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ABSTRACT 
System Management Mode (SMM) is a special x86 processor 
mode that privileged software such as kernels or hypervisors 
cannot access or interrupt. Previously, it has been assumed 
that time spent in SMM would be relatively small and 
therefore its side effects on privileged software were 
unimportant; recently, researchers have proposed uses, such 
as security-related checks, that would greatly increase the 
amount of runtime spent in this mode. We present the 
results of a detailed performance study to characterize the 
performance impacts of SMM, using measurement 
infrastructure we have developed. Our study includes 
impact to application, system, and hypervisor. We show 
there can be clear negative effects from prolonged 
preemptions.  However, if SMM duration is kept within 
certain ranges,  perturbation caused by SMIs may be kept to 
a minimum. 

I. INTRODUCTION 
System Management Mode (SMM) is a special x86 

processor mode that privileged software such as operating 
systems or hypervisors cannot access. This hardware 
feature was originally developed for operating system-
independent functionality such as power throttling, 
hardware emulation, and running OEM code.  The key 
distinction of SMM is its invisibility to the kernel and the 
hypervisor.  The entry to SMM is through a System 
Management Interrupt (SMI), a unique type of interrupt 
that is much more disruptive than a traditional interrupt:  
When an SMI occurs, the standard behavior is all of the 
processor cores will enter System Management Mode. 
[21][7] The SMI handler will then perform the requested 
work, restore the interrupted context, and return. Because 
all CPU threads stay in SMM until the completion of the 
SMI’s work, the severity of the impact increases with the 
number of cores.  

In the past it has been assumed that time spent in SMM 
would be relatively small and therefore its side effects 
were unimportant.  Guidelines existed only in the form of 
informal rules of thumb limiting the total amount of time 
that should be taken by each SMI. Three recent trends 
have increased the importance of studying the 
performance impacts of SMM: security integrity checker 
codes called Runtime Integrity Measurement Mechanisms 
(RIMMs), virtualization, and the trend toward an 
increasing number of cores per socket.  In the security 
realm, proposals to repurpose SMM for quick detection of 
malware and rootkits to limit their damage [3][25][29] as 
well as providing secure isolated execution environments 

[4] dramatically change expectations over its use. Since 
SMM completely pauses host software execution for the 
duration of its work and the time required for these new 
usages exceeds common SMI durations, there are clear 
performance concerns. In recent years, applications have 
moved from running on native operating systems where 
they were impacted by other processes as well as the 
operating system to running within virtualized 
environments which added virtualization-level impacts. 
SMM RIMMs would cause another source of impact on 
applications as well as the virtualized environments on 
which they run. Applications running under hypervisors 
watched by an SMM RIMM would experience the 
combined impacts of each layer.   

There is currently very little available data on the 
performance effects of SMM. Our work addresses this gap 
by providing a measurement methodology that enables 
performance analysis of SMIs, including identification of 
effects at both the system and application levels due to 
prolonged preemptions of the system; and quantification 
of the resulting performance impacts at varying levels of 
system preemption.  We present results demonstrating 
significant impacts at both the system and application 
levels. 

II. BACKGROUND 

A. System Management Mode 
Intel introduced SMM with the Intel 386 SL processor 

and it provides “an alternate operating environment that 
can be used to monitor and manage various system 
resources for more efficient energy usage, to control 
system hardware, and/or to run proprietary code." [14] 
AMD x86 CPUs also feature SMM [2] and Intel’s Itanium 
CPU features a PMI that is similar in concept to an SMI. 
[15] SMM is designed such that neither privileged 
software nor applications can inspect its memory 
(SMRAM) [14] or directly detect time spent in this mode. 
SMIs can occur for a variety of reasons including: 
reporting of hardware errors, thermal throttling, power 
capping, and system health checks. [16] SMIs can be 
synchronous via a CPU instruction or asynchronous from 
the chipset. [8] The potential exists for an SMI to preempt 
time-sensitive code (e.g. code holding a global lock on one 
node in a cluster), resulting in delays well beyond what the 
software developer may have expected. 

