of large
computations to improve the efficiency can miss important behaviors. Kale et al [KaKu03] describe a
performance tuning study of the NAMD simulation code that includes several instances where particular
performance issues only emerged at runs above 1000 processors. Arnold et al [ArAh06] also describe a
study in which scientists at Lawrence Livermore National Laboratory (LLNL) encountered hangs of a
Visualization Streams for Ultimate Scalability application on BlueGene/L (BG/L) that only occurred at
runs of 8192 processes or more. These case studies show that tracing tools remain important for
performance tuning, and that these tools must be able to scale to large numbers of processes.

However, the complexity of modern systems, and the scale of the current generation of simulation codes,
stress the limits of tracing as a useful performance measurement approach. Terascale systems of today, and
petascale systems of the near future, will employ tens to hundreds of thousands of processors to achieve
desired FLOP rates. For example, BG/L, installed at LLNL, includes 131,072 processors. Red Storm,
installed at Sandia National Laboratory, includes 26,544. Error and perturbation are inherent in the
measurement of computing systems; we cannot completely eliminate measurement perturbation, nor can
we exactly quantify the perturbation caused by a particular measurement tool. Pushing tracing technology
to higher and higher scales drives up the overall perturbation, yielding unmanageably large trace files and
less accurate results, and in many cases breaking the measurement tools completely. Even if the larger
trace files can be successfully obtained, many trace analysis and visualization tools fail when trying to
process them or display the results.

Determining which approach can be used in different scales requires information about trace tool scaling
behavior. To address this need we have conducted a detailed empirical study of trace tool behavior.

We present the results of a series of experiments designed to identify and quantify the overheads
incurred when tracing the execution of an application on a representative current architecture. We divide
the total trace overhead into the overhead of trace instrumentation and the overhead of writing the trace
files, and examine how these overheads change as we scale to larger numbers of events and larger numbers

 2

of processors. We present results from runs that used two different freely-available tracing tools, TAU and
MPE. We studied two ASC purple benchmark applications: one, SMG2000 with a very high message rate;
the other, SPhot, with a fairly low level of communication.

Previous work has shown that the overhead of tracing scales with the number of events; our results
confirm this. However, breaking down the total trace overhead allows us to demonstrate that there is an
important difference in the scaling characteristics between the instrumentation overhead and the writing
overhead; the instrumentation overhead scales with the number of events, but the write overhead scales
with the number of processes, even if the number of events remains fairly stable. The results demonstrate
that behavior of the parallel file systems typically installed with high end systems today is a significant
factor in determining the performance of a tracing tool.

2. Related Work
Because perturbation is intrinsic to measurement [Ga86], research focuses on techniques to lower or

limit the overheads, remove the overheads in the resulting data, and to measure and model the overheads.
Researchers have investigated methods to lower the overheads of tracing [Kn03,KrGr96,OgSc93,

ReRo93,ShMa06,YaDa00] and to limit the amount of overhead present in the resulting data [HoMi96]. The
Event Monitoring Utility (EMU) was designed to allow the user to adjust how much data was collected in
each trace record, thereby altering the amount of overhead in each measurement [KrGr96]. The authors
found the writing overhead to be the largest monitoring overhead in the measured program. TAU [ShMa06]
addresses instrumentation overhead by allowing users to disable instrumentation in routines that are called
very frequently and have short duration. TAU also includes a tool that uses profile data to discover which
functions should not be instrumented, and feeds this information to the automatic source instrumentor.

Several researchers have developed techniques to attempt to remove overheads from the reported data
[FaKe96,Ga94,WoMa05,WiAn93,YaLi93]. Yan and Listgarten [YaLi93] specifically addressed the
overhead of writing the trace buffer to disk in AIMS and were able to remove 100% of this overhead. They
generate an event marker for these write operations and remove their overhead in a post-processing step.

Overhead studies can be found in the literature, although their focus and content differ from ours.
Chung et al [ChWa06] evaluate several profiling and tracing tools on BG/L in terms of total overhead and
write bandwidth, and note that the overheads of tracing are high and that the resulting trace files are
unmanageably large. They suggest that the execution time overhead is substantially affected by generation
of trace file output, but provide no measurements for their claim.

Two research efforts have developed models of the overheads in measurement systems. Malony et al.
developed a model to describe the overheads of trace data and describe the possible results of measurement
perturbation [MaRe92], then extended it to cover the overheads of SPMD programs [SaMa93]. They noted,
as we do, that the execution time of traced programs was influenced by other factors than just the events in
each processor independently. However, they did not explore this further. Waheed et al. [WaRo98]
explored the overheads of trace buffer flushing and modeled two different flushing policies [WaMe95].
They found that the differences between the policies decreased with increased buffer sizes.

3. Experiment Design
Tracing a parallel application includes a number of steps: execution of code that causes a series of

timestamped event records to be created in a local memory trace buffer; periodic trace buffer flushes to
disk; and, with some tools, a merge step that combines trace files generated on different nodes into a single
trace. In our work we ignore the final merge step, since it is optional in some cases. Our goal is to quantify
the tracing overhead in terms of two components: the overhead due to the instrumentation, and the
overhead due to writing the trace buffers to disk. We compared the wall clock times of executions that
contained trace instrumentation and wrote trace files to disk, executions that contained trace
instrumentation, but did not write the trace files to disk, and normal executions with no instrumentation in
the program. In addition, we examined how the tracing overheads changed as we scaled the application to
larger numbers of processors. We use the following naming convention for the experiments in this paper:
the first part of the name describes the trace buffer size used, e.g. 1.5Buff describes a 1.5 MB buffer; the
second part of the name indicates whether or not the program contained trace instrumentation, instr or
noInstr; the third part tells whether or not the executions wrote the trace buffer to disk, write or noWrite.

 3

3.1 Metrics
The Metrics included in our measurements are:

• Wall clock time. Both benchmarks measure wall clock time with MPI_Wtime. The
resolution of MPI_Wtime on MCR is microseconds. The wall clock time is measured
after MPI_Init and before MPI_Finalize in all cases. The instrumentation overhead
we do not measure includes any tool setup or finalization overhead, as well as the
overhead of measuring any function calls before/after the timer is started/stopped. The
writing overhead our measurements do not capture are trace file creations, final trace
buffer flushes before file closure, trace file closure, and, in the case of MPE, trace file
merging.

• CPU clock time. We use the native benchmark measurements for CPU time.
• Write overhead. The overhead of writing the buffer was computed by subtracting the

average total wall clock time of the runs that did not write the trace buffer from the
average total wall clock time of the runs that did write the trace.

• Instrumentation overhead. The overhead of instrumentation was computed by subtracting
the average total wall clock time of the noBuff_noInstr_noWrite runs from the average
total wall clock time of the runs that did not write the trace buffer.

