Data Structures

Topic #10
Today’s Agenda

• Continue Discussing Trees
• Examine more advanced trees
 – 2-3 (evaluate what we learned)
 – B-Trees
 – AVL
 – 2-3-4
 – red-black trees
Discuss 2-3 Trees

- A 2-3 tree is always balanced
- Therefore, you can search it in all situations with logarithmic efficiency of the binary search
- You might be concerned about the extra work in the insertion/deletion algorithms to split and merge the nodes...
Discuss 2-3 Trees

- **But**, rigorous mathematical analysis has proved that this extra work to maintain structure is not significant.
- It is sufficient to consider only the time required to locate an item (or a position to insert).
Discuss 2-3 Trees

• So, if 2-3 trees are so good, why not have nodes that can have more data items and more than 3 children?

• Well, remember why 2-3 trees are great?
 – because they are balanced and that balanced structure is pretty easy to maintain
Discuss 2-3 Trees

• The advantage is not that the tree is shorter than a balanced binary search tree
 – the reduction in height is actually offset by the extra comparisons that have to be made to find out which branch to take
 – actually a binary search tree that is balanced minimizes the amount of work required to support ADT table operations
Discuss 2-3 Trees

• But, with binary search trees balance is hard to maintain
 – A 2-3 tree is really a compromise
 – Searching may not be quite as efficient as a binary tree of minimum height
 – but, it is relatively simple to maintain
Discuss 2-3 Trees

- Allowing nodes to have more than 3 children would require more comparisons and would therefore be counter productive – unless you are working with external storage and each node requires a disk access, then we use b-trees which have the minimum height possible.
Discuss B-Trees

• Tables stored externally can be searched with B-Trees.
 – B-Trees are a more generalized approach than the 2-3 Tree
 – With externally stored tables, we want to keep the search tree as short as possible; it is much faster to do extra comparisons at a particular node than try to find the next node.
Discuss B-Trees

• Every time we want to get another node,
 – we have to access the external file and read in the appropriate information.
 – It takes far less time to operate on a particular node (i.e., doing comparisons) once it has been read in.
 – This means that for externally stored tables we should try to reduce the height of the tree...even if it means doing more comparisons at every node.
Discuss B-Trees

• Therefore, with an external search tree,
 – we allow each node to have as many children as possible.
 – If a node is to have m children, then you must be able to allocate enough memory for that node to contain the data and m pointers to the node.
 – The data such a node must have must be $m-1$ key values.
Discuss B-Trees

- Remember in a binary search tree,
 - if a node has 2 children then it contains one data value (i.e., one value).
 - You can think of the data value at a node as separating the data values in the two child subtrees.
 - All keys to the left are less than the node's data value and all key values to the right are greater than or equal.
 - The value of the data at a particular node tells you which branch to take.
Discuss B-Trees

- In a 2-3 tree,
 - if a node has 3 children then it must contain two key values.
 - These two values separate the key values in the node's three child subtrees.
 - All of the key values in the left subtree are less than the node's smaller key value;
 - all of the key values in the middle subtree are between the node's two key values;
 - all of the key values in the right subtree are greater than or equal to the node's larger key value.
Discuss B-Trees

- Ideally, you should structure these types of trees such that every internal node has m children and all leaves are at the same level.
- For example, if m is 5 -- then every node should have 5 children and 4 data values.
 - But, this is too difficult to maintain when you are doing a variety of insertions and deletions.
Discuss B-Trees

- So, we can require that B-trees be balanced (as we saw with 2-3 trees)...
 - but the number of children for any internal node should be able to be somewhere between \(m \) and \((m \div 2) + 1 \).
- We call this a B-Tree of degree \(m \)
- This requires that all leaves be at the same level (balanced).
Discuss B-Trees

• Each node contains between m-1 and (m \ div 2) values.
• Each internal node has one more child than it has values.
• There is one exception;
 – the root of the tree can contain as few as 1 value and can have as few as two children (or none -- if the tree consists of only a root!).
Discuss B-Trees

• Notice, a 2-3 tree is a B-tree of degree 3.
• Data can be inserted into a B-tree using the same strategy of splitting and merging nodes that we discussed.
• Here is a B-tree of degree 5:
Discuss B-Trees

• Then, insert 55.
 – The first step is to locate the leaf of the tree in which this index belongs by determining where the search for 55 would terminate.