The x86 architecture features a variety of different 
types of exceptions and interrupts. SMIs are unique in that 
they are a higher priority interrupt than Nonmaskable 
Interrupts (NMIs) and device interrupts. [14] SMM has the 

† The author was a full-time employee of Intel Corp. while 
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benefit that other interrupts will not preempt it, but has the 
side effect that other device interrupts will only be handled 
after it has finished its work. [3] Intel has released a tool 
called the “Intel BIOS Implementation Test Suite” (BITS) 
[22] that counts and measures SMIs occurring on a system 
and checks that their latencies are within "acceptable" 
limits (currently defined as 150 microseconds). This rule 
of thumb has been the only available guideline for latency 
tolerance. 

B. Implementing Runtime Integrity Measurements in 
System Management Mode 

In recent years, many IT organizations and end-users 
have begun using virtualization; however because 
hypervisors operate at a low level on the platform and 
have visibility into all virtual machines running on the 
system, they are unfortunately a tempting target for 
malicious attacks. For example, security researchers have 
shown a layered attack on the Xen hypervisor designed to 
install a stealth backdoor. [27] The attack replaces the 
contents of a privileged hypervisor interface (Xen 
hypercall) with malicious code. The attack also alters the 
debug exception handler to detect and execute code 
contained in malicious packets. The debug exception 
occurs before the firewall begins filtering packets, and 
Domain 0 never sees the packet.  

The goal of a RIMM is to provide quick notifications 
of attacks by scanning key portions of the hypervisor on a 
periodic basis and generating alerts for unexpected 
changes. In the example described above, a RIMM could 
detect this attack if it were to hash Xen hypercall code and 
compare the current hash of the injected code with the 
initial measurement or similarly detect unexpected 
changes in the debug exception handler. RIMMs can also 
enforce a security assumption that no two virtual machines 
should be sharing memory by examining the Xen data 
structure that controls domain memory allocations (the 
grant tables); or watch security sensitive components such 
as the hypervisor’s code in memory, the Interrupt Delivery 
Table (IDT), memory segment descriptors, VM exit 
handlers, and Machine State Registers that can cause 
jumps during execution. [3] 

In order to ensure that the RIMM itself isn’t 
compromised, some have proposed that the RIMM be 
implemented in SMM. SMM’s protected memory [27] is 
extremely useful for the protection of the RIMM itself. 
One proposed SMM RIMM, HyperSentry [3], updates the 
SMI handler to work with a measurement agent that runs 
in the hypervisor and uses SMM code to ensure that the 
agent has not been compromised before transferring 
execution to the agent. HyperSentry waits for a discrete 
hardware controller to generate an SMI that brings all CPU 
threads into SMM and directs one CPU thread to inspect 
the RIMM agent along with the hypervisor data structures 
while the other CPU threads wait. HyperCheck is another 
SMM RIMM that “aims to detect the in-memory, Ring-0 
level (hypervisor or general OS) rootkits and rootkits in 
privileged domains of hypervisors.” [25] HyperCheck 
implements a small monitoring agent in SMM to check 
security-sensitive values such as the CR3 register on the 
CPU, which controls paging. HyperCheck places its 
measurement agent in SMM, unlike the split model in 

HyperSentry. SMM times measured for each are (40 ms, 1 
per sec) for HyperCheck and (35 ms, 1 per 8 secs or 1 per 
16 secs) for HyperSentry.  

SPECTRE is a recent SMM RIMM that examines 
hypervisors, operating systems, and user processes for 
certain attacks including heap spray, heap overflow, and 
rootkit detection. SPECTRE can detect heap spray attacks 
in 25-31 ms, heap overflow attacks in 32 ms, and the 
KBeast rootkit in 5 ms. [29] The amount of SMI latency 
proposed for the various SMM RIMMs is significantly 
longer than common rules of thumb that we described in 
Section A. 