3.2 Applications

We studied two applications from the ASCI Purple Benchmark suite, SMG2000 [BrFa00] and SPhot
[Sb06]. SMG2000 (SMG) is characterized by an extremely high rate of messages: in our four process runs,
SMG executed 434,272 send and receive calls in executions that took approximately 15 seconds. In
contrast, SPhot is an embarrassingly parallel application; in a four-process, single-threaded execution of
512 runs with a total execution time of 350 seconds, the worker processes pass 642 messages, and the
master process passes 1926 messages.

SMG is a parallel solver of linear systems arising from finite difference, finite volume, or finite element
discretizations of the diffusion equation, -∇ ⋅ (D∇u) + σu = f, in two and three dimensions. Two SMG
parameters that are configurable at run time are: the problem size per processor, defined to be nx * ny * nz,
and the processor topology, Px * Py * Pz. For our scaling experiments, we kept the problem size per
processor constant, thereby increasing the total problem size. As we increased the numbers of processors,
we altered the processor topology to P * 1 * 1, where P was the number of processors in the run. SMG
reports values for six metrics in its output that correspond to wall and CPU clock times for the three phases
of the execution: Struct Interface, SMG Setup, and SMG Solve. We used the values from these metrics to
compare the performance of the executions. We used the sum of the wall clock times of each of the phases
as the total wall clock time for this application.

SPhot is a two-dimensional photon transport code that tracks photons through a cylindrically symmetric
spherical domain on a logically rectilinear, two-dimensional mesh. SPhot uses both MPI and OpenMP for
parallelism; we used only one thread for each MPI process. SPhot was compiled with the Intel Fortran
compiler, version 9.1. We used two different versions of SPhot runs in our study: SPS is a strong scaling
version -- we kept the problem size the same while increasing the number of processes; SPW is a weak
scaling version -- we kept the problem size per processor uniform, thus increasing the total problem size
with the number of processors. We configured these approaches by changing the Nruns parameter in the
input file input.dat, which controls the total amount of work done in a single execution. For strong scaling,
we kept Nruns constant at 512 for all processor counts; for weak scaling, we set Nruns equal to the number
of MPI ranks. SPhot reports the wall clock time of the execution. We used this measurement to compare
the performance of the different executions of SPW and SPS.

Figure 1 shows the scaling behavior of the uninstrumented applications. For SMG, we see that the
execution time increases slightly with the number of processes. For SPS, the execution time decreases with
increasing numbers of processors; the performance of SPW increases slightly with increasing numbers of
processors.

 4

Figure 1. Performance of Uninstrumented Executions

3.3 Generating the Traces

We used two different tracing tools for our experiments: TAU version 2.15.1 [ShMa06] and the
MultiProcessing Environment (MPE2) version 1.0.3p1 [ZaLu99]. We built each of these tools from source
code using GNU compilers version 3.4.4.

We configured TAU, using the script provided, to do tracing only. We used version 3.4 of the Program
Database Toolkit (PDT) [LiCu00] to automatically instrument the source code. We built several versions of
TAU: for the noWrite versions we commented out the one line in the trace buffer flush routine of the TAU
source that actually calls the write system call. We altered the number of records stored in the trace
buffer between flushes, by changing the #define for TAU_MAX_RECORDS in the TAU source for each
size and rebuilding, to test four different buffer sizes: 0.75MB (32,768 TAU events), 1.5 MB (default size
for TAU; 65,536 TAU events), 3.0 MB (131,072 TAU events), and 8.0 MB (349,526 TAU events). TAU
does not merge the individual trace files at runtime. We used the default level of instrumentation for TAU,
which instruments all function entries and exits.

When used for logging MPI events, MPE uses the MPI profiling interface to capture the entry and exit
time of MPI functions as well as details about the messages that are passed between processes, such as the
communicator used. To produce an MPE library that didn’t write the trace buffer to disk, we commented
out three calls to write in the MPE logging source code. We also had to comment out one call to
CLOG_Converge_sort because it caused a segmentation fault when there was no data in the trace files.
This function is called in the MPE wrapper for MPI_Finalize, so it did not contribute to the timings
reported in the SMG metrics. We altered the buffer sizes by changing the value of the environment variable
CLOG_BUFFERED_BLOCKS. We also set the environment variable MPE_LOG_OVERHEAD to “no”
so that MPE did not log events corresponding to the writing of the trace buffer. In MPE, each MPI process
writes its own temporary trace file. During MPI_Finalize, these temporary trace files are merged into
one trace file, and the temporary trace files are deleted. The temporary and merged trace files were written
to the Lustre file system. We generated trace files in the CLOG2 MPE format. We used two different buffer
sizes: 1.5 MB (24 CLOG buffered blocks), and 8.0 MB (default size for MPE; 128 CLOG buffered blocks).
For SPW, we altered the SPhot source to call MPE logging library routines to log events for all function
calls, to more directly correspond to the default TAU behavior. We refer to this as “MPc” for MPE with
customized logging. For the SPW MPc experiments, we disabled the trace file merge step in MPI_Finalize,
because it became quite time consuming with larger trace files.

3.4 Experiment Management

For each application build and run, we collected detailed information about the system and execution
using the PerfTrack [KaMa05] experiment management tool. We used PerfTrack wrapper scripts to build
the executables and launch the executions. For each set of executions, PerfTrack collected details such as
the time of submission, operating system version, environment variable settings, information about
dynamic libraries used, and input parameters to the application. After the executions completed, we used
PerfTrack to enter the performance data and execution details that had been collected into a database, for
later retrieval and analysis.

 5

Figure 2. Experiment Environment.

The MPI processes in our experiments, represented by purple circles in the diagram, ran on a subset of
the 1024 compute nodes of MCR. MPI communication between the processes traveled over the
Quadrics QsNet Elan3 interconnect, shown by the purple dashed line. The I/O traffic for the Lustre file
system, represented by the blue dotted line, also traveled over the Quadrics interconnect. Metadata
requests went to one of two metadata servers (MDS), a fail-over pair. File data requests first went
through the gateway nodes to an object storage target (OST), which handled completing the request on
the actual parallel file system hardware.

3.5 Machine Environment
We collected all of our results on MCR, a 1152-node Linux cluster at LLNL running the CHAOS

operating system [GaDu02]. (See Figure 2.) Each node comprised two 2.4 GHz Pentium Xeon processors
and 4 GB of memory. The MPI implementation used was Quadrics MPI version 1.24-8, which is based on
MPICH 1.2.4. All executions ran on the batch partition of MCR. Unless otherwise specified, each of our
experiment sets comprised thirty identical executions. The resulting trace files, including any temporary
files, were stored using the Lustre file system [Cluster].

