Introduction to 2D and 3D Computer Graphics

Realistic Rendering

-- Solids Modeling --
Solid objects can be defined...
 - ...by sweeping an object along a trajectory through space
 - ...this process is called extrusion

Extrusion...
 - ...is a natural way to represent objects made of extruding metal or plastics with cross-sections visible
 - ...can be performed using translational sweeps or rotational sweeps
Building Realistic...

Objects using solid modeling

- Translational sweeps...
 - ...are a simple sweep defined by a 2D area swept along a linear path normal to the plan of the area, creating a volume

- Rotational sweeps...
 - ...are defined by rotating around a 2D area about an axis
Building Realistic...
Objects using solid modeling

2D area
Translation sweep
Rotational sweep
Building Realistic...
Objects using solid modeling

- Quadric surfaces...
 - ...are defined by quadratic equations in two-dimensional space
 - ...for example, can be spheres and cones
 - ...are also called *surfaces of revolution*, since a finite curve in two dimensions is swept in three-dimensional space about one axis to create the surface
Building Realistic...
Objects using solid modeling

- Quadric surfaces...
 - ...where a circle centered on the origin forms a sphere, otherwise it forms a torus
 - ...where a line with one end on the axis of rotation forms a cone, a line parallel to the axis of rotation forms a cylinder
- RenderMan™ always uses the z axis as the axis of rotation, with a sweep angle...
 - ...sweeping a quadric by less then 360 degrees leaves an open surface
Building Realistic...
Objects using solid modeling

- Example quadric surfaces...

- Cone
- Sphere
- Torus
- Disk
- Cylinder
Building Realistic...
Objects using solid modeling

- To make a realistic image...
 - ...objects must be able to be combined

- One of the most popular ways for combining objects...
 - ...is with Boolean set operators
 - ...using union, difference, and intersection

- Boolean set operators are 3D equivalents of simple 2D
Building Realistic...
Objects using solid modeling

Two intersecting cubes

Union operation

Intersection operation

Difference operation: Bottom-Top

Difference operation: Top-Bottom
Building Realistic...
Objects using solid modeling

- Using ordinary Boolean set operators, not all intersections form solid objects...
 - ...they may instead form a plane, a line...

Two intersecting cubes producing a solid

Two intersecting cubes producing a plane

Two intersecting cubes producing a line
Building Realistic...
Objects using solid modeling

- Or...they may instead form a point or be null

Two intersecting cubes producing a point

Two cubes producing a null set
Building Realistic...
Objects using solid modeling

- Using regularized Boolean set operators, only solid objects or null sets are formed...
 - ...let's look at the same set of examples using regularized operators:

 - Two intersecting cubes producing a solid
 - Two intersecting cubes producing a null set
 - Two intersecting cubes producing a null set
Building Realistic...

Objects using solid modeling

Two intersecting cubes again producing a null set

Two cubes producing a null set
Solid objects created with sweeps can be manipulated using Boolean set operations...

- ...by first converting the objects into boundary representations, spatial-partitioning representations, or constructive solid geometry.

Two simple sweeps of 2D objects (triangles)

How these objects would look when overlapping

The result of a union operation; it can no longer be thought of as a simple sweep
Boundary representations...
- ...are called *b-reps*
- ...describe objects in terms of their surface boundaries: vertices, edges, and faces
- ...are generally restricted to be planar, with polygonal boundaries and convex faces
- ...are generally restricted to be 2-*manifolds*: this means that support is not provided when there are more than 2 faces sharing an edge and neighboring points on each of the faces are not continuous
Building Realistic...
Objects using solid modeling

- **Boundary representations...**

 - **Face**
 - **Vertex**
 - **Edge**

This object has boundaries that are 2-manifold: each point on a face has a neighborhood of surrounding points that is a topological disk

Notice in this case, there is an edge that has neighboring points from 4 faces that does not create a topological disk.
Boundary representations of simple polyhedra...
- are described by Euler's formula
- ...are solids bounded by a set of polygons, but can be deformed into a sphere and has no holes
- ...follow the rules: $Vertices - Edges + Faces = 2$
Building Realistic...

Objects using solid modeling

- To guarantee that a solid volume is created...
 - ...each edge must connect to two vertices and be shared by exactly two faces,
 - ...at least three edges must meet at each vertex, and
 - ...faces must not interpenetrate one another
Building Realistic...

Objects using solid modeling

- Boundary representations of polyhedra with holes...
 - ...are described by a generalization of Euler's formul
 - ...$\text{Vertices} - \text{Edges} + \text{Faces} - \text{Holes} = 2(\text{Separate parts} - \text{Genus})$
 - ...where *Holes* describes the # of holes in the faces
 - ...where *Genus* describes the # of holes that pass through the object
 - ...where *Separate parts* describe the # of separate components in the object
Boundary representations of polyhedra with holes...

