
CS202 3- 1

Introduction to C++

Inheritance

Topic #3

CS202 3- 2

Topic #3

 Single Inheritance

 Introduction to Inheritance

 "Using" versus "Containing" Relationships

 "Containing" Relationships...through inheritance

 Inheritance and Derived Classes

 Creating a Derived Class...the syntax for single
inheritance

 Creating a Derived Class...constructors &
destructors

 Constructor Initialization Lists

 What can be Inherited?

CS202 3- 3

 Multiple and Virtual Inheritance

Creating a Derived Class...the syntax
for multiple inheritance

Virtual Inheritance

CS202 3- 4

Object Oriented Programming

 So far we have used classes and objects to represent
generalized abstractions.

 We learned how to enable these abstractions to be used
in the same contexts as built-in types.

 We learned what design tradeoffs to make to keep our
abstractions as efficient as possible.

 But, even though we were using objects, we were not
using object-oriented programming. We were simply
one step closer by understanding the syntax of classes
and objects.

 Our abstractions were limited to stand alone classes.

CS202 3- 5

Object Oriented Programming

 In the object-oriented programming paradigm, we
begin to consider using classes in conjunction with one
another.

 We should no longer think about classes, or objects, in
isolation from one another.

 Instead of simply creating user defined data types, we
create a hierarchy of related and interdependent classes
and objects, following the natural structure of the
problem.

 This is because object-oriented programming extends
the concept of data abstraction to apply across
abstractions.

CS202 3- 6

Object Oriented Programming

 Object-oriented programming can involve a natural
way of thinking about solutions.

 We organize information in ways that fit an application
as it exists in the real world.

 Unlike procedural abstraction, where we focus on what
actions take place (i.e., verbs), in object-oriented
programming we focus on the component parts (i.e.,
nouns) and the relationships between these parts.

 This means we must think about creating solutions in
an entirely new manner.

 We first consider nouns, then verbs.

CS202 3- 7

Object Oriented Programming

 Object-oriented solutions are designed based on an
inheritance hierarchy which defines the relationships
between classes, where one class shares the structure
and/or behavior of one or more classes.

 To provide this type of design requires that we
understand how to implement such relationships
between objects. Therefore, our first step in
understanding object-oriented programming is to learn
the syntax and semantics of inheritance hierarchies.

 We will also learn how to extend abstractions with new
functionality even when the code for those abstractions
is not available.

CS202 3- 8

Inheritance Hierarchies

 By defining a class that is based on another class, using
inheritance, one class is a specialization of another.

 Such a class is said to be a derived class.

 The class it is derived from is a base class.

 The derived class inherits the base class' members.

 The benefit of this type of relationship is that it allows
reuse of existing code from the base class and allows us
to focus on the new or specialized behavior in the
derived class.

 An existing program should not be aware that a new
derived class has been created if the specialized
relationship is properly defined and encapsulated.

CS202 3- 9

Inheritance Hierarchies

 Every hierarchy has a root (e.g., base class) which has
zero or more children.

 Each child (e.g., derived class) is either a leaf or
branches into children of its own.

 Each class is inherently related to its parent, as well as
to its ancestors.

 In C++, the root of each hierarchy or sub-hierarchy is
called a base class.

 If the base class is the parent of the class in question,
then it is a direct base class. Otherwise, if it is an
ancestor, then it is an indirect base class.

CS202 3- 10

Inheritance Hierarchies

Parent Class

and

Ancestor Class

Child Class

and

Parent Class

Base Class

and

Indirect Base Class

Derived

Class

Child

Class

Derived Class

and

Base Class

CS202 3- 11

Inheritance Hierarchies
 Because derived classes inherit the members of the base

classes, one class' design can be based on existing
members from another class.

 Think of this as using building blocks.

 Instead of starting from scratch with each class that we
design, we can extend one class from another, reusing
an existing class and reducing the need to reinvent.

 New member functions can be added without
modifying the base class itself. And, a derived class can
change the inherited base class client interface by
specifying data members and member functions of the
same name, hiding those inherited from the direct or
indirect base classes.

CS202 3- 12

Inheritance Hierarchies
 Base classes are typically used to establish the common

attributes and behavior for an application and to all
classes derived from it. .

 A derived class may then be used to refine and add to
the base class and represent specialized versions, with
new or altered data/operations.

 The relationship between a derived class and its base
class is often called an "is a" relationship. This is
because a derived class "is a" base class.