Besides the long and currently unbounded software 
preemptions and periodic interrupts, there is another 
concern about the SMM RIMM approach: malware could 
seek to evade detection by operating for short periods of 
time and then going dormant to lessen the chance of being 
observed by the SMM RIMM. [24] This implies that an 
SMM RIMM would need to do frequent checks as well as 
be scheduled to execute randomly.  

C. Implementing Workload Isolation Using System 
Management Mode 

A recent paper by Azab et al. describes a mechanism 
called SICE which allows for workload isolation in 
untrusted cloud environments. [4] SICE relies upon two 
key SMM features to facilitate this mechanism: SMRAM 
for memory protection, and SMIs as the interface to the 
isolated environment. The total end-to-end time required 
from enter to exit of the isolated environment is 67 
microseconds. In SICE’s multi-core mode this is a one-
time overhead, but in  “time-sharing” mode, the isolated 
execution environment is context switched with regular 
applications and system code on the same core, and this 
overhead would be incurred on every context switch.  

III. RELATED WORK 
The effects of SMIs are quite unique in comparison to 

other interrupts occurring on the system. Traditional 
device interrupts can preempt running application code, 
however, they are able to provide acknowledgement to the 
hardware and set up mechanisms for future processing. [5] 
SMIs cannot typically be deferred in this manner and all 
CPU threads leave the host environment and transition into 
the SMI handler upon receiving an SMI. Thus they have a 
broader system impact than a traditional device interrupt. 
The operating system also isn’t able to mask SMIs as it 
can with traditional device interrupts which results in the 
potential for an SMI occurring at an unexpected point in 
time. An Intel whitepaper noted that SMIs present serious 
complications to the XenoMai RTOS microkernel as they 
are invisible to the RTOS scheduler. [13] Latency-
sensitive users attempt to disable SMIs to remove their 
impact [11] [30] and others use tools to detect their 
occurrence. [26] 

The developers of both HyperSentry and Hypercheck 
included some performance evaluation in their proposals 
for SMM RIMMs, including end-to-end execution times, 
limited studies of the performance impact on host 
software, and a detailed time breakdown.  Our focus by 
contrast is to characterize the performance impacts of the 
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SMM more generally and deeply, in a way that will be 
relevant for broader usages of SMM. 

Our evaluation is similar to previous workload 
perturbation studies examining the effect of noise from 
software heartbeats and system daemons [19] hardware 
interrupts [5], and network interrupts. [23] Ferreira et al 
[10] have found that noise's effect on an application may 
be reduced by absorption; conversely, the impact of noise 
can be amplified when it occurs at a performance-sensitive 
time. Since SMIs are the highest priority interrupt, they 
affect the platform on a greater scale than these other types 
of noise. The operating system timer interrupt that 
Beckman et al study [5] is itself at risk from asynchronous 
SMI noise.  

IV. METHODOLOGY 
Empirically measuring the effects of SMIs involves 
challenges in both generating and measuring the time 
spent in SMM.  The BIOS of commodity systems is 
essentially a black box to the user and its code resides in a 
hardware protected region, so generating the needed SMIs 
for this study was challenging. We developed three 
different SMI generation techniques for this study: 
Chipset-based, Blackbox SMI, and Modified BIOS. 

Chipset-based.  Our initial results were gathered by 
turning on varying frequencies of hardware-generated 
(chipset) SMIs using the SWSMI_TMR feature.  This 
approach does not require access to the BIOS, however the 
significant shortcomings are an inability to specify precise 
SMI durations or generate longer SMIs than 0.11ms on our 
system. The feature is also not supported on all 
motherboards. We approximated longer SMIs by 
generating a large number of short SMIs (“short but 
frequent”). The caveat is that these short SMIs didn’t 
preempt the system for the duration of a single longer SMI 
in one interval.   