4. Preliminary Experiments
This section details four, preliminary experiments we conducted to measure the overheads of tracing. We

gathered measurements of the overheads of instrumentation and writing the trace buffer in four-process
runs. We also experimented with buffer sizes and noted how changes in system software affected our
results.
4.1 Overhead of Instrumentation versus Writing the Buffer Data

Our goal for this experiment was to break the total overhead into two categories: the amount of tracing
overhead caused by the trace instrumentation, and the amount caused by writing the trace data to disk. We
compared the execution times of three sets of runs: executions that contained trace instrumentation and
wrote trace files to disk (defBuff_instr_write), executions that contained trace instrumentation, but did not
write the trace files to disk (defBuff_instr_noWrite), and normal executions with no instrumentation in the
program (noBuff_noInstr_noWrite).
4.1.1 Approach We compiled SMG for the defBuff_instr_write and defBuff_instr_noWrite executions
using the TAU compiler. We did this by altering the Makefile of the application to include a TAU stub
Makefile. The stub Makefile caused the TAU compiler to be used instead of the default compiler. The TAU
compiler automatically instrumented the program to generate events for function entries and exits, and
message sends and receives. After the program was instrumented, the TAU compiler compiled the
program with gcc 3.4.4. For the noBuff_noInstr_noWrite executions, we did not use the TAU compiler, but

 6

Table 1 SMG Trace File Sizes Generated by TAU

MPI RANK TRACE FILE SIZE (MB) EVENT FILE SIZE (K)
Rank 0 148 21
Rank 1 156 21
Rank 2 166 21
Rank 3 135 21

used gcc 3.4.4 via mpicc. For these runs, the version of the operating system on MCR was CHAOS 3.0
and the version of Lustre was 1.4.3.3. Each run for these experiments had four single-threaded MPI
processes. The local problem size per processor was 35 x 35 x 35, and the processor topology specified was
4 x 1 x 1. Each process in the execution generated its own trace file.
4.1.2 Results The sizes of the trace files for the executions in the defBuff_instr_write set are shown in
Table 1. The average execution time for the defBuff_instr_write set was approximately16.5 seconds. We
show the average values reported for the four SMG metrics for each set of executions in Figure 3. We ran a
single-factor ANOVA test for each metric to compare the values returned for the defBuff_instr_write and
defBuff_instr_noWrite executions. We found that the differences between the defBuff_instr_write and
defBuff_instr_noWrite executions for the SMG Setup and SMG Solve metrics were statistically significant
at a 95% confidence level. However, there was not a statistically significant difference for the Struct
Interface metrics at the 95% confidence level between the defBuff_instr_write and defBuff_instr_noWrite
executions.

To understand the relative differences between the metrics for the execution sets, we counted the number
of events generated for each phase by parsing the trace files generated by TAU using the TAU Trace File
Reader API. The numbers of events in each of the phases is shown in Table 2. The event counts were
identical for each run.

We inspected the TAU source to discover details about the size of each event record and the size of the
trace buffer to better understand when trace buffer flushes would have occurred during the executions. The
trace buffer was flushed whenever the number of records exceeded TAU_MAX_RECORDS (65,536
records). The size of the trace buffer was 1.5 MB and each event record occupied 24 bytes. From this
information, we computed the number of trace buffer flushes in each phase for each rank, shown in Table
2. We see that there were no trace buffer flushes during the first phase of the program, Struct Interface,
because the number of events generated in this phase is less than TAU_MAX_RECORDS. This explains
why the differences between the defBuff_instr_write and defBuff_instr_noWrite execution sets were not
statistically significant. In contrast, there were 39-48 trace buffer flushes, depending on rank, in the SMG
Setup phase and 53-62 in the SMG Solve phase. This large number of trace buffer flushes explains the
statistically significant differences for the SMG Setup and Solve phases.

0

2

4

6

8

10

12

SMG Solve: cpu

clock time

SMG Solve: wall

clock time

SMG Setup: cpu

clock time

SMG Setup:

wall clock time
Figure 3. Average SMG Metrics for Four-Process Experiments

The bars shown in the chart are the average values for the metrics in each set of executions. The y-axis
in the charts is the time in seconds. The chart on the left shows the Stuct Interface metrics. The chart on
the right shows the SMG metric values.

 7

Table 2 Event Counts and Buffer Flushes in SMG Phases

RANK 0 RANK 1 RANK 2 RANK 3 PHASE
Events Flushes Events Flushes Events Flushes Events Flushes

Struct Interface 1,018 0 1,158 0 1,158 0 970 0
SMG Setup 2,598,632 39 3,019,360 46 3,173,376 48 2,419,444 36
SMG Solve 3,851,161 59 3,793,449 57 4,074,823 62 3,455,449 53

Table 3 Overhead Due to Writing the Trace Buffer and Instrumentation in SMG

PHASE
WRITE

OVERHEAD
(SEC.)

INSTRUMENTATION
OVERHEAD (SEC.)

TOTAL
OVERHEAD

(SEC.)
SMG Solve CPU 2.64 4.79 7.43
SMG Solve wall 2.64 4.79 7.44
SMG Setup CPU 1.72 4.13 5.85
SMG Setup wall 1.74 4.13 5.87

In Table 3, we quantify the amount of overhead due to writing the trace buffer to disk in the executions.

We estimated the average overhead due to writing the trace buffer by subtracting the average
defBuff_instr_noWrite time from the average defBuff_instr_write time. The average overhead due to
instrumentation was estimated by subtracting the average noBuff_noInstr_noWrite time from the average
defBuff_instr_noWrite time. The total overhead is the sum of the write and instrumentation overheads. We
see that the overhead of instrumentation is 2.4 times higher in the SMG Setup phase and 1.8 times higher in
the SMG Solve phase.
4.1.3 Discussion From this experiment, we see that the overheads due to instrumentation and writing
of the trace data to disk are significant. The overhead of instrumentation in this experiment was higher than
the writing overhead.

4.2 TAU Buffer Size Experiment

The goal of this experiment was to determine the effect of trace buffer size on tracing overhead. Using a
smaller buffer would cause more frequent small writes of the trace data, while a larger buffer would cause
less frequent larger writes.
4.2.1 Approach We compared the metrics reported by SMG for runs where the trace buffer was half
the default size (smBuff_instr_write) and where the trace buffer was double the default size
(bigBuff_instr_write) to the defBuff_instr_write runs from the previous experiment. The default size of the
trace buffer in TAU is 1.5 MB. For the smBuff_instr_write runs, we changed the buffer size to 0.75 MB,
and for the bigBuff_instr_write runs, we changed the buffer size to 3.0 MB. The experimental setup for the
executions was exactly the same as before, except for the changed buffer size.
4.2.2 Results and Discussion Figure 4 shows the average values for the Struct Interface, SMG Setup,
and SMG Solve metrics for the thirty executions in each of the defBuff_instr_write, smBuff_instr_write,
and bigBuff_instr_write sets. We see that the defBuff_instr_write and smBuff_instr_write sets had
approximately the same values for the metrics, while the bigBuff_instr_write set values are much larger. A
single-factor ANOVA test confirms that the differences between defBuff_instr_write and
smBuff_instr_write are not statistically significant, while the differences between defBuff_instr_write and
bigBuff_instr_write are statistically significant. We also compared the values for the Struct Interface
metrics. The differences between defBuff_instr_write and smBuff_instr_write , and defBuff_instr_write and
bigBuff_instr_write were not statistically significant for these metrics.