 A derived class is everything the base class is and more,
because it has been extended or specialized. A derived
class object can be used when a base class object is
needed.

CS202 3- 13

Single Inheritance
 When a class is derived from one base class, it is called

single inheritance.

 In this figure, the base class is account.

 All classes are derived from this class, either directly or
indirectly.

 checking is also a base class of the student class, since
student is derived from it.

 This makes account an indirect
base class of student.

 Notice how single inheritance
has a tree-like structure.

account

checking

student

savings

CS202 3- 14

Single Inheritance
 To specify a derived class, we define the class as we

learned but we also add the base class' name as part of
the derived class' definition.

 We don't need to alter the base classes to specify which
classes are derived from them.

 For public derivation where derived is the name of the
derived class and base is the name of the base class:

class checking : public account //derivation
{
public:
...

};

CS202 3- 15

Single Inheritance
 We specify in the derived class which class is to be its

parent. It is this parent's members that are then
inherited by the derived class.

 Saying class derived : public base establishes a single
inheritance hierarchy.

 The keyword public specifies that all public members of
the base class remain public in the derived class.

 This is called public derivation and is how we specify
an "is a" relationship between two classes.

CS202 3- 16

//base class
class account {
public:
account();
void statement();

private:
char name[32]; //account owner
float balance; //account balance

};

//checking class derived from account
class checking : public class account {
public:
checking();
float get_charges();

private:
float charges; //charges for current month

};

//savings class derived from account
class savings : public account {
public:
savings();
float get_interest();

private:
float interest; //interest for current month

};

CS202 3- 17

Single Inheritance
 Saying class checking : public account when defining

the checking class indicates that checking is a derived
class.

 The keyword public tells the compiler that all public
members of the account class remain public in the
checking class (i.e., public derivation is taking place).

 The name account tells the compiler that the checking
class is derived from the account class.

 The account class is the direct base class for checking
and savings.

CS202 3- 18

Single Inheritance
 Objects of the checking and savings classes contain all

of the members of an account object and can be used
where ever an account object can be used.

account

checking

account::statement()
name[]
balance

checking::get_charges()
charges

savings
checking object

savings object

savings::get_interest()
interest

account::statement()
name[]
balance

CS202 3- 19

Single Inheritance
 Even though inheritance hierarchies allow derived

classes to inherit members from their base classes, it
does not mean that those members will be accessible
within a derived class.

 This is because members within a hierarchy have their
own visibility.

 As we have seen, public members of a base class are
visible and fully accessible by classes derived from
them. And, data and member functions in the private
section are only available to the class in which they are
defined. They are not accessible to any other class (with
the exception of friends).

CS202 3- 20

Single Inheritance
 Derived classes do not have access to a base class'

private data and member functions, even though they
are inherited.

 Even though memory is allocated for such data
members, they may only be accessed from members
within the base class itself (or friends).

 This is important because giving any other class
(besides a friend) access to private information would
compromise our ability to ensure data hiding and
encapsulation.

 Such a compromise would decrease the value of
programming with objects.

CS202 3- 21

Single Inheritance
 Previously, we recommended that data members be

specified in the private section.

 By following this guideline when designing hierarchies,
all derived classes would explicitly need to use the base
class' public member functions to access inherited data.

 This isn't practical when building classes that are
intended to work in harmony with one another. And, it
reduces our ability to extend the functionality of a
given class in the future.

 By declaring members as protected, derived classes
have access to base class members while restricting
access by client applications.

CS202 3- 22

Constructors in Hierarchies
 A base class constructor is always invoked before a

derived class constructor in an inheritance hierarchy.

 This means that a derived class' constructor can assume
that the base class members have been initialized by the
time it is executed.

 The body of a derived class constructor is executed last
after the base class and all indirect base class
constructors within the hierarchy have executed.

 But, when we have a derived class, we are not explicitly
using the base class' constructor. Instead, the base class’
constructor is implicitly invoked by the derived class
constructor that initializes the base class members.

CS202 3- 23

Constructors in Hierarchies
 When the base class has a default constructor, it is

automatically invoked when an object of the derived
class is defined. This happens whether or not the
derived class constructor is a default constructor or
requires arguments.

 Supplying a default constructor in our base classes
allows for the most straightforward class design. And,
supplying a default constructor in a derived class
makes it easier to use if classes are subsequently
derived from it.