Blackbox SMI.  As an improvement to Chipset-based, 
we created a device driver that called existing software 
SMIs by writing specific values to an IO port typically 
configured to generate SMIs (“APM_CNT” on Intel, "SMI 
Command Port" on AMD).  These SMIs consume time 
away from host software control corresponding to the 
amount of work to be done which is typically longer than 
the durations supported in the Chipset SMI approach. In 
order to find longer SMIs, we created software to discover 
them by writing various values to APM_CNT and deriving 
the SMI processing time by taking timestamps before and 
after the SMI generation. With this method, we found 
several SMIs that consumed 5ms or more. However, our 
key concern with this approach is that without knowing 
more about what the SMI was actually doing, we couldn’t 
rule out the possibility of performance side effects. For 
example, if the SMI adjusted the CPU frequency, we 
would be introducing a side effect into our measurements.   

Modified BIOS. Greater precision requires modifying 
the SMI handler.  This option is not typically available to 
end-users, but we had the ability to modify our SMI 
handler to allow a user-configurable amount of delay.  In 
this approach we added twelve values that could be written 
to the APM_CNT port to generate varying levels of SMI 

delays: (in ms)  1.43, 5, 10, 20, 50, 99, 495, 990, 5k, 10k, 
20k, 64k. When the SMI handler received control, it would 
delay in a loop for the specified amount of CPU cycles 
before returning control to the host software. In this way, 
all CPUs left the host software and stayed in SMM for the 
specified amount of time. This mechanism provided a 
useful way to preempt the system for a controllable 
duration.  In order to calculate the delay length in SMM, 
we used the CPU’s time-stamp counter (TSC). The TSC 
can be influenced by CPU frequency in some 
configurations, however many modern CPUs support 
“Constant TSC” to ensure that the duration of CPU clock 
isn’t influenced by changes in CPU frequency. [14] To 
ensure that the delays were of the expected length we took 
a CPU timestamp before and after generating a long SMI, 
calculated the delta; and double-checked the wall clock 
times of the longer delays.  

As we triggered our Blackbox SMI and Modified BIOS 
delays using an OUT CPU instruction which needs to be 
executed from Ring 0, we developed device drivers for 
each system we measured: Xen 4.1.2, Centos 6.0/6.3, and 
Windows Server 2012, to trigger SMI delays once a 
second. For Xen we used the kernel work queues to 
schedule our software SMI once a second. For Windows 
Server 2012, we used the kernel function IoStartTimer to 
schedule one SMI/second. Our test setup additionally 
allows us to generate a single SMI on demand.    

V. SYSTEM LEVEL EFFECTS 
Unlike the application-level delays caused by 

multiprogramming, the delays caused by time in SMM 
represent time intervals where the processor is not under 
OS control.  What are the effects of this "invisible" 
processing time? To answer this question, we investigated 
the effects of SMM time on the kernel, focusing on the 
code that immediately follows each timer interrupt.  

A. Timer Interrupt Effects 
Traditionally many important scheduling and statistical 

operations in the Linux kernel happened on a regular timer 
tick interval, e.g. {100, 250, 300, 1000} times a second. 
For power savings reasons, the “tickless kernel” option has 
been added, allowing the kernel to remain idle longer by 
avoiding unnecessary wake-ups. If the next scheduled 
timer event would occur after the next periodic timer tick, 
the kernel would reprogram “the per-CPU clock event 
device to this future event” allowing the CPU to remain 
idle longer. [20] In both traditional and tickless operation, 
our inspection of the Linux 3.1.4 kernel showed that once 
the kernel wakes, it runs several key functions in 
do_timer which update the kernel’s internal clock count 
(jiffy) and wall clock time, and calculate the load on the 
system. (See Figure 1.) Then it calls 
update_process_times which charges time to 
executing processes, runs high resolution timers and raises 
SoftIRQs for local timers, checks if the system is in a quiet 
state for RCU callbacks, does printk statements, runs IRQ 
work, calls scheduler_tick and then runs timers that 
are due. [17] The scheduler_tick function performs 
several important tasks including updating scheduler 
timestamp data, updating timestamps for processes on the 
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run queue, updating CPU load statistics based on the run 
queue, invoking the scheduler, updating performance 
events for the Linux Performance Event subsystem, 
determining if a CPU is idle at the clock tick, and load 
balancing tasks between CPU run queues. 