Our interest was piqued by the large difference between the defBuff_instr_write and bigBuff_instr_write
runs, so we investigated further. One might guess that larger, less frequent writes to the Lustre file system
would give better performance than small, more frequent writes. However, our results showed that the
opposite was true. The first thing we noted was that there was large variability in the data for the
bigBuff_instr_write runs for the SMG Solve metrics. The bigBuff_instr_write average value for SMG

 8

Figure 4. Average SMG metric values using three trace buffer sizes

The figure on the left shows the average values for the Struct Interface metrics for three different buffer
sizes. The figure on the right shows the average values for the SMG metrics with the three different
buffer sizes. The y-axis in the charts is time in seconds.

Solve: cpu time was 17.58 seconds with a standard deviation of 18.54. Closer inspection of the data showed
that there was one run with values for the SMG Solve metrics that were approximately 7 times higher than
the values for the other runs. Given that the Lustre file system is a shared resource on MCR, we guessed
that there could have been some other job heavily using Lustre at the time of this rogue run. To attempt to
confirm this, we ran three additional sets of runs, each with ten trials, submitted as separate batch jobs. The
sets were named bigBuff_instr_write_2, bigBuff_instr_write_3, and bigBuff_instr_write_4. Figure 5 shows

SMG Setup: cpu clock time

0

2

4

6

8

10

12

SMG Setup: wall clock time

0

2

4

6

8

10

12

SMG Solve: cpu clock time

-5

0

5

10

15

20

25

30

35

40

SMG Solve: wall clock time

0

5

10

15

20

25

30

35

40

Figure 5. Average SMG Metrics for Repeated Large Buffer Experiments
This figure shows the average values for the metrics reported by SMG for three different buffer sizes.
The charts have error bars showing one standard deviation. The top charts show the values for the
SMG Setup metrics, while the bottom charts show the values for the SMG Solve metrics. The charts on
the left are the CPU time measurements. On the right are the wall clock time measurements. The y-axis
is the time in seconds.

 9

comparisons of the SMG Setup and Solve metrics for defBuff_instr_write and the runs that used the larger
buffer. We included error bars that span plus and minus one standard deviation in these charts. The bars
labeled bigBuff_instr_write_comb are the averages of the values from the combined data of the three
additional sets of runs. We see that these new runs do not suffer from high variability, as did the
bigBuff_instr_write runs. We conclude that heavy use of Lustre by a concurrent user could have indeed
caused the high variability in the bigBuff_instr_write runs. We performed a single-factor ANOVA test and
discovered that there was a statistically significant difference at the 95% confidence level between the
SMG Setup and Solve metrics for defBuff_instr_write and bigBuff_instr_write_comb.

Based on these results, we investigated further to find out why the executions with the larger buffer took
longer to execute. First we looked at the trace files themselves to try to understand the differences. We
randomly chose one representative execution from each of the defBuff_instr_write and bigBuff_instr_write
groups for further examination. We merged the trace files for the individual processes into a combined
TAU trace for each execution. We converted the combined TAU trace files into Open Trace Format (OTF)
[KnBr06] format using the TAU utility tau2otf. We used Vampir Next Generation (VNG) [BrNa03] to
open the OTF trace files, using four VNG processes in parallel on different nodes of MCR. First, we
created summary charts for the two executions. The summary charts showed the bigBuff_instr_write
execution spent much more time in MPI than the defBuff_instr_write execution.

Next, we wanted to get an idea of the overall time spent in MPI_Waitall by each of these executions.
We used the TAU utility tau2profile to convert the individual trace files for each of the processes in
each execution into TAU profiles. We used the TAU tool paraprof to examine the profiles. The profiles
showed that the processes spent most of their time in MPI_Waitall for both the defBuff_instr_write and
bigBuff_instr_write sets of runs. However, the bigBuff_instr_write executions spent more time in
MPI_Waitall than the defBuff_instr_write executions. On average, the bigBuff_instr_write executions
spent approximately 2.3 times more time in MPI_Waitall than did the defBuff_instr_write executions.

4.3 Write Overhead with Larger Buffer

We performed this experiment to measure the overhead due to writing the trace with the larger buffer.
We wanted to know if the overhead was due to longer writing times or whether it was due to the size of the
buffer itself.
4.3.1 Approach We launched a set of thirty runs called bigBuff_instr_noWrite that were configured in
the same way was bigBuff_instr_write, but did not actually write the trace buffer to disk.
4.3.2 Results We compared the running times of these runs with those from previous experiments;
results are presented in Figure 6. We performed single factor ANOVA tests to compare the differences
between the sets of executions. The differences for the values reported for the SMG Solve and SMG Setup
metrics between defBuff_instr_noWrite and bigBuff_instr_noWrite, and bigBuff_instr_noWrite and
bigBuff_instr_write were statistically significant at a 95% confidence level. For the metric Struct Interface:
cpu clock time, the differences were not statistically significant. For Struct Interface: wall clock time, the
differences between defBuff_instr_noWrite and bigBuff_instr_noWrite were statistically significant.
4.3.3 Discussion We see that for the SMG Solve and SMG Setup phases, the longer running times for
the larger buffer size seems to be largely due to the change in the buffer size alone, and only partly due to
the time for writing the data to the file. For the Struct Interface phase, there does not seem to be a clear
relationship between the different executions.

 10

Figure 6. Average Metric Values for Default and Larger Buffers Showing Overhead of Writing

The chart on the left shows the average values for the Struct Interface metrics. The chart on the right
shows the values for the SMG metrics. The y-axis is time in seconds.

4.4 Scaling with Larger Buffer and Unexpected Results
In this experiment, our goal was to determine how the overheads of tracing scaled with the number of

processes.
4.4.1 Approach We ran new sets of executions, with 8, 16, 32, and 64 processes and three different
buffer sizes: 0.75 MB, 1.5MB, and 3.0 MB. We also ran a set of executions with no instrumentation. The
local problem size per processor was 35 x 35 x 35, and the processor topology specified was P x 1 x 1,
where P was the number of processes in the execution.
4.4.2 Results and Discussion These experiments yielded surprising results. We found that in this case
the executions that used the bigger buffer had less tracing overhead than those that used the default buffer
size. Because this conflicted with our earlier findings, we ran the experiment yet again with four processes.
This time, the executions that used the larger buffer did not have worse performance, and in fact, performed
slightly better. Fortunately, we had used PerfTrack to gather and store the system details and performance
information. Because of this, we were able to see the differences between our first set of runs and this
newer set of runs. It turns out that there were system changes between the set of runs that had poor
performance with the larger buffer (Section 4.2), and the latest set of scaling experiments. The system
differences between the sets of runs were an operating system upgrade, from CHAOS 3.0 to 3.1, and a file
system upgrade, from Lustre 1.4.3.3 to 1.4.5.8. The staff at LLNL ran performance regression tests on the
operating system changes only. Their results showed that the operating system upgrade did not significantly
affect OS benchmark performance. The benchmarks they used measured aspects such as network and
memory bandwidth, message passing performance, and I/O performance (Mike Haskell, personal
communication, June 2006). From this, we concluded that the performance differences we saw were due to
changes to Lustre.