• We would find that we would want to insert 55 in the node containing 50, 56, 57, 58.
 – But, that would cause this node to contain 5 records. Since a node can contain only 4 records, you must split this node into two...the new left node gets the two smaller values and the new right node gets the two larger values.
Discuss B-Trees

- The record with the middle key value (56) is moved up to the parent:
Discuss B-Trees

• This causes two problems,
 – the parent now has six children and five records!!
 – So, we must split the parent into two nodes and move the middle data value up to its parent.
 – Remember, when we split an internal node, we need to also move that node's children too
 – Since the root only has 2 data items, we can simply add 56 there.
 – The solution is on the next slide...
Discuss B-Trees

Move 56 here
Discuss B-Trees

- Notice, that if the root had needed to be split,
 - the new root will contain only one value and
 have only 2 children (that is why we have the
 exception to the B-Tree definition stated
 earlier).

- To traverse a B-Tree in sorted order, all we
 need to do is visit the search keys in sorted
 order by using an inorder traversal of the B-
 Tree.
Balancing Algorithms

• But, are there other alternatives?
• Remember the advantage of trees is that they are well suited for problems that are hierarchical in nature and they are much faster than linked lists
 – but, this is not valid if the tree is not balanced
 – luckily, there are a number of techniques to balance a binary tree
Balancing Algorithms

• Some of the balancing techniques require constant restructuring of the tree as data is inserted
 – the AVL algorithm uses this approach
• Some algorithms consist of build an unbalanced tree and then reordering the data once the tree is generated
 – this can be simple but depending on the frequency of data being inserted, it may not be realistic
Balancing Algorithms

• The “brute force” technique is to create an array of pointers to your data by traversing an unbalanced BST using “inorder” traversal
 – then re-build the tree by splitting the array in the middle for each subarray (much like what we have seen with the binary search algorithm used with arrays)
 – the middle data item should be the root, as it splits what is less than it, and what is greater!
Balancing Algorithms

• The algorithm for the “brute force” approach is:
 – balance(data_type data [], int first, int last)
 • if (first <= last) {
 • int middle = (first + last)/2;
 • insert(data[middle]);
 • balance(data, first, middle-1);
 • balance(data, middle+1, last);
Balancing Algorithms

• The “brute force” technique has a serious drawback
 – all of the data must be put in an array before a balanced tree can be created
 – what would happen if you weren’t using pointers to the data but instances of the data?
 – if an unbalanced tree is not used (i.e., the data is directly inserted into the array from the client), then a sorting algorithm must be used and fixed size issues arise
AVL Trees

• The AVL tree is a classical method proposed by Adelson-Velskii and Landis
 – creates an “admissible tree” (its original name!)
 – focuses on rebalancing the tree locally to the portion of the tree affected by insertion and deletions
 – it allows the height of the left and right subtrees of every node to differ by at most one
AVL Trees

• With AVL trees
 – each node must now keep track of the “balance factors” which records the differences between the heights of the left and right subtrees
 – the balance factor is the height of the right subtree minus the height of the left subtree
 – all balance factors must be +1, 0, or -1
 – notice, this does meet the definition we learned about for a balanced tree
AVL Trees

• However, the concept of AVL trees always includes implicitly the techniques for balancing trees
 – and does not guarantee that the resulting tree is perfectly balanced (unlike all of the other techniques we have seen so far)
 – but, an AVL tree can be searched almost as efficiently as a minimum height binary search tree
 – but insert and removal are not as efficient
AVL Trees

- AVL trees actually maintains the height close to minimum by monitoring the shape of the tree as you insert and delete.
- After you insert/delete:
 - The tree is checked to see if any node differs by more than 1 in height.
 - If it does, you rearrange the nodes to restore balance.
 - But, as you can guess, we can’t arbitrarily rearrange nodes....we must keep proper order.
AVL Trees

• What we do is rotate the tree to make it balanced
• Rotations are not necessary after every insertion & deletion (it is only needed when the height differs by more than 1)
 – experiments indicate that deletions in 78% of the cases require no rebalancing
 – and only 53% of the insertions do not bring the tree out of balance
AVL Trees

- Single rotation is one type of rotation:
 - In the following, the tree was fine after inserting 20, 10, 40, 30, 50...but when 60 is inserted...

