
CS202 2- 1

Introduction to C++

Data Abstraction w/

Classes

Topic #2

CS202 2- 2

Lecture #1 plus Review

 Abstract Data Types
 Introduction to...Object Models
 Introduction to...Data Abstraction
 Using Data Abstraction in C++ ...an

introduction to the class
 Members of a Class

 The class interface, using the class, the class
interface versus implementation

 Classes versus Structures
 Constructors, Destructors
 Dynamic Memory and Linked Lists

CS202 2- 3

Programming Paradigms

 The most important aspect of C++ is its
ability to support many different
programming paradigms

 procedural abstraction

 modular abstraction

 data abstraction

 object oriented programming (this is
discussed later, once we learn about the
concept of inheritance)

CS202 2- 4

Procedural Abstraction

 This is where you build a “fence”
around program segments, preventing
some parts of the program from
“seeing” how tasks are being
accomplished.

 Any use of globals causes side effects
that may not be predictable, reducing
the viability of procedural abstraction

CS202 2- 5

Modular Abstraction

 With modular abstraction, we build a
“screen” surrounding the internal
structure of our program prohibiting
programmers from accessing the data
except through specified functions.

 Many times data structures (e.g.,
structures) common to a module are
placed in a header files along with
prototypes (allows external references)

CS202 2- 6

Modular Abstraction

 The corresponding functions that
manipulate the data are then placed in
an implementation file.

 Modules (files) can be compiled
separately, allowing users access only
to the object (.o) files

 We progress one small step toward
OOP by thinking about the actions that
need to take place on data...

CS202 2- 7

Modular Abstraction

 We implement modular abstraction by
separating out various
functions/structures/classes into
multiple .c and .h files.

 .c files contain the implementation of
our functions

 .h files contain the prototypes, class and
structure definitions.

CS202 2- 8

Modular Abstraction

 We then include the .h files in modules
that need access to the prototypes,
structures, or class declarations:

 #include “myfile.h”

 (Notice the double quotes!)

 We then compile programs (on UNIX) by:

 CC main.c myfile.c

 (Notice no .h file is listed on the above line)

CS202 2- 9

Data Abstraction

 Data Abstraction is one of the most
powerful programming paradigms

 It allows us to create our own user
defined data types (using the class
construct) and

 then define variables (i.e., objects) of those
new data types.

CS202 2- 10

Data Abstraction

 With data abstraction we think about
what operations can be performed on a
particular type of data and not how it
does it

 Here we are one step closer to object
oriented programming

CS202 2- 11

Data Abstraction

 Data abstraction is used as a tool to
increase the modularity of a program

 It is used to build walls between a
program and its data structures

 what is a data structure?

 talk about some examples of data
structures

 We use it to build new abstract data
types

CS202 2- 12

Data Abstraction

 An abstract data type (ADT) is a data
type that we create

 consists of data and operations that can be
performed on that data

 Think about a char type

 it consists of 1 byte of memory and
operations such as assignment, input,
output, arithmetic operations can be
performed on the data

CS202 2- 13

Data Abstraction

 An abstract data type is any type you
want to add to the language over and
above the fundamental types

 For example, you might want to add a
new type called: list

 which maintains a list of data

 the data structure might be an array of
structures

 operations might be to add to, remove,
display all, display some items in the list

CS202 2- 14

Data Abstraction

 Once defined, we can create lists
without worrying about how the data is
stored

 We “hide” the data structure used for
the data within the data type -- so it is
transparent to the program using the
data type

 We call the program using this new
data type: the client program (or client)

CS202 2- 15

Data Abstraction

 Once we have defined what data and
operations make sense for a new data
type, we can define them using the class
construct in C++

 Once you have defined a class, you can
create as many instances of that class as
you want

 Each “instance” of the class is
considered to be an “object” (variable)

CS202 2- 16

Data Abstraction

 Think of a class as similar to a data type

 and an object as a variable

 And, just as we can have zero or more
variables of any data type...

 we can have zero or more objects of a class!

 Then, we can perform operations on an
object in the same way that we can
access members of a struct...

CS202 2- 17

What is a Class?

 Remember, we used a structure to group

different types of data together under a

common name

With a class, we can go the next step an

actually define a new data type

In reality, structures and classes are 100%
the same except for the default conditions

 everything you can do with a class you can
do with a structure!

CS202 2- 18

What is a Class?

 First, let‟s talk about some terminology

 Think of a class as the same as a data type

 Think of an object as the same as a variable

 An “object” is an instance of a class

 Just like a “variable” is an instance of a
specific data type

 We can zero or more variables (or objects)
in our programs

CS202 2- 19

When do we used Classes?

 I recommend using structures when you want

to group different types of data together

 and, to use a class when we are interested in
building a new type of data into the
language itself

 to do this, I always recommend forming that
data type such that it behaves in a
consistently to how the fundamental data
types work

CS202 2- 20

But, What is a Data Type?