In Figure 7 we compare the executions when run under CHAOS 3.0/Lustre 1.4.3.3 (denoted by “_1” in
the chart legend) and CHAOS 3.1/Lustre 1.4.5.8 (denoted by “_2” in the chart legend). There is no
apparent difference between the runs for the Struct Interface metrics. We performed single factor ANVOA
tests, using the system change as the factor, and found there were no statistically significant differences
between the runs for the Struct Interface metrics. For the SMG metrics, the differences due to the system
version between the smBuff_instr_write runs are not statistically significant by a single factor ANOVA test
at the 95% confidence level. However, the differences due to system version between the
defBuff_instr_write, defBuff_instr_noWrite, bigBuff_instr_write, and bigBuff_instr_noWrite sets of runs
were statistically significant by a single factor ANOVA test. We performed a two-factor ANOVA test for
each buffer size, with the two factors being the system differences and whether or not the trace buffer was
written to disk. From this, we saw strikingly different results for the two buffer sizes. In Table 4, we see
that for the runs that used the default-size buffer, the major contributor (> 90%) to variation between the
runs was whether or not the trace buffer was written to disk. We also see that for the runs that used the
larger buffer, the major contributor (> 87%) was the system differences.

 11

Figure 7. Comparison of executions with different buffer sizes showing system differences

The chart on the left shows the average values for the Struct Inteface metrics. The chart on the right
shows the average values for the SMG metrics. The y-axis is time in seconds. The legend shows the
system configuration for each bar. The names that end in “_1” were run under CHAOS 3.0/Lustre
1.4.3.3. The names that end in “_2” were run under and CHAOS 3.1/Lustre 1.4.5.8.

Table 4 Percent Contribution to Variation from Two-Factor ANOVA

FACTOR SMG SETUP: CPU
CLOCK TIME

SMG SETUP:
WALL CLOCK

TIME

SMG SOLVE:
CPU CLOCK

TIME

SMG SOLVE:
WALL CLOCK

TIME
 defBuff bigBuff defBuff bigBuff defBuff bigBuff defBuff bigBuff

Write 96.12 7.75 96.20 4.88 93.83 12.07 93.83 8.29
System 0.32 88.65 0.29 92.07 0.51 87.16 0.51 91.12

Write:System 0.13 0.78 0.11 0.67 0.32 0.08 0.31 0.01
Residuals 3.43 2.83 3.39 2.38 5.34 0.69 5.34 0.58

Table 5 Percent Contribution to Variation from Three-Factor ANOVA

FACTOR
SMG SETUP:
CPU CLOCK

TIME

SMG SETUP:
WALL CLOCK

TIME

SMG SOLVE:
CPU CLOCK

TIME

SMG SOLVE:
WALL CLOCK

TIME
Buffer 21.01 23.89 20.30 23.66
System 30.71 32.03 30.37 32.13
Write 17.02 11.56 21.32 14.39

Buffer:System 27.55 29.44 26.24 28.65
Buffer:write 0.87 0.72 0.44 0.22

System:Write 0.17 0.16 0.00 0.00
Buffer:System:Write 0.36 0.30 0.10 0.03

Residuals 2.31 1.91 1.24 0.91

Next, we performed a three-factor ANOVA test using the buffer size, the system differences, and
whether or not the trace buffer was written as the factors. Table 5 shows the percentage of contributions to
the variation between the runs for each of the factors and interactions between them. We see that the
number one factor was the system differences, followed by the interaction between the buffer size and the
system differences. On average, the factor with the third largest contribution to the variation was the buffer
size, and the fourth largest was whether or not the trace buffer was written to disk.

5. Scaling Experiments

In this set of experiments, our goal was to see how the overheads of tracing scaled with increasing
processors, different performance tools, and different applications. For each application: SMG, SPS, and
SPW, we varied the buffer sizes: 1.5 and 8.0 MB, numbers of processes: 32, 64, 128, 256, and 512, whether

 12

or not the trace buffer was written to disk, and the tracing tool used: TAU or MPE. Each of our experiment
sets comprised thirty identical executions. The version of CHAOS was 3.1; the version of Lustre was
1.4.5.8.

5.1 Execution time and Scaling Behavior for Instrumented Runs

We show the average wall clock times for our experiments broken down into time spent in application
code, trace instrumentation, and writing the trace buffer in Figure 8. Each bar in a set in these charts
represents the average behavior of executions with 32, 64, 128, 256, and 512 processes, respectively. In the
left of Figure 8 we show the measurements for SMG with TAU and MPE, and SPW with TAU and MPc.
In each run set, we see the same trend; as the numbers of processes increases, the total execution time
increases, largely due to the time spent writing the trace buffer. The time spent in the application code and
in trace instrumentation remains relatively constant. In the middle of Figure 8, we show the execution times
of SPS with TAU. Here, as the numbers of processes increase, the total execution time decreases. However,
even though the time spent in writing the trace buffer decreases with increasing processors, it does not
decrease as rapidly as the time spent in instrumentation or application code. In the right of Figure 8, we
show the results for SPS and SPW with MPE. Here we see that the differences between the write and
noWrite executions are indistinguishable due to the very small amounts of data collected and written.

5.2 Event Counts and Tracefile Sizes

We show the event counts and resulting trace file sizes in Table 6. For executions traced with TAU, the
Trace File column refers to the sum of the per-process trace files produced. For those traced with MPE, the
Trace File column gives the size of the merged trace file. The data in this table helps us evaluate the results
from the previous sections.

For SMG, we see that the counts for TAU and MPE exhibit similar trends, but are different by roughly
an order of magnitude. As the numbers of processors double, the per-process event counts and trace data
written by each process increase slightly, while the total number of events and resulting trace file sizes
double. We see markedly different results between TAU and MPE for SPS; the event counts differ by six
orders of magnitude. This is because TAU measures all function entries and exits, while MPE measures
only MPI activity. For TAU, as the number of processors double: the per-process event counts decrease by
half; and the total event count and resulting trace file sizes remain constant. With MPE, as the number of
processes double: the average per-process event count decreases by half; and the maximum per-process

Figure 8. Performance of Instrumented Executions.

On the left, we show the total execution time for the benchmarks when measured with TAU and MPE,
with the contributions of the application itself, the trace instrumentation, and writing the trace buffer to
the execution time. Each bar in a set represents the average behavior of executions with 32, 64, 128,
256, and 512 processes, respectively. The set labels include (top to bottom): the benchmark name, the
measurement tool, and the buffer size. On the right, we show the performance of executions of SPhot
using MPE.

 13

event count, the total event count, and resulting trace file sizes increase slightly. For SPW, the counts for
TAU and MPc are nearly identical, while the counts for MPE differ. Again, this is because of differences in
what was measured by the tools. As the numbers of processors double for TAU and MPc: the per-process
event counts remain relatively constant, with slight non-monotonic increases and decreases; the total
number of events and resulting trace file sizes double. For MPE, doubling the number of processes means:
the average per-process event count increases slightly; the maximum per-process event count, the total
event count, and resulting trace file sizes double. The total event count and trace file sizes for MPE are
roughly six orders of magnitude less than those of TAU and MPc.