Intel technical documentation notes “All interrupts 
normally handled by the operating system are disabled 
upon entry into SMM” [14] which presents the possibility 
for an SMI to perturb timer interrupts and consequently 
impact the important scheduling operations in 
scheduler_tick as a side effect.  

To investigate the degree to which SMIs preempted 
timer interrupts, we instrumented the Linux kernel 
do_timer and scheduler_tick functions. For 
do_timer we logged a trace point just after the timer 
interrupt occurs, recording the total number of SMIs 
processed (“SMI count” obtained via an MSR read of 
MSR_SMI_COUNT) and the time of the entrance to the 
function from RDTSC. For scheduler_tick, we logged 
the CPU number, the SMI count, and the timestamp from 
RDTSC. We extracted our traces with the SystemTap 
utility. [9] In post-processing, we calculated the deltas 
between successive handlings of the timer ticks. (See Figure 
3). 

Our regular timer tick scenario has a timer tick every 
millisecond. We generated SMIs using the chipset timer 
for the short but frequent scenarios and the Blackbox SMI 
method for the hybrid and long SMI scenarios.  Our test 
system was an Intel DQ67SW board running native Centos 
and the 3.1.4 Linux kernel. 

Because the timer interrupt takes precedence over 
executing code, whether the CPU is idle or busy does not 
impact the regularity of the regular timer ticks. For this 
reason, we depict only the idle CPU data in this section. 
After establishing a baseline with no regular SMIs, we 
measure the effect of short but frequent SMIs using the 
Chipset-based SMI generation. Following this, we utilize a 
Blackbox SMI scenario of a batch of 8 5ms SMIs, once a 
second to represent an SMM RIMM that takes 40ms per 
second to do integrity measurements using a time-sliced 
approach. 

To analyze the data, we narrow our focus to the deltas 
between successive invocations of scheduler_tick to 
highlight SMI-caused delays. Numerous short SMIs cause 
jitter in the timer interrupt handling. Since SMIs take 
precedence over timer interrupts, the deltas between 
successive timer interrupts depart from the expected 1ms. 
Deltas greater than 1ms occur due to an SMI firing when a 
timer interrupt would have taken place (Table 1). The 
delay in timer interrupt handling results in the greater than 
1 ms delta, that in turn results in the next timer interrupt 
occurring after less than 1ms. 

Table 1 shows a small sample of the jitter in the 
handling of timer interrupts. This effect eventually 
dissipates, but occurs again as the timer interrupt and SMI 
occurrences coincide. Even when regular SMIs are short, 
they can happen to occur at precisely when the timer 
interrupt fires, resulting in a period of irregular timer 
interrupts for the short but frequent SMI scenario. Figure 2 
depicts this effect.  

For the Blackbox SMI scenario of a batch of eight 5ms 
SMIs a second, when the batch concludes, execution 

returns back to the operating system until another SMI 
occurs. In this scenario and a longer blackbox SMI 
scenario with a 104ms SMI, the privileged software suffers 
significant portions of time where no forward progress can 
be made.  

These results show that both long and short SMIs can 
preempt the timer interrupt with different patterns. The 
short but frequent scenario caused periods of jitter in timer 
interrupt handling. The long SMI scenarios showed that 
user and kernel tasks are completely frozen for extended 
periods of time and a number of timer ticks were missed. 

