
CS162 External Data Files 1

Today in CS162

 External Files

 What is an external file?

 How do we save data in a file?

CS162 External Data Files 2

External Files

 So far, all of our programs have used main
memory to temporarily store information.

 In addition, all input and output has been
done with standard-in and standard-out
devices

 this includes input from the keyboard
and output to our terminal's screen for
prompts, echoing data, and displaying
results

 Now it is time to work with secondary
storage!

CS162 External Data Files 3

External Files

 Typically, secondary storage consists of a

hard disk....however,

 some of you may end up using a floppy as

your secondary storage.

 With ODIN, we will be using a hard disk.

 Those of you using PCs, will use a

combination of hard disks and floppies.

CS162 External Data Files 4

External Files

 There is one big difference between main
memory and secondary storage.

 Remember with main memory, each time
we run our program the value of our
variables is lost and we start from scratch
(i.e., we don't remember what the values of
the variables were when we last ran the
program).

 Also, when we power down the computer all
of the data stored in main memory goes
away.

CS162 External Data Files 5

External Files: Secondary Storage

 With files, when you finish executing a
program, the data no longer goes away!

 It stays around so you can access it the next
time you run your program.

 Plus, when your computer is powered down,
information stored in secondary storage is not
lost (unless you have a disk crash or failure!).

 Therefore, secondary storage can be used to
store data for as long as it is needed.

CS162 External Data Files 6

External Files: Secondary Storage

 We can write information to secondary

storage by creating a file which consists of a

collection of data.

 We then name this file, so that we can store

different types of information all in one

directory or on one disk.

 We will be using text files in this class (and in

CS162)

CS162 External Data Files 7

External Files: Secondary Storage

 A text file contains the same kind of data
that we are used to seeing on the screen of
our terminals.

What this means is that a text file is a
stream of characters: line by line.

 Therefore, these are files of characters.
Lines in our files can be separated by end-
of-lines ('\n').

 This defines how many characters there are
on a line and how many lines there are in
the text file.

CS162 External Data Files 8

External Files: Secondary Storage

 To use a text file to store information,

 we first need to include a new library of I/O

functions,

 declare input/output stream variables to be

used instead of cin and cout, and

 attach a C++ input or output stream to that

file.

CS162 External Data Files 9

External Files: Secondary Storage

 Text files all have names, called filenames.

 If you do a directory (ls on ODIN),

 you will the filenames for all of your
programs.

 Text files are just one of these, commonly
with the extension .txt.

 We must specify a filename when we want
to attach our input or output stream so that
we can access the correct file!

CS162 External Data Files 10

The Steps to Using External Files

 In your program when using C++ I/O stream

files, you need to include the header file for

a new library:

#include <fstream.h>

 This library already includes the iostream

library, so you don‟t need to include both the

fstream library and the iostream library.

CS162 External Data Files 11

The Steps to Using External Files

 The next step is to define a set of variables
that will be used to read or write to the
stream for a particular file. Let's backup a
moment.

 Remember we use cin to read from standard-
in and cout to write to standard-out.

Well, cin and cout are really just variables.

 cin is a variable of type istream (input
stream) and

 cout is a variable of type ostream (output
stream).

CS162 External Data Files 12

The Steps to Using External Files

 Therefore, to work with files we need to

create our own variables;

 for input our variable will be of type

ifstream (input file stream) and

 for output our variable will be of type

ofstream (output file stream).

 Once these variables are defined, we can

attach these input or output streams to the

corresponding file in our directory.

CS162 External Data Files 13

The Steps to Using External Files

 For input (i.e., reading data from a file), we
can define a variable of type ifstream:

ifstream in;

 For output (i.e., writing data to a file), we can
define a variable of type ofstream:

ofstream out;

CS162 External Data Files 14

The Steps to Using External Files

 The next step after this is to attach these

streams to our files.

 We do this by opening files.

 To open a file to enable us to write into it, we

must tie the out variable in our

program/function with the filename in our

directory.

 The filename is specified as either a

constant, a literal string, or even as an array

of characters read in from standard-input.