- 3 Holes (1 of them is in the bottom face)
- 15 Faces
- 24 Vertices
- 36 Edges
- 1 Separate Parts
- 1 Genus

A polyhedron with a hole passing through the object
Spatial-partitioning representations...
 - ...describe objects as collections of adjoining nonintersecting solids

Spatial-partitioning creates collections of solids that...
 - ...may or may not be the same type as the original object
 - ...are like building blocks
 - ...can vary in type, size, position, parameterization, and orientation
Solid objects can be formed with spatial-partitioning using...
- ...cell decomposition
- ...spatial-occupancy enumeration
- ...octrees and quadtrees, etc.
Building Realistic...
Objects using solid modeling

- Cell decomposition...
 -is a popular form of spatial-partitioning
 - ...composes complex objects from simple primitives in a bottom-up fashion by gluing them together! (like a union but without objects intersecting)
 - ...composes objects from cells, where any two cells must share a single point, edge, or face
Building Realistic...
Objects using solid modeling

- Cell decomposition...

Three simple primitives: called cells

Keep in mind with this method, that the complex object can be created using cells in more than one way...
Spatial-occupancy enumeration...

- ...is a special case of cell decomposition
- ...defines objects using identical cells arrayed in a fixed and regular grid (called *voxels*)
- ...most commonly uses a cube cell type
- ...only controls whether or not a cell is present or absent in every cell in a grid
- ...no other controls are defined
- ...creates unique and unambiguous list of occupied cells
Building Realistic...
Objects using solid modeling

- Spatial-occupancy enumeration...
Building Realistic...
Objects using solid modeling

- Octrees...
 - ...are a hierarchical way to use voxels
 - ...are designed to reduce the storage requirements of the spatial-occupancy enumeration approach
 - ...are derived from 2D quadtrees...and expanded to 3D
Building Realistic...
Objects using solid modeling

- Quadtrees...
 - ...successively subdivide a 2D plane in both dimensions
 - ...where each quadrant is full, partly full, or empty depending on how much of the complex object intersects the area
 - ...where partly full quadrants are recursively subdivided
 - ...and subdivision continues until all cells are full or empty
Building Realistic...
Objects using solid modeling

- Quadtrees...

Cells (voxels) using spatial-occupancy enumeration

Cells using quadtrees
Building Realistic...

Objects using solid modeling

For example...

```
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```

```
Empty
Full
Empty
Full
Empty
Full
```
Building Realistic...

Objects using solid modeling

- Octrees...
 - ...are three dimensional quadtrees
 - ...its three dimensions are recursively subdivided into octants
 - ...have quadrants:
Building Realistic...
Objects using solid modeling

- Octrees...
- The number of nodes in a quadtree or octree is proportional to the object's perimeter or surface, respectively
 - ...this is because subdivision occurs only from the need to represent an object's boundary
 - ...therefore, subdivision only occurs in those quadrants where a boundary passes
Boolean set operators can also apply to both quadtrees and octrees...

- ...by traversing the two trees in parallel
Building Realistic...

Objects using solid modeling

- Constructive solid geometry (CSG)...
 - ...describes objects in terms of regularized Boolean set operators (as part of their representation)
 - ...stores objects in a tree with operators at the internal nodes and simple primitives at the leaves
 - ...allows nodes to represent Boolean operators, translation, rotation, or scaling
Building Realistic...

Objects using solid modeling

- Some implementations limit the primitives to be simple solids -- like cubes or spheres...
 - ...other implementations allow objects that aren't even completely bounded volumes! These are useful for slicing an object by a plane
- CSG does not provide unique representation...
 - ...and therefore can be confusing for systems that allow "leaf" editing (for adding, deleting, replacing, and modifying subtrees)
Building Realistic...
Objects using solid modeling

• A CSG example:
Building Realistic...
Objects using solid modeling: summary

- Accuracy...
 - ...is best achieved by CSG that allows for curved surfaces
 - ...is only approximated using spatial-partitioning and polygonal b-rep methods

- The variety of objects represented...
 - ...is best achieved using spatial-partitioning since they can represent any solid (even if it is an approximation)
Building Realistic...

Objects using solid modeling: summary

- The variety of objects represented...
 - ...can also be achieved using b-reps, if they provide faces and edges in addition to polygons bounded by straight lines
 - ...is limited using sweeps

- Uniqueness...
 - ...can be guaranteed only using octree and spatial-occupancy enumeration methods
Building Realistic...

Objects using solid modeling: summary

- Compactness and efficiency...
 - ...are best achieved using CSG, since it is compact and able to record Boolean operations and transformations quickly