B.  Timer Interrupts with Xen 
To examine the effects of SMIs on timer interrupts in a 

virtualized environment, we repeated the measurements 
with a Xen HVM Linux guest running under Xen 4.1.2. 
The results show that running a virtualized guest 
introduces a small degree of jitter in the regularity of the  

 

 

Figure 1 Timer Interrupt Code Flow 

 

	  
Figure 2 SMI Pre-emption of Timer Interrupt Handling 

 
Table 1 SMI Occurrences and Timer Interrupts 
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(a) Reg. Timer Tick, Baseline (No SMIs), Idle CPU	  

	  
(b) Reg. Timer Tick, 0.11 ms SMI (500/sec), Idle CPU	  

	   	  
(c) Reg. Timer Tick, 5 ms SMI (8/sec), Idle CPU (d) Reg. Timer Tick, 104 ms SMI (1/sec), Idle CPU 

	   	  
(e) VIR: Reg. timer tick, Baseline (No SMIs), Idle CPU  (f) VIR: Reg. Timer Tick, 0.11 ms SMI (16/sec), Busy CPU 

	   	  
(g) VIR: Reg. timer tick, 5 ms SMI (8/sec), Busy CPU,  (h) VIR:  Regular tmer tick, 5 ms SMI (3/sec), Busy CPU 

	   	  
(i) Tickless kernel, Baseline (No SMIs) (j) Tickless kernel, 0.11 ms SMI's (500/sec), Idle CPU 

Figure 3:  SMI Pre-emption of Timer Interrupt Handling. Scheduler_tick entry deltas for:  kernel with regular timer tick (a-d); virtualized with regular timer 
tick (e-h); and tickless kernel (i-j). 
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handling of timer interrupts, and adding SMIs perturbs the 
regularity further. For groups of long SMIs (e.g. groups of 
eight 5 ms SMIs), the guest can experience a significantly 
longer loss of control which coalesces multiple pre-
emptions into one longer one.  For example, the Xen HVM 
guest experiences prolonged losses of control that exceed 
the 5 ms SMI in the range of 10 and 26 ms (Figure 3). We 
suspect that these increased delays are the effect of SMIs 
acting upon the virtual machine manager’s scheduler 
which is resulting in the virtual machine not handling the 
interrupt for a longer period of time and amplifying the 
impact of shorter SMIs in virtual environments. 

C.  Tickless Kernel and CPU Power States 
When the CPU is busy, the tickless kernel behaves like 

the regular timer tick, since no ticks are "skipped."   
During idle periods, however, the tickless kernel can 
experience large gaps between successive entries into the 
scheduler_tick function (e.g. up to ~200ms based on 
our measurements.) Therefore, we focus here on the idle 
CPU case.  We expect regular SMI activity to subvert the 
tickless kernel's energy savings, by waking up the CPU to 
enter SMM. To test this, we gathered data on the processor 
C-state utilizations using Turbostat. [6] Turbostat produces 
a log of what percentage of time the processor threads 
were in a given C-state. [C-states represent incremental 
power-saving states from C0 (max) to C6 (idle).] We 
started Turbostat, let the system idle for several seconds, 
then enabled SMIs, waited a few seconds, disabled SMIs, 
and ended Turbostat.  

In Figure 3, we show the baseline case for the tickless 
kernel without SMIs. The timing of the scheduler_tick 
entries varies widely as the kernel avoids unnecessary 
wake-ups to achieve power savings. The bottom graph 
shows the results for 500 SMIs/second. It is not readily 
apparent from the graph if a timer interrupt has been 
delayed or the kernel was simply idle for a long period of 
time. To look more closely, we must examine the raw 
trace data (see Table 2).  This shows that the kernel sleeps 
through the SMI activity as indicated by the increasing 
SMI count during long periods of kernel idleness. The 
tickless kernel adaptive timer mechanism is unaware of 
SMIs and while the kernel is idle, the CPUs transition in 
and out of SMM processing SMIs. Fortunately, the Linux 
kernel (since version 2.6.19) has a mechanism to avoid 
missing jiffy updates due to lost timer ticks by determining 
how many timer ticks were missed (ticks) and 
incrementing the jiffy count accordingly in do_timer. 
Without such a mechanism, jiffy updates would be lost. 
The results of our instrumentation (Table 3) show that the 
do_timer function increments the ticks value after 
receiving control following an SMI. When an SMI 
preempts the kernel for five ms, the kernel determines that 
five timer ticks were missed and sets the ticks value 
accordingly and adds that value to the jiffies count. When 
our group of eight SMIs concludes, our instrumentation 
shows the SMI count staying steady and the ticks value 
returning to one as the SMIs subside. 