From this information, we can say what we expect in terms of tracing overheads for the different
applications and tools. For the weakly-scaled SMG and SPW, we expect that the overheads of tracing
would remain relatively constant with increasing numbers of processors because the amount of data being
collected and written per-process remains relatively constant. However, for SPW with MPE, we expect to
see very little overheads due to the small amount of data collected. For SPS and TAU, we expect the
overheads of tracing to decrease with increasing numbers of processors, because the amount of data being
collected and written per-process decreases with increasing processes. For SPS with MPE, we expect to see
very little overhead because of the small amount of data collected.

5.3 Dominant Contributions

We computed the percentage contribution to variation using three-factor ANOVA, with the buffer size,
the number of processes, and whether or not the trace buffer was written to disk as the factors. We show
selected results of this analysis in Table 7. For SMG, we show only results for the wall clock time of the
dominating phase, SMG Solve. We show the factors or interactions between factors that contributed more
than 10% to the variation in the runs. The other factors and interactions are omitted for space and clarity.
Across the board, we found that the contribution due to variability within the runs (Residuals) was high. In
general, there was quite a bit of variation in the running times of the executions that wrote the trace buffer,
which explains the high contribution of the residuals (See Figure 10.). In the rest of this discussion, we only
consider contributors to variation outside of the residuals. For SMG measured with TAU and MPE, the
largest contributor was whether or not the buffer was written, at 33% and 26%, respectively. The largest
contributor for SPS with TAU was the number of processes in the run (19%), followed closely by whether
or not the trace buffer was written (14%). SPS with MPE had the number of processes as the dominating
factor at 51%. SPW with TAU and MPc both had writing the trace buffer as the largest contributor, at 34%
and 24%, while SPW with MPE had the number of processes as the largest, at 81%. The differences in the
dominating factors for the SPhot runs with MPE is attributed to the comparatively very small amount of
data collected.

5.4 Execution Time vs Event Counts

We computed the correlation of the average total wall clock time of the runs with the average event
count per rank and with the maximum event count over all ranks. We show the correlations with maximum
event count in Table 8. We found that overall, the total wall clock time was more highly correlated with the
maximum event count over all ranks than with the average event count. The single exception was SPS with
MPE, where the highest correlations were with the average event count. This is due to the higher relative
difference between the event counts in the master and slave ranks due to the algorithm of the application,
because the master receives messages from all the slaves in each iteration. SPS with MPE had a relatively
weak negative correlation with the maximum event count. The correlation is negative because as the
process count increases, the number of messages that the master process receives increases, and the
execution time decreases, giving a negative correlation. In general, we noted that the executions that did not
write the trace buffer to disk had a higher correlation with the event count than did the executions that did
write the trace buffer to disk.

Figure 9 shows the overheads of writing and instrumentation as the maximum number of events in a
single rank increases. For SMG with TAU and MPE, we see a clear pattern. The instrumentation overhead
appears to vary linearly with the number of events, while the overhead of writing the trace increases much
more rapidly, and does not appear to have a linear relationship with the event count. The behavior of SPS is
different, because in this application, as the number of events increases, the number of processes decreases.
Again, though, the instrumentation overhead appears to have a linear relationship with the event count. The
write overhead is high at higher event counts, but also at the low event counts, when the number of writing

 14

Figure 9. Tracing Overheads as a Function of Maximum Event Count in a Single Rank

For both SPW charts, the order of the bar groupings with respect to processor count is: 32, 128, 256,
64, 512.

processes is higher. For SPW, the number of events does not change much between the run sets, and we see
that the instrumentation overhead is relatively constant, too. However, the writing overhead fluctuates
widely. The reason for this is that the maximum event count in a rank does not monotonically increase or
decrease with increasing processors as it does for SMG or SPS.

6. Discussion
We examined the overheads of instrumentation and writing the trace buffer with increasing numbers of

processors with both TAU and MPE. We expected the overheads to scale with the number of events in the
execution. For SMG and SPW, we expected the overheads to increase slightly with increasing process
counts; for SPS, we expected the overheads to decrease with increasing process counts. For both tools, we
found that the overhead of instrumentation scaled with the event counts. However, we found that the
overhead of writing the trace buffer scaled with the number of processors in the execution. In addition, we
saw that the overhead of writing the trace buffer did not appear to be linearly related to the event counts,
suggesting the overhead of writing the trace is not strictly determined only by the number of events.

Our method for measuring the overheads of tracing was to take high-level measurements reported by the
benchmarks themselves and compare them. In general, our run sets that wrote the trace buffer to disk had
high variability. Was there some way we could have eliminated this variation and derived more precise
measures of tracing overheads? We only collected timing data for the whole execution. Could we have
gained valuable insight by collecting per-process or per-write performance information? Sources of
variability in writing times for the different executions include: contention for file system resources, either
by competing processes in the same execution, or by other users of Lustre; contention for network
resources, either by other I/O operations to Lustre, or by MPI communication; and operating system or
daemon interference during the write. Any user of this system gathering trace data would be subject to
these sources of variation in their measurements. We argue that although the variability in our data is high,
it represents a true measure of the typical user experience. We present the averages of each run set as a
realistic estimate of the overheads a typical user would experience. In order to gather more detailed
information about tracing overheads, another possible measurement technique would be to log each buffer
flush individually and store them in the trace. This technique would have the advantage of obtaining more
precise writing times, information about each individual write, per-process information, and would gather
the information about instrumentation overhead and writing overhead in one execution. However, it would
artificially inflate the instrumentation overhead, because of the added instrumentation to log the writes; it
would add data to the trace file, inflating the buffer writing time and the already problematic size of the
trace files; and the difficulty in extracting the added performance information would be high, as the large

 15

trace files would need to be parsed and analyzed. In addition, this method would be subject to the same
sources of variability in the writing times as discussed above.

An important constraint in the utility of tracing tools for high end systems is storage requirements. For
these scaling experiments, we saved just one sample trace file from each run set. The total storage
requirements were approximately 8.4 TB. If we had tried to save all trace files, the storage requirements
would have been 250 TB. Our user quota on MCR is 16 GB. This space was inadequate, not only for
archiving the trace files, but even for storing trace files from a single run in many cases. Livermore
Computing provides the Lustre file system as a temporary scratch space for writing/reading large amounts
of data. We attempted to store the trace files to the archival tape storage system, but we had difficulties
with the TAU 32-process SPS runs because the htar utility can’t handle individual files with size greater
than approximately 8 GB, due to restrictions in the format of the tar header.

7. Conclusions and Future Work
In our scaling experiments, the execution times of the noWrite runs tended to scale with the maximum

number of events. However, the execution times of the write runs did not scale as strongly with the number
of events, and tended to scale with increasing numbers of processors, possibly due to contention caused by
sharing the file system resource. In the course of these experiments, we also encountered difficulties storing
and analyzing these large trace files. Even though our executions were relatively short, we generated on the
order of 250 TB of data for the scaling experiments alone. In addition to storage concerns, the processing
time for analyzing and merging the trace files was in some cases considerable.