CS202 3- 24

#include <iostream.h>
class account {
public:
account();

private:
char name[32];
float balance;

};

class checking : public account {
public:
checking();

private:
float charges;

};

class savings : public account {
public:
savings();

private:
float interest;

};

Constructors - Page 1 of 2

CS202 3- 25

#include "account.h"
account::account() : balance(0) {
strncpy(name, "none", 32);
name[31] = '\0';
cout <<"account constructor called" <<endl;

}
checking::checking() : charges(5) {
cout <<"checking constructor called" <<endl;

}
savings::savings() : interest(0) {
cout <<"savings constructor called" <<endl;

}
After the client saying: checking c;

savings s;

account constructor called
checking constructor called
account constructor called
savings constructor called

Constructors - Page 2 of 2

CS202 3- 26

Constructors in Hierarchies
 If a base class constructor expects an argument list, the

derived class must explicitly specify the base class
constructor's arguments.

 If it doesn't, then the base class is expected to have a
default constructor, which is implicitly called.

 We explicitly specify the base class constructor's
arguments by listing the base class constructor in the
derived class' initialization list along with the actual
arguments expected by the base class constructor.

Client program: derived obj(10,20);

derived::derived(int i, int j) {
...

CS202 3- 27

Constructors in Hierarchies
 The arguments to the base class constructor can only

consist of values supplied as arguments to the derived
class constructor, constants, literals, global variables, or
expressions made up from such values.

 We cannot use derived class data members as
arguments to a base class constructor nor can we
invoke a member function of the derived class and use
its return value as one of the actual arguments

 because the derived class has not yet been
initialized.

CS202 3- 28

class account {
public:
account(const char* name="none", float amount=0);
void statement();

private:
char name[32];
float balance;

};
class checking : public account {
public:
checking(const char* ="none", float=0, float=5);
float get_charges();

private:
float charges;

};
class savings : public account {
public:
savings(const char* ="none", float=0);
float get_interest();

private:
float interest;

};

Constructors - Page 1 of 2

CS202 3- 29

account::account(const char* n, float b) :
balance(b) {
strncpy(name, n, 32); name[31] = '\0';

}
void account::statement() {
cout <<"Account Statement" <<endl;
cout <<" name = " <<name <<endl;
cout <<" balance = " <<balance <<endl;

}
checking::checking(const char* n, float b, float c) :
account(n, b), charges(c) {}

float checking::get_charges() {
return (charges);

}
savings::savings(const char* n, float b) :
account(n, b), interest(0) {}

float savings::get_interest() {
return (interest);

}
What values do the data members have when the client says:
checking c("Sue Smith", 1000.0);
savings s("Jim Jones", 500.0);

Constructors - Page 2 of 2

CS202 3- 30

Constructors in Hierarchies
 The initialization list causes the base class constructor

to be invoked with the correct arguments!

 The order of the arguments for the base class is very
important. They must be listed in the same order as the
base class constructor expects.

 If we had not included the base class constructor in the
initialization list of the derived class, then the default
base class constructor would be invoked.

 If no default base class constructor exists, then a
compile error results.

CS202 3- 31

Member Hiding
 Hiding applies the same for data members as it does for

member functions.

 Any base class data members that are public or
protected are accessible by the derived class.

 If the derived class defines data members of the same
name (even though the types may be different), any
base class data members of that name are hidden.

 It is the derived class data member that is accessed and
not the hidden base class member regardless of the data
type.

CS202 3- 32

Timing of Constructor Use

 Constructors
are invoked in
the order of the
base class first,
then derived
class
initializers,
followed by the
body of the
derived class
constructor.

account::account(const char* n, float b):

balance(b)

{
 strncpy(name, n, 32);
 name[31] = '\0';
}

savings::savings(const char* n, float b):

account(n, b),

interest(0)

{
}

savings* s;

s = new savings("name", 500);
...
delete s;

CS202 3- 33

Destructors in Hierarchies
 Destructors are invoked at the end of the lifetime of an

object.

 Destructors are invoked in the opposite order from
which their constructors are invoked.

 This means that the derived class destructor is invoked
before its base class destructor.

 If there are indirect base classes, this sequence
continues until the furthest base class destructor is
invoked.

 A derived class destructor is guaranteed that its base
class members are still available for use.

CS202 3- 34

Extending

Behavior

Introduction to C++

CS202 3- 35

Member Hiding
 What happens when members in our hierarchy have

the same name? Does overloading occur? NO!

 Overloading means that we have unique signatures for
the same named function within the same scope. In a
hierarchy, each class has its own separate class scope.
Overloading doesn't apply between classes.