CS162 External Data Files 15

Opening Files

 Let's look at all three approaches of opening

files for writing (i.e., output):

 Using a constant filename:

#include <fstream.h>

const char outfile[] = "outdata.txt";

... //later in a function

ofstream out;

out.open(outfile);

CS162 External Data Files 16

Opening Files

 Using a literal string as the filename:

#include <fstream.h>

... //later in a function

ofstream out;

out.open("outdata.txt");

CS162 External Data Files 17

Opening Files

 Using an array of characters as the filename,
from standard in:

#include <fstream.h>

... //later in a function

char filename[12];

ofstream out;

cout << "Please enter filename: ";

cin >> filename;

out.open(filename);

CS162 External Data Files 18

The Steps to Using External Files

 To make sure that the file was properly opened,

 it is best to double check that the out variable

is not zero.

 If it is, the file was not appropriately opened.

out.open("mydata.txt");

if (!out)

cout << "Error " << endl;

else

//continue with the program...

CS162 External Data Files 19

Writing to an Open File

 After this statement is executed, we are ready
to write to the file.

Writing to a file follows all the same rules we
use for writing to the screen, but instead of
using cout...we use our output file variable:

out.open(filename);

out << "hello world";

out.put('!');

out << endl;

CS162 External Data Files 20

Writing to an Open File

 Using open (eg., out.open) always opens
the file so that we begin writing at the
beginning of the file, as if we had a blank
file, like a clean screen or a blank piece of
paper.

 If in another program we had previously
written information to this file, it is lost as
soon as we invoke the open function.

 If we have never written information to this
file before, then the open function will
create a new file for us.

CS162 External Data Files 21

Appending to a File

 It is possible to append information to an

existing file...by specifying ios::app when we

open a file:

ofstream out;

out.open(filename, ios::app);

if (out) {

out << data << endl;

...

CS162 External Data Files 22

Closing a File when done....

Once we have named the file, and opened it
for writing, we can then write information to it.

 Just think of using the new stream variable
(eg., out) instead of cout as directing your
output from getting displayed on the terminal
to being saved in the corresponding file.

Once done writing to the file, close the
currently open file. We do that with another
function included in our fstream library:

out.close(); //parens are necessary!

CS162 External Data Files 23

The Steps to Reading From External Files

 To read from an external file, we go through

the same steps that we used to write to a

file

 First, make sure you have included the

fstream.h file

#include <fstream.h>

 Then, define a variable of type ifstream

ifstream in;

 Now, we are ready to open the file to read...

CS162 External Data Files 24

The Steps to Reading From External Files

 To open a file to read from, we call the open

function through our file variable:

in.open(“text.dat”);

or,

char filename[20];

cin >>filename;

in.open(filename);

 Now the file should be open, with the file
pointer positioned at the beginning of the file

CS162 External Data Files 25

The Steps to Reading From External Files

 To make sure that the file was properly
opened,

 it is best to double check that the in variable
is not zero.

 If it is, the file was not appropriately
opened.

in.open(filename);

if (!in)

cout <<"Error in opening test.dat"

<<endl;

else

//continue with the program...

CS162 External Data Files 26

Reading from this Opened File

 After this statement is executed, we are ready

to read from the file.

 Reading from a file follows all the same rules

we use for reading from the keyboard, but

instead of using cin...we use our input file

variable:

in.open(filename);

if (in) {

in >> some_variable;

...

CS162 External Data Files 27

A Reminder about Reading...

in >> some_variable;

Works the same as reading from standard in

 If we are reading an integer, it skips leading
white space, reads digits, and stops as soon
as it encounters a non-digit

 If we are reading a single character, it skips
leading white space, reads 1 character

 If we are reading an array of characters, it
skips leading white space, reads characters,
and stops as soon as it encounters a white
space character

CS162 External Data Files 28

A Reminder about Reading...

 But, if we are interested in reading in

whitespace characters from the file, then

using the extraction operator (>>) isn‟t going

to do the job for us

 We will need to use the get function!

 We precede the get function by our file input

variable (rather than cin).