We‟ve been working with fundamental data

types this term, such as ints, floats, chars...

Whenever we define variables of these types,

 memory is allocated to hold the data

 a set of operations can now be performed on
that data

 different data types have different sets of
operations that make sense (the mod
operator doesn’t make sense for floats...)

CS202 2- 21

Defining new Data Types...

 Therefore, when we define a new data type

with the class construct

 we need to specify how much memory
should be set aside for each variable (or
object) of this type

 and, we need to specify which operations
make sense for this type of data (and then
implement them!!)

 and, what operators makes sense (do be
discussed with operator overloading)

CS202 2- 22

Defining a Class...

Once we have decided on how the new type of

data should behave, we are ready to define a

class:

class data_type_name {

public:

//operations go here

private:

//memory is reserved here

};

CS202 2- 23

For Example, here is a Class Interface

class string {

public:

string();

int copy(char []);

int length();

int display();

private:

char str[20];

int len;

};

CS202 2- 24

Then, the Class Implementation

string::string() {

str[0]=„\0‟; len = 0;

}

int string::copy(char s []) [

if (strlen(s) < 20)

strcpy (str, s);

else {

for (int i = 0; i< 20; ++i)

str[i] = s[i];

str[20]=„\0‟;

len = strlen(str); return len; }

CS202 2- 25

More of the Class Implementation

int string::length() {

return len;

}

int string::display() {

cout <<str;

return len;

}

CS202 2- 26

Defining Objects of this Class

 Notice how similar defining objects of class is to
defining variables of any data type:

string my_str; vs. int i;

 Defining an object causes the “constructor” to
be invoked; a constructor is the same named
function as the class (string) and is used to
initialize the memory set aside for this object

 Think about how much memory is set aside?

 What initial values should it take on?

CS202 2- 27

Using Objects of this Class

 Think about how you can use those objects

my_str.copy(“hi!”);

cout << my_str.length();

 We are limited to using only those operations that are

defined within the public section of the class interface

 The only “built-in” operation that can be used with

objects of a class is the assignment operation, which

does a memberwise copy (as we learned with

structures)

CS202 2- 28

Using Objects of this Class

 Notice how similar the use of these operations
is to the cin.get function.....

cin.get(ch);

 This should be a clue. cin therefore is an object of the

istream class.

 The dot is the member access operator; it allows us to

access a particular public member function defined

within the istream class.

 The function get is therefore defined within the public

section of the istream class

CS202 2- 29

Limitations...

 But, there are limitations!

 If our goal is to really be able to use my string
objects in a way consistent with the
fundamental data types,

 then I would expect to be able to read strings
using the extraction operator

 and to display strings by directly using the
insertion operator

 and to concatenate strings using +

CS202 2- 30

Limitations...

 With the class as it is defined, none of these
things can be done...

 the only operations that can be performed
are those specified within the public section
of the class interface, and a memberwise
copy with the assignment operator

 No other operations are known

 Therefore, to be consistent, we must revise our

class to use operator overloading

CS202 2- 31

For Example, here is a Class Interface

class string {

public:

string();

int length();

friend ofstream & operator <<

(ofstream &, const string &);

friend ifstream & operator >>

(ifstream &, string &);

private:

char str[20];

int len;

};

CS202 2- 32

List Example

 For a list of videos, we might start with
a struct defining what a video is:

struct video {

char title[100];

char category[5];

int quantity;

};

We will re-visit this example using
dynamic memory once we understand
the mechanics of classes

CS202 2- 33

List Example

 For a list of videos data type:
class list {

public:

list();

int add (const video &);

int remove (char title[]);

int display_all();

private:

video my_list[CONST_SIZE]; //for now...

int num_of_videos;

};

CS202 2- 34

List Example

 For a client to create a list object:
main() {

list home_videos; //has an array of 100 videos

list kids_shows; //another 100 videos here...

•••

video out_of_site;

cin.get(out_of_site.title,100,‟\n‟);

cin.ignore(100,‟\n‟);

•••

home_videos.add(out_of_site); //use operation

CS202 2- 35

Data Hiding

and

Member Functions

Introduction to C++

CS202 2- 36

Data Abstraction in C++

 Terminology

 Data Hiding

 Class Constructors

 Defining and using functions in classes

 Where to place the class interface and
implementation of the member
functions

CS202 2- 37

“class” Terminology

 Class

 think data type

 Object

 instance of a class, e.g., variable

 Members

 like structures, the data and functions
declared in a class

 called “data members” and “member
functions”

CS202 2- 38

“class” Terminology

 A class could be a list, a string, a counter,
a clock, a bank account, etc.

 discuss a simple counter class on the board

 An object is as real as a variable, and gets
allocated and deallocated just like
variables

 discuss the similarities of:

int i; list j;

CS202 2- 39

“class” Terminology

 For the list of videos data type we used

class list { <--- the data type!!!

public:

list(); <--- the constructor

int add (const video &); 3 member functions

int remove (char title[]);

int display_all();

private:

video my_list[CONST_SIZE]; data members

int num_of_videos;

}; <--- notice like structures we need a semicolon

CS202 2- 40

“class” Terminology

 If we examine the previous class,

 notice that classes are really very similar to
structures

 a class is simply a generalized structure

 in fact, even though we may not have used
structures in this way...