 Instead, inheritance allows members in a base class to
be hidden by members of the same name in a derived
class. By hiding base class members the behavior of
those functions can be redefined by the derived class
without changing the base class or affecting existing
client applications.

CS202 3- 36

Member Hiding
 Members are hidden anytime we specify a data

member or a member function in a derived class that
has the same name as a member in a base class.

 A member function in a derived classes hides a
member function in a base class even if the signatures
are different.

 When that member is accessed, either from a client of
the derived class or within the derived class itself, it is
the derived member that is used.

 If the argument list used by the client does not match
any of the functions defined within the derived class, a
compile error will occur even if a base class has a
matching function.

CS202 3- 37

Access to Hidden Members
 Even when members are hidden, they can still be used.

 If they are public or protected, they can be accessed
from within a derived class member function by using
the class name and the scope resolution operator.

base_class_name::function_name()

 This gives us a means to reuse base class functionality
in the implementation of our derived classes.

 If the hidden members are public, they can be accessed
from within a client application by saying
object.base_class_name::function_nme()

CS202 3- 38

Overloaded Members
 Overloaded functions and overloaded operators are

inherited in the same manner as any other member
function defined within the base class.

 If a derived class has the same named function or
operator as in the base class, then the base class
overloaded function or overloaded operator is hidden
even if the signatures differ.

 However, the constructor, destructor, copy constructor,
assignment operator, address-of operator, and comma
operator are not overloaded. These base class functions
and overloaded operators are hidden and are not
directly accessible within the derived class or through
an object of the derived class.

CS202 3- 39

Copy Constructors, = ops
 Neither the copy constructor nor the assignment

operator are inherited.

 For a derived class, the implicitly supplied copy
constructor and assignment operator both implicitly
call the base class copy constructor and assignment
operators before performing their memberwise copy
operations. This ensures that the base class portion of
the derived class is properly created or initialized
before the derived class portion.

 The base class copy constructor and assignment
operator can be either implicitly defined or explicitly
implemented as part of the base class.

CS202 3- 40

Copy Constructors
 When we explicitly define either a copy constructor or

an assignment operator in a derived class, we are
responsible for ensuring that the base class copy
constructor and assignment operator are called. This is
because when we implement our own copy constructor
or assignment operator, the compiler no longer
provides an implicit one and cannot guarantee that the
base class copy constructor or assignment op are called.

 For the copy constructor, we specify the base class'
copy constructor in the initialization list of the derived
class' copy constructor.
student::student(const student &s) : checking(s) {

...
This works because a student object is a checking object; checking’s

constructor my be implicit or explicitly defined.

CS202 3- 41

Copy Constructors
 For the assignment operator, this is not as simple. We

must invoke the base class' assignment operator from
within the body of our derived class' assignment op.

 To do so requires that we cast the current object
(accessible by *this) into a base class object as follows:

student &student::operator=(const student &s) {

... static_cast<checking &>(*this) = s;

 The static_cast operator forces the type of the student
object to be a reference to a checking object. It causes
the overloaded checking assignment op. to be used for
the object we are assigning to. When we assign the
student object to this reference, the overloaded
checking assignment operator is called with the
checking part of the student object.

CS202 3- 42

Copy Constructors
 Why is the cast important?

 If we didn't use a cast to change the type of the object
we are assigning to,

 we would then have a recursive call to the
overloaded student assignment operator!

 In the following example, it we had not called the
checking class' copy constructor and assignment
operator from the student class copy constructor and
assignment operator, we would correctly copy the
student part, but not the checking and account parts.

CS202 3- 43

class account {
public:
account(const char* ="none", float=0);
account(const account &); ~account();
account &operator=(const account &);
void statement();

private: char* name; float balance;
};
class checking : public account {
public:
checking(const char* ="none", float=0, float=5);
void statement();

private: float charges;
};
class student : public checking {
public:
student(const char* ="none", float=0, const char* ="");
student(const student &); ~student();
student &operator=(const student &);
void statement();

private:
char* school;

};

Dyn. Memory - Page 1 of 3

CS202 3- 44

account::account(const char* n, float b) : balance(b) {
name = new char[strlen(n) + 1];
strcpy(name, n);

}
account::account(const account &a) {
balance = a.balance;
name = new char[strlen(a.name) + 1];
strcpy(name, a.name);
cout <<"account copy constructor called" <<endl;