An unbalanced binary search tree
AVL Trees

• Start at the node inserted...move up the tree (recursively return)
 – examining the balancing factor
 – stop when it is not +1, 0, -1 and rotate from the “heavy” side to the “light”

40 rotates up, 20 inherits 40’s left child
AVL Trees

- If a single rotation does not create a balanced tree
 - then a double rotation is required
 - first rotate the subtree at the root where the problem occurred
 - and then rotate the tree’s root
 - there is, however, on special case:
AVL Trees

- In class, walk through a few examples on your own (and then on the board) building AVL trees
 - so you can understand the process of rotations
 - insert: 50, 60, 30, 70, 55, 20, 52, 65, 40
 - or, insert: 10, 20, 30, 40, 50, 60, 70, 80
 - what would the corresponding BST and 2-3 tree looked like?
AVL Trees

- The main question you should be facing with an AVL tree is
 - whether or not such restructuring is always necessary
 - binary search trees are used to insert, retrieve, and delete elements quickly and the speed of performing these operations is the issue, not the shape of the tree
 - performance can be improved by balancing the tree but luckily this is not the only method available
2-3-4 and red-black Trees

• Now let’s go back to rethinking about how we organize our nodes
 – maybe instead of trying to balance the tree we keep the tree balancing at all times (perfectly balanced)
 – but the 2-3 tree had a flaw in that there may be situations where each node is “full” requiring a rippling effect of nodes being split as you recursively return back to the root
2-3-4 and red-black Trees

- A 2-3-4 tree solves this problem
 - which allows \textbf{4-nodes which are nodes that have 4 pieces of data and 3 children}
 - each insertion and deletion can have fewer steps than are required by a 2-3 tree (when looking at the insertions/deletions in isolation)
 - but does this by using more memory
 - essentially, each node can have 1, 2, or 3 pieces of data, and 4 child pointers!!!!!
2-3-4 and red-black Trees

- A 2-3-4 tree solves this problem
 - a node can either be a leaf or,
 - if it has 1 data item there are 2 children,
 - 2 data items has 3 children, and
 - 3 data items has 4 children

- A 2-3-4 tree remains perfectly balanced
 - but its insertion algorithm splits the nodes as it traverses down the tree toward a leaf, rather than upon the return to the root
2-3-4 and red-black Trees

- As you travel down the tree to insert a data item,
 - if you encounter a node with 3 pieces of data you immediate split the node at that time (just as we did with a 2-3 tree...but now we don’t use the new data we are trying to insert...because we haven’t inserted it yet!)
 - then, you continue traveling towards a leaf to insert the data
2-3-4 and red-black Trees

• What this means is that the tree cannot contain all nodes with 3 pieces of data. Impossible.
• In fact, on insert, once you insert data at a leaf it is guaranteed that the leaf’s parent will not have 3 pieces of data...
 – because if it did, it would have split on the way to find the leaf!
The advantage of both the 2-3 and 2-3-4 trees

- is that they are easy to maintain balance (not that their height is shorter due to the extra comparisons required)
- where the 2-3-4 tree has an advantage is that the insertion/deletion algs require only one pass through the tree so they are simpler than those for a 2-3 tree
- decrease in effort makes them attractive........
2-3-4 and red-black Trees

• On the other hand, 2-3-4 trees require more storage than a binary search tree
 – and more storage (and less efficiently used storage) than a 2-3 tree

• But, a binary search tree may be inappropriate
 – because it may not be balanced
 – so we use a red-black tree which is a special binary search tree
2-3-4 and red-black Trees

• A red-black tree is a BST representation of a 2-3-4 tree with 2 extra fields in the node to represent whether the connection is within the current node or a child
 – it retains the advantages of a 2-3-4 tree without the storage overhead!
 – with all of the benefits of a binary search tree and none of the drawbacks!
2-3-4 and red-black Trees

- The idea is to represent a node with 2 pieces of data and 3 children as a binary search tree with red and black child pointers.
2-3-4 and red-black Trees

- And, we represent a node with 3 pieces of data and 4 children as a binary search tree with red and black child pointers.
2-3-4 and red-black Trees

• In class, walk through examples of
 – 2-3
 – 2-3-4
 – AVL
 – BST
 – and see how you can take a 2-3-4 and turn it into a red black tree (make sure to read the chapter on advanced trees!!!)
2-3-4 and red-black Trees

• For next time,
 – practice creating each of these trees on your own so that you understand the insertion algorithms
 – think about what would be needed to remove nodes from these trees
 – try deleting a leaf and an internal node from your 2-3, AVL, and 2-3-4 trees