 So, to read the very next character in a file,
we can use in.get(ch) or ch =

in.get();

CS162 External Data Files 29

A Reminder about Reading...

 But, if we are interested in reading in an
array of characters (whitespace included), we
need to use the 2 or 3 argument version of
the get function

 If we want to read a line of a file until the
carriage return is encountered, we can say:

char line[81];

in.get(line, 81, „\n‟);

 But, what if we wanted to read in the next
line? Can we say in.get(line, 81)?????

(no!)

CS162 External Data Files 30

A Reminder about Reading...

 If you want to read in more than a single line,

using the get functions, one line at a time,

then you need to remember to eat the

carriage return!

char first_line[81], second_line[81];

in.get(first_line, 81, „\n‟);

in.get(); //eat the carriage return

in.get(second_line, 81, „\n‟);

 Just as we learned with for reading from the

input buffer!!

CS162 External Data Files 31

When do we Stop Reading?

 When reading from the keyboard, we can ask

the user when they are finished

 But, what about a file? How can we

determine when to stop reading?

 By sensing when an end of file has been

encountered

 “end of file” is not something that is written to

a file. Nor, it is something that we actually

“read”

CS162 External Data Files 32

When do we Stop Reading?

 Instead, when a read operation fails because

we have reached the end of file, an end of file

flag gets set

 The good news is that we can check this flag,

by using the following eof function:

in.eof() true if the previous read failed

due to end of file

!in.eof() true if the previous read did

not

fail due to end of file

CS162 External Data Files 33

When do we Stop Reading?

 It is important to realize that end of file is not
sensed after you have read the last valid
thing in a file.

 Instead, you have to attempt to read at least
once beyond the last valid thing in the file to
have end of file be detected.

 In addition, if you perform too many reads
prior to checking for whether or not an end of
file flag has been set -- there is a high
probability that the end of file flag will be
reset!

CS162 External Data Files 34

When do we Stop Reading?

 This means, when reading from a file we need

to use the following steps (order is important!)

 Read the first thing from the file

 While the End of File Flag is not Set

Process what was Read (e.g., display)

Read the next item from the file

CS162 External Data Files 35

Can this Apply to Standard In?

 All that we have learned about end of file
can also be used from standard in.

While there is no such thing as a “file” when
typing from a keyboard, we can redirect files
through standard in:

a.out <filename

 And, this will behave has if we had typed in
all of the information that was in the file
(which is great except that there can be no
interactions between the program and the
user....

CS162 External Data Files 36

Can this Apply to Standard In?

 Using end of file from keyboard is also
possible, by typing in a control-d on UNIX
and a control-z on a PC.

Once a control-d on ODIN is entered,
no future input should be read from the
input buffer...which means it is used to
terminate a session, while still allowing
the program to exit the program
normally

By..sensing end of file through
!cin.eof()

CS162 External Data Files 37

Examine a Complete Example

 Let‟s use what we have learned to read and
echo the entire contents of a file to the screen:

ifstream in;

in.open(“test.dat”);

if (in) {

char ch = in.get();

while (!in.eof()){

cout <<ch;

ch = in.get();

}

CS162 External Data Files 38

Examine a Complete Example

 On some systems, this works better:

ifstream in;

in.open(“test.dat”);

if (in) {

char ch = in.get();

while (in && !in.eof()){

cout <<ch;

ch = in.get();

}

CS162 External Data Files 39

Examine a Complete Example

 In the previous program, understand the

answers to the following questions:

 What would have happened if I had read

each character using cin >> ch

 What would have happened if I hadn‟t

read the first time outside the loop

 How could I have changed this program to

read one complete line of the file at a

time?

CS162 External Data Files 40

Closing a File when done....

Once we have named the file, and opened it
for reading, we can then read information
from it, starting at the beginning.

 Just think of using the new stream variable
(eg., in) instead of cin as receiving your input
from the corresponding file instead of the
keyboard.

Once done reading from the file, close the
currently open file. We do that with another
function included in our fstream library:

in.close(); //parens are necessary!