}
account::~account() { delete[] name; }
account &account::operator=(const account &a) {
if (this != &a) {
balance = a.balance;
delete[] name;
name = new char[strlen(a.name) + 1];
strcpy(name, a.name);

}
cout <<"account assignment op called" <<endl;
return(*this);

}

Dyn. Mem - Page 2 of 3

CS202 3- 45

student::student(const student &s) :
checking(s) { //call copy ctor
school = new char[strlen(s.school) + 1];
strcpy(school, s.school);
cout <<"student copy constructor called" <<endl;

}
student::~student() {
delete[] school;

}
student &student::operator=(const student &s) {
if (this != &s) {
static_cast<checking &>(*this) = s; //call assign op
delete[] school;
school = new char[strlen(s.school) + 1];
strcpy(school, s.school);

}
cout <<"student assignment op called" <<endl;
return(*this);

}

Dyn. Mem - Page 3 of 3

CS202 3- 46

Using Declarations
 A using declaration can bring any hidden public or

protected base class member into the scope of the
derived class.

 These members act as overloaded members of the
derived class.

 However, such members remain hidden in situations
where the argument list is the same as the same named
member in the derived class.

 In the following example, the using declaration makes
the function taking the double accessible to clients of
the derived class. But, the function taking the int is still
hidden in the derived class by declaring a derived class
member function that has the same signature.

CS202 3- 47

class base {
public:
void fun(int) {
cout <<"base::fun(int)" <<endl;

}
void fun(double) {
cout <<"base::fun(double)" <<endl;

}
};

class derived : public base {
public:
using base::fun; //fun(int) & fun(double) now in scope
void fun(int) { //hides fun(int) brought into scope
cout <<"derived::fun(int)" <<endl;

}
void fun(char*) { //defines new fun(char*)
cout <<"derived::fun(char*)" <<endl;

}
};

Using Declarations

CS202 3- 48

Multiple

Inheritance

Introduction to C++

CS202 3- 49

Multiple Inheritance
 With multiple inheritance, a derived class can inherit

from more than one base class

 In situations where a new class has attributes and
behavior in common with more than one class, we may
choose to implement a multiple inheritance hierarchy.

 There are two disadvantages to creating multiple
inheritance hierarchies. First, it is harder than single
inheritance to implement and maintain.

 Second, it is more restrictive than single inheritance.
We recommend its use only after looking at all options.

 Multiple inheritance provides the simplicity of
inheriting behavior from more than one base class and
minimizes reimplementation of existing behavior.

CS202 3- 50

Multiple Inheritance
 To specify a derived class when there is more than one

base class, we add each direct base class name as part of
the derived class' header. This is the same as with
single inheritance, except there is a comma separated
list of base classes.

class assets : public savings, public equity {
public:
...

};

 The definition cannot be cyclical.

 A direct base class cannot be specified

more than once for any derived class.

account

savings equity

assets

CS202 3- 51

Multiple Inheritance
 All base class constructors are always implicitly

invoked prior to the derived class' constructor.

 The order in which the constructors are invoked is
based on the order of the base class declarations in the
derived class. class assets : public savings, public

equity means that the savings constructor is invoked
first followed by the equity constructor. Thus, the order
of constructor invokation for these classes is savings,
equity, and assets.

 As long as each base class has a default constructor, the
derived class will automatically invoke them. If not, an
explicit call to a base class constructor w/ arguments
must be in the initialization list of the derived class.

CS202 3- 52

Multiple Inheritance
 If one of the base class constructors expects an

argument list, the derived class constructor must
supply the actual arguments expected by the base class
constructor in its initialization list.

 For example, if the savings and equity constructors
expect arguments, the assets class constructor must
provide them as follows:

class assets : public savings, public equity {
public:
assets(const char* n, float s) :
savings(n, s),
equity(n, e) {

}

...

CS202 3- 53

Multiple Inheritance
 When members of two different base classes have the

same name, an ambiguity results when used.

 This ambiguity cannot be resolved by the compiler, but
must be resolved at the time the access is made either
by the class or by the client.

 The ambiguity can be resolved by using the base class
name and the scope resolution operator when accessing
the ambiguous member (e.g., savings::get_name). This
is the only way such an ambiguity can be resolved
within the derived class when accessing the base class
member.

CS202 3- 54

Multiple Inheritance
 Members in a base class are hidden anytime we specify

a data member or a member function in a derived class
that has the same name as a member in one of the base
classes. When that member is accessed, either from a
client of the derived class or within the derived class
itself, it is the derived class member that is used.