Structures and Classes are 100% identical
except for their default conditions...

 by default, all members in a structure are available for
use by clients (e.g., main programs); they are public

CS202 2- 41

“class” Terminology

 We have seen the use of structures in a
more simple context,

– as we examined with the video struct.

 It had three members (data members)

 called title, category, and quantity.

 They are “public” by default,

 so all functions that have objects of type
video can directly access members by:

video object;

object.title object.category object.quantity

CS202 2- 42

“class” Terminology

 This limited use of a structure was
appropriate, because

 it served the purpose of grouping different
types of data together as a single unit

 so, anytime we want to access a particular
video -- we get all of the information
pertaining to the video all at once

CS202 2- 43

Structure Example

 Remember, anything you can do in a
struct you can do in a class.

– It is up to your personal style how many
structures versus classes you use to solve a
problem.

 Benefit: Using structures for simple
“groupings” is compatible with C
struct video {

char title[100];

char category[5];

int quantity;

};

CS202 2- 44

“class” Terminology

 To accomplish data hiding and
encapsulation

 we usually turn towards classes

 What is data hiding?

 It is the ability to protect data from
unauthorized use

 Notice, with the video structure, any code
that has an object of the structure can access
or modify the title or other members

CS202 2- 45

Data Hiding

 With data hiding

 accessing the data is restricted to authorized
functions

 “clients” (e.g., main program) can’t muck
with the data directly

 this is done by placing the data members in
the private section

 and, placing member functions to access &
modify that data in the public section

CS202 2- 46

Data Hiding

 So, the public section

 includes the data and operations that are
visible, accessible, and useable by all of the
clients that have objects of this class

 this means that the information in the public
section is “transparent”; therefore, all of the
data and operations are accessible outside
the scope of this class

 by default, nothing in a class is public!

CS202 2- 47

Data Hiding

 The private section

 includes the data and operations that are not
visible to any other class or client

 this means that the information in the private
section is “opaque” and therefore is
inaccessible outside the scope of this class

 the client has no direct access to the data and
must use the public member functions

 this is where you should place all data to
ensure the memory’s integrity

CS202 2- 48

Data Hiding

 The good news is that

 member functions defined in the public
section can use, return, or modify the
contents of any of the data members, directly

 it is best to assume that member functions
are the only way to work with private data

– (there are “friends” but don’t use them this term)

 Think of the member functions and private
data as working together as a team

CS202 2- 49

“class” Terminology

 Let’s see how “display_all” can access the data
members:
class list {

public: notice it is public

int display_all() {

for (int i=0; i<num_of_videos; ++i)

cout <<my_list[i].title <<„\t‟

<<my_list[i].category

<<„\t‟ <<my_list[i].quantity <<endl;

}

•••
private:

video my_list[CONST_SIZE];

int num_of_videos;

};

CS202 2- 50

Data Hiding

 Notice, that the display_all function can
access the private my_list and
num_of_videos members, directly

 without an object in front of them!!!

 this is because the client calls the display_all
function through an object

– object.display_all();

 so the object is implicitly available once we
enter “class scope”

CS202 2- 51

Where to place....

 In reality, the previous example was
misleading. We don’t place the
implementation of functions with this
this class interface

 Instead, we place them in the class
implementation, and separate this into its
own file

CS202 2- 52

Class Interface (.h)

 Class Interface: list.h
class list {

public:

int display_all()

•••
private:

video my_list[CONST_SIZE];

int num_of_videos;

};

 list.h can contain:
 prototype statements

 structure declarations and definitions

 class interfaces and class declarations

 include other files

CS202 2- 53

Class Implementation

 Class Implementation list.c
#include “list.h” notice the double quotes

int list::display_all() {

for (int i=0; i<num_of_videos; ++i)

cout <<my_list[i].title <<„\t‟

<<my_list[i].category

<<„\t‟ <<my_list[i].quantity <<endl;

}

 Notice, the code is the same

 But, the function is prefaced with the class name and the scope
resolution operator!