Our results suggest that the trace writes will dominate the overheads more and more with increasing
numbers of processes. They indicate that the trace overheads are sensitive to the underlying file system.
They also imply that increasing number of events to be expected with increasing the number of threads will
primarily scale up the overheads associated with instrumentation, as opposed to writing, while increasing
the number of trace buffers will quickly drive up the cost of writing.

Previously developed models of the overheads of tracing make some simplifying assumptions and do not
account for the overheads we saw in our experiments. The early work done by Malony et al. assumes that
in the case of programs that do not communicate, the perturbation effect for each processor is only due to
the events that occur on that processor [SaMa93]. Our results tend to dispute this assumption. If the
application we used did not contain communication, the times for writing the trace file to disk could have
been extended due to resource contention on the network by the other processes trying to write the trace file
to disk, and could have increased with increasing numbers of processes sharing the resource. The model
presented by Waheed et al. also does not account for this interaction when modeling the buffer flushing
policies [WaMe95] – instead, they assume a constant latency for all writes of the trace buffer. We plan to
develop a new model to address the characteristics of current and near future high end clusters and parallel
file systems.

8. Acknowledgements
This work was funded in part by a PSU Maseeh Graduate Fellowship and an Oregon Sports Lottery

Graduate Fellowship. The authors acknowledge Mike Haskell and Richard Hedges for their help with
CHAOS/Lustre information; Bronis de Supinski for feedback on an early draft; and Lisa Zurk, Michael
Rawdon, and our CAT team for emergency office space and tech support during construction.

References
[ArAh06] D. Arnold, D. Ahn, B. deSupinski, G. Lee, B. Miller, and M. Schulz, “Stack Trace Analysis for Large Scale Applications,”
University of Wisconsin Technical Report, TR-1584, October 2006.

[BrFa00] P. Brown, R. Falgout, and J. Jones, "Semicoarsening multigrid on distributed memory machines." SIAM Journal on
Scientific Computing, 21 (2000), pp. 1823-1834. Also available as Lawrence Livermore National Laboratory technical report UCRL-
JC-130720.

[BrNa03] H. Brunst, W. Nagel, A. Malony, “A distributed performance analysis architecture for clusters,”
in Proceedings of IEEE International Conference on Cluster Computing, Hong Kong, pp. 73-81, Dec. 1-4, 2003.

[ChWa06] I. Chung, R. Walkup, H. Wen, and H. Yu, “MPI Performance Analysis Tools on Blue Gene/L,” In Proceedings of
SC2006, Tampa, Florida, November 11-17, 2006.

 16

[Cluster] Cluster File Systems, Inc., “Lustre: A Scalable, High-Performance File System,” Cluster File Systems, Inc. whitepaper, Nov.
11, 2002. (available at: http://www.lustre.org/docs/whitepaper.pdf, June 2006).

[FaKe96] A. Fagot and J. de Kergommeaux, “Systematic Assessment of the Overhead of Tracing Parallel Programs,” in Proceedings
of 4th Euromicro Workshop on Parallel and Distributed Processing, pp. 179-185, 1996.

[Ga86] J. Gait, “A Probe Effect in Concurrent Programs, “ in Software – Practice and Experience 16(3):225-233, 1986.

[Ga94] J. Gannon, K. Williams, M. Andersland, J. Lumpp, Jr., and T. Casavant, “Using Perturbation Tracking to Compensate for
Intrusiuon Propagation in Message Passing Systems,” in Proceedings of the14th International Conference on Distributed Computing
Systems, Poznan, Poland, pp. 141-412, June 1994.

[GaDu02] J. Garlick and C. Dunlap, “Building CHAOS: an Operating Environment for Livermore Linux Clusters,” Lawrence
Livermore National Laboratory, CA, UCRL-ID-151968, February 21, 2002.

[HoMi96] J. Hollingsworth and B. Miller, “An Adaptive Cost Model for Parallel Program Instrumentation,” in Proceedings of Euro-
Par '96, Lyon, France, pp. 88-97, August 1996.

[KaKu03] L. Kale, S. Kumar, G. Zheng, and C. Wai Lee, Scaling Molecular Dynamics to 3000 Processors with Projections: A
Performance Analysis Case Study, Terascale Performance Analysis Workshop, in Proceedings Part IV of the International Conference
on Computational Science (ICCS), Melbourne, Australia and St. Petersburg, Russia, pp. 23-32, June 2-4, 2003.

[KaMa05] K. Karavanic, J. May, K. Mohror, B. Miller, K. Huck, R. Knapp, and B. Pugh, "Integrating Database Technology with
Comparison-based Parallel Performance Diagnosis: The PerfTrack Performance Experiment Management Tool," in Proceedings of
SC2005, Seattle, WA, November 2005.

[Kn03] A. Knüpfer, “A New Data Compression Technique for Event Based Program Traces,” in Proceedings Part III of International
Conference on Computer Science, Melbourne, Australia and St. Petersburg, Russia, pp. 956-965, June 2-4, 2003.

[KnBr06] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. Nagel, “Introducing the Open Trace Format (OTF),” in Proceedings
Part II of International Conference on Computational Science, Reading, UK, pp. 526-533, May 28-31, 2006.

[KrGr96] D. Kranzlmüller, S. Grabner, and J. Volkert, “Monitoring Strategies for Hypercube Systems,” in Proceedings of the Fourth
Euromicro Workshop on Parallel and Distributed Processing, pp. 486-492, 1996.

[LiCu00] K. Lindlan, J. Cuny, A. Malony, S. Shende, B. Mohr, R. Rivenburgh, and C. Rasmussen, "A Tool Framework for Static and
Dynamic Analysis of Object-Oriented Software with Templates," in Proceedings of SC2000, Dallas, November 2000.

[MaRe92] A. Malony, D. Reed, and H. Wijshoff, “Performance Measurement Intrusion and Perturbation Analysis,” in IEEE
Transactions on Parallel and Distributed Systems, 3(4):433-450, July 1992.

[MoKa06] K. Mohror and K.L. Karavanic, “A Study of Tracing Overhead on a High-Performance Linux Cluster,” Portland State
University Computer Science Technical Report number TR-06-06, December 2006.

[NaAr96] W. Nagel, A. Arnold, M. Weber, H. Hoppe, and K. Solchenbach, “VAMPIR: Visualization and analysis of MPI resources,”
Supercomputer, 12(1):69-80, January 1996.

[OgSc93] D. Ogle, K. Schwan, and R. Snodgrass, “Application-Dependent Dynamic Monitoring of Distributed and Parallel Systems,”
in IEEE Transactions on Parallel and Distributed Systems, pp. 762-778, 1993.

[ReRo93] D. Reed, P. Roth, R. Aydt, K. Shields, L. Tavera, R. Noe, and B. Schwartz, "Scalable Performance Analysis: the Pablo
Performance Analysis Environment," in Proceedings of the Scalable Parallel Libraries Conference, pp.104-113, Mississippi State, MS,
USA, October 6-8, 1993.