 To avoid problems with ambiguous resolutions, if there
are members with the same name in the base classes,
then we should make a rule to hide those members
with a member of the same name in our derived class.
This is a simple rule to follow and will avoid problems
of ambiguity for clients of our classes.

CS202 3- 55

Common Base Classes
 Every object of class checking is

comprised of both checking and
account members and every object
of class savings is comprised of
both savings and account members.

 Since an object of class ibc inherits
from both checking and savings,
there are two implicit objects of
class account contained in an ibc
object.

account

checking savings

ibc

ibc object

account::get_name()
account::get_balance()
name[]
balance

savings::get_interest()
interest

ibc::get_minimum()
minimum

checking::get_charges()
charges

account::get_name()
account::get_balance()
name[]
balance

CS202 3- 56

Virtual Inheritance
 Virtual inheritance is an extension of multiple

inheritance.

 Its objective is to allow efficient use of memory and
elimination of duplicate state spaces when designing
inheritance hierarchies that share a common base class.

 The only time one might use virtual inheritance within
a single inheritance hierarchy is when we can foresee
future extensions that may result in a derived class
sharing a common base class.

CS202 3- 57

Virtual Inheritance
 It allows the direct base classes of a derived class to be

derived from a common direct or indirect base class
without duplicating data members of the base class.

 An object of class ibc has memory allocated for all of
the data members of class ibc, checking, savings, but
just one account.

ibc object

account::get_name()
account::get_balance()
name[]
balance

ibc::get_minimum()
minimum

checking::get_charges()
charges

savings::get_interest()
interest

CS202 3- 58

Virtual Inheritance
 A virtual base class is specified in our class derivation

lists, with the keyword virtual before each common
base class name as part of the base class header.

class common_base {...};
class base_1 : virtual public common_base {...};
class base_2 : virtual public common_base {...};
class derived : public base_1, public base_2 {...};

 Each path leading from the derived class to the
common base class must specify that the common base
class is a virtual base class.

 If the common base class is not a direct base class of the
derived class, then the derived class does not need to
use the keyword virtual in the derivation list

CS202 3- 59

Virtual Inheritance
 A virtual base class is specified in our class derivation

lists, with the keyword virtual before each common
base class name as part of the base class header.

class common_base {...};
class base_1 : virtual public common_base {...};
class base_2 : virtual public common_base {...};
class derived : public base_1, public base_2 {...};

 Each path leading from the derived class to the
common base class must specify that the common base
class is a virtual base class.

 If the common base class is not a direct base class of the
derived class, then the derived class does not need to
use the keyword virtual in the derivation list

CS202 3- 60

Virtual Inheritance
 If a path exists in the multiple inheritance hierarchy

that derives the common base class as not virtual (i.e.,
leaving out the keyword virtual), then this turns off
virtual inheritance for that path and more than one
instance of the common_base will be formed.

 Virtual base classes are constructed before any of their
derived classes. They are also constructed before any
non virtual base classes. And, destructors are still
invoked in the reverse order of constructors.

 Any direct or indirect base classes that have
initialization lists that invoke the virtual base class
constructor are ignored.

CS202 3- 61

Virtual Inheritance
 Always supply default constructors with virtual base

classes. This will avoid problems when initializing
virtual base class members. If a virtual base class has
arguments, then we must expect the most derived class
to have full knowledge of the indirect base class
constructor.

 Arguments specified for virtual base class constructors
must come from the derived class that is actually
creating an object.

 Virtual base class constructor invokations from
intermediate base classes are ignored.

CS202 3- 62

Types of Derivation
 There are two other forms of derivation that are

possible: protected derivation and private derivation.

 If we are interested in extending the client interface for
one of the direct base classes, then it should be derived
as public.

 If we are interested in replacing the client interface but
allowing future derivation, then it should be derived as
protected.

 If we want no future derivation, then it should be
derived as private.

CS202 3- 63

Types of Derivation

class derived: public base_1,

private base_2 {...};

 Remember that regardless of the type of derivation,
private members are always private to the class and are
never available to any derived classes except for friends
of the class.

The base class

members are:

Public

Protected

Private

Treatment in the

derived class with

public derivation

Remains Public

Remains Protected

Remains Private

Treatment in the

derived class with

protected derivation

Becomes Protected

Remains Protected

Remains Private

Treatment in the

derived class with

private derivation

Becomes Private

Becomes Private

Remains Private