 This places the function in class scope even though it is implemented
in another file

 Including the list.h file is a “must”

CS202 2- 54

Constructors

 Remember that when you define a local
variable in C++, the memory is not
automatically initialized for you

 This could be a problem with classes and
objects

 If we define an object of our list class, we really
need the “num_of_videos” data member to
have the value zero

 Uninitialized just wouldn’t work!

CS202 2- 55

Constructors

 Luckily, with a constructor we can write a
function to initialize our data members

 and have it implicitly be invoked whenever
a client creates an object of the class

 The constructor is a strange function, as
it has the same name as the class, and no
return type (at all...not even void).

CS202 2- 56

Constructor

 The list constructor was: (list.h)
class list {

public:

list(); <--- the constructor

•••

};

 The implementation is: (list.c)
list::list(){

num_of_videos = 0;

}

CS202 2- 57

Constructor

 The constructor is implicitly invoked
when an object of the class is formed:

int main() {

list fun_videos; implicitly calls the

constructor

list all_videos[10]; implicitly calls the

constructor 10 times for

each of the 10 objects!!

CS202 2- 58

Dynamic Memory w/ Classes

 But, what if we didn’t want to waste
memory for the title (100 characters
may be way too big (Big, with Tom
Hanks)

 So, let’s change our video structure to
include a dynamically allocated array:

struct video {

char * title;

char category[5];

int quantity;

};

CS202 2- 59

Dynamic Memory w/ Classes

 Let’s write a class that now allocates
this list of videos dynamically, at run
time

 This way, we can wait until we run our
program to find out how much memory
should be allocated for our video array

CS202 2- 60

Dynamic Memory w/ Classes

 What changes in this case are the data
members:
class list {

public:

list();

int add (const video &);

int remove (char title[]);

int display_all();

private:

video *my_list;

int video_list_size;

int num_of_videos;

};

Replace the array
with these

CS202 2- 61

Default Constructor

 Now, let’s think about the
implementation.

 First, what should the constructor do?

 initialize the data members

list::list() {

my_list = NULL;

video_list_size = 0;

num_of_videos = 0;

}

CS202 2- 62

Another Constructor

 Remember function overloading? We
can have the same named function
occur (in the same scope) if the
argument lists are unique.

 So, we can have another constructor
take in a value as an argument of the
number of videos

 and go ahead and allocate the memory, so
that subsequent functions can use the array

CS202 2- 63

2nd Constructor

list::list(int size) {

my_list = new video [size];

video_list_size = size;

num_of_videos = 0;

}

Notice, unlike arrays of characters, we don’t
need to add one for the terminating nul!

CS202 2- 64

Clients creating objects

 The client can cause this 2nd
constructor to be invoked by defining
objects with initial values

list fun_videos(20); //size is 20

If a size isn’t supplied, then no memory is
allocated and nothing can be stored in the
array....

CS202 2- 65

Default Arguments

 To fix this problem, we can merge the
two constructors and replace them with
a single constructor:

list::list(int size=100) {

my_list = new video [size];

video_list_size = size;

num_of_videos = 0;

}

(Remember, to change the prototype for the

constructor in the class interface)

CS202 2- 66

Destructor

 Then, we can deallocate the memory
when the lifetime of a list object is over

 When is that?

 Luckily, when the client’s object of the
list class lifetime is over (at the end of
the block in which it is defined) -- the
destructor is implicitly invoked

CS202 2- 67

Destructor

 So, all we have to do is write a destructor
to deallocate our dynamic memory.

list::~list() {

delete [] my_list;

my_list = NULL;

•••
}

(Notice the ~ in front of the function name)

(It can take NO arguments and has NO return type)

(This too must be in the class interface....)

CS202 2- 68

Review of Classes

 What is the difference between a class
and a struct

 What is a data member?

 Where should a data member be placed
in a class? (what section)

 What is a member function?

 Where should member functions be
placed, if clients should use them?

CS202 2- 69

Review of Classes

 What is the difference between a
member function and a regular-old C++
function?

 What is the purpose of the constructor?

 Why is it important to implement a
constructor?

 What is the difference between a class
and an object?

CS202 2- 70

Review of Classes

 Show an example of how a client
program defines an object of a list class

 How then would the client program call
the constructor? (trick question!)

 How then would the client program call
the display_all function?

 Why are parens needed?

CS202 2- 71

Review of Classes

 Write a simple class interface (called
number) that has the following members:

 an integer private data member (containing
a value)

 a constructor

 a set member function, that takes an integer
as an argument and returns nothing

 a display member function

CS202 2- 72

Review of Classes

 Now, let’s try our hand at
implementing these functions

 a constructor

 a set member function, that takes an
integer as an argument and returns
nothing

 a display member function

CS202 2- 73

Review of Classes

 What happens if we forgot to put the
keyword public in the previous class
interface?

 Why is it necessary to place the class
name, followed by the scope resolution
operator (::) when we implement a
member function outside of a class?