[SaMa93] S. Sarukkai and A. Malony, “Perturbation Analysis of High Level Instrumentation for SPMD Programs, “ in Proceedings of
the Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, San Diego, CA, USA, pp. 44-53, 1993.

[Sb06] The SPHOT Benchmark Code, Available at http://www.llnl.gov/asci/purple/benchmarks/limited/sphot/, December 8, 2006.
[ShMa06] S. Shende and A. Malony, “The TAU Parallel Performance System, “ in the International Journal of High Performance
Computing Applications, 20(2):287-331, Summer 2006.
[WaMe95] A. Waheed, V. Melfi, and D. Rover, “A Model for Instrumentation System Management in Concurrent Computer
Systems,” in Proceedings of the 28th Hawaii International Conference on System Sciences, pp. 432-441, 1995.
[WaRo98] A. Waheed, D. Rover, and J. Hollingsworth, “Modeling and Evaluating Design Alternatives for an On-line Instrumentation
System: A Case Study,” in IEEE Transactions on Software Engineering, 24(6):451-470, June 1998.
[WiAn93] K. Williams, M. Andersland, J. Gannon, J. Lummp, Jr., and T. Casavant, “Perturbation Tracking,” in Proceedings of the
32nd IEEE Conference on Decision and Control, San Antonio, TX, USA, pp. 674-679, December 1993.

[WoMa05] F. Wolf, A. Malony, S. Shende, and A. Morris, “Trace-Based Parallel Performance Overhead Compensation,” in
Proceedings of the International Conference on High Performance Computing and Communications (HPCC), Sorrento, Italy,
September, 2005.

[YaDa00] K. Yaghmour and D. Dagenais, “Measuring and Characterizing System Behavior Using Kernel-Level Event Logging,” in
Proceedings of the USENIX Annual 2000 Technical Conference, San Diego, CA, USA, pp. 13-26, June 2000.

 17

[YaLi93] J. Yan and S. Listgarten, “Intrusion Compensation for Performance Evaluation of Parallel Programs on a Multicomputer,” in
Proceedings of the Sixth International Conference on Parallel and Distributed Systems, Louisville, KY, October 14-16, 1993.

[ZaLu99] O. Zaki, E. Lusk, W. Gropp, and D. Swider, “Toward Scalable Performance Visualization with Jumpshot,” in High-
Performance Computing Applications, 13(2):277-288, 1999.

 18

Table 6 Event Counts and Trace File Sizes1

PROCS
AVG

EVENT
COUNT

MAX
EVENT
COUNT

TOTAL
EVENT
COUNT

TRACE
FILE 1
(GB)

PROCS
AVG

EVENT
COUNT

MAX
EVENT
COUNT

TOTAL
EVENT
COUNT

TRACE
FILE 1
(GB)

SMG WITH TAU SMG WITH MPE
32 8.71E+06 1.05E+07 2.79E+08 6.2 32 8.25E+05 1.14E+06 2.64E+07 0.86
64 9.06E+06 1.14E+07 5.80E+08 13 64 8.41E+05 1.25E+06 5.38E+07 1.7
128 9.41E+06 1.23E+07 1.20E+09 27 128 8.52E+05 1.36E+06 1.09E+08 3.6
256 9.74E+06 1.32E+07 2.49E+09 56 256 8.59E+05 1.47E+06 2.20E+08 7.4
512 1.01E+07 1.42E+07 5.15E+09 115 512 8.66E+05 1.58E+06 4.43E+08 15

SPS WITH TAU SPS WITH MPE
32 5.93E+08 5.93E+08 1.90E+10 424 32 8.62E+02 1.30E+04 2.76E+04 0.94**
64 2.96E+08 2.97E+08 1.90E+10 424 64 4.57E+02 1.33E+04 2.93E+04 1.1**
128 1.48E+08 1.48E+08 1.90E+10 424 128 2.52E+02 1.39E+04 3.23E+04 1.2**
256 7.41E+07 7.43E+07 1.90E+10 424 256 1.49E+02 1.49E+04 3.81E+04 1.4**
512 3.71E+07 3.72E+07 1.90E+10 424 512 9.69E+01 1.69E+04 4.96E+04 1.7**

SPW WITH TAU SPW WITH MPE-C
32 3.70E+07 3.71E+07 1.19E+09 26 32 3.70E+07 3.71E+07 1.19E+09 35
64 3.71E+07 3.72E+07 2.37E+09 53 64 3.71E+07 3.72E+07 2.37E+09 70
128 3.71E+07 3.71E+07 4.74E+09 106 128 3.71E+07 3.71E+07 4.74E+09 141
256 3.71E+07 3.71E+07 9.49E+09 212 256 3.71E+07 3.71E+07 9.49E+09 282
512 3.71E+07 3.72E+07 1.90E+10 424 512 3.71E+07 3.72E+07 1.90E+10 565

SPW WITH MPE
32 9.61E+01 1.09E+03 3.08E+03 129* * KB
64 9.66E+01 2.15E+03 6.18E+03 257* ** MB
128 9.68E+01 4.26E+03 1.24E+04 449*
256 9.69E+01 8.48E+03 2.48E+04 897*
512 9.69E+01 1.69E+04 4.96E+04 1729*

Table 7 Percentage Contribution to Variation

FACTOR SMG SOLVE: WALL
CLOCK TIME

SPS WALL CLOCK
TIME

SPW WALL CLOCK
TIME

 TAU MPE TAU MPE TAU MPE-C MPE
Processes 17.59 12.86 19.21 50.95 9.28 18.71 81.33

Write 33.35 26.19 14.20 0.84 33.97 23.49 0.10
Processes:Write 14.72 13.96 0.02 0.66 8.34 17.48 0.25

Residuals 7.61 45.84 65.64 45.26 45.81 39.44 18.06

Table 8 Correlation of Total Wall Clock Time with Maximum Event Count in a Rank

BUFFER/WRITE SMG SPS SPW
 TAU MPE TAU MPE TAU MPE-C MPE

1.5 yes 0.96 0.85 0.91 -0.78 0.69 0.80 0.98
8.0 yes 0.97 0.90 0.95 -0.81 0.61 0.76 0.98
1.5 no 0.98 0.98 0.99 -0.70 0.81 0.55 0.96
8.0 no 0.98 0.98 0.99 -0.79 0.74 0.77 0.95

1 Trace File column lists: the sum of the individual tracefile sizes for TAU; the size of the single merged
trace file for MPE

 19

Figure 10. Wall Clock time versus Number of Processors for SMG, SPS, and SPW

This figure shows the wall clock time of the benchmarks as the number of processors increases. The x-
axis is the number of processes. The y-axis is time in seconds. We show an error bar of plus and minus
one standard deviation for each run set. For SMG, we show the wall clock time of the dominating
phase, SMG Solve. For SPS and SPW, we show the total wall clock time reported by the benchmark.