The kernel remained idle through the SMIs, however  
the CPU was actively processing SMIs. If we limited our 
analysis to our tickless kernel instrumentation, we would 
miss a large amount of activity on the system. The kernel 

instrumentation correctly indicates that there were long 
periods of idle in the kernel which traditionally would 
correlate to the CPUs ability to transition into deeper sleep 
states. However, with SMM RIMMs, regular SMIs are 
also occurring which would keep the CPU active.  

Figure 4 shows that SMIs bring the CPU out of the 
lowest power C6 state and into the higher power-
consuming C0 and C1 states. The short but frequent 
scenario results in more time spent in higher power C-
states than the hybrid scenario that has longer SMIs.  

TABLE 2 TICKLESS KERNEL AND 500 SMIS/SECOND 

SMI Count 23,351 23,382 23,433 
scheduler_tick delta (ms) 40 62 102 

 
TABLE 3 DO_TIMER TICKS MECHANISM 

SMI Count Ticks Delta (ms) 

19,082 1 1.00 

19,083 5 5.21 

19,084 5 5.15 

… … … 

19,090 1 0.63 

19,090 1 1.00 

 

 

Figure 4 C-States and SMIs 

TABLE 4:  WARNINGS RECEIVED WITH SMM DELAYS 

SMM 
time 
(ms) 

 
Warning 

1.43 ALSA sound/usb/pcm.c:1213 delay: 
estimated 144, actual 0 

5 - 999 ALSA sound/usb/pcm.c:1213 delay: 
estimated [336 to 384], actual 0 

1000 ALSA sound/usb/endpoint.c:391 cannot 
submit urb (err = -27) 
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D.  Device Driver Impacts 
During the previous testing, we noticed a potential 

problem with USB audio. To study this effect we chose 
one representative example, a Linux driver for USB 
speakers, run with a set of Logitech S-150 USB speakers 
and Linux 3.7.1 kernel on Centos 6.0. We booted into the 
GUI and began playing a streaming audio file from 
YouTube. While playing the audio file, we generated 
progressively longer SMIs using our modified BIOS 
approach while checking the system log.  

USB audio relies upon careful synchronization to keep 
the audio playback in sync. In our measurements, SMIs 
perturbed the delay mechanism used by the PCM code and 
generated warnings starting with our lowest duration SMI 
and continuing up to 1 second (see Table 4).  The warning 
results from the snd_pcm_delay function which defines 
the playback delay as "the overall latency from the write 
call to the final DAC.” [1] The code provides a warning 
when the delay estimate is off by more than 2 ms. At 1 
second preemption, the USB speaker audio stopped.  

USB traces gathered using usbmon [31] showed gaps 
in the USB activity that corresponded very closely with the 
length of the generated SMI indicating that SMIs 
preempted USB activity until after the SMI terminated. 
While we noticed warnings generated at the level of SMI 
preemptions anticipated for SMM RIMMs, actual driver 
errors occurred significantly higher than this level. 
However, the user experience must also be considered and 
in an equivalent test in Windows using a Microsoft 
LifeChat LX-3000 USB headset, we subjectively noticed 
clear audio distortions at 20ms SMIs.  

E.  Linux Process Accounting Anomaly 
While preparing for OpenSSL SHA512 benchmarks in 

our virtualized Centos 6.3 HVM Xen guest with 2.6.32 
kernel, we noticed an unexpected phenomenon: When we 
increased the duration of the SMIs using our modified 
BIOS, the reported throughput didn’t decrease 
correspondingly. We also noticed that OpenSSL’s reported 
computation time decreased as we generated longer SMIs. 
The workload reports throughput in bytes per second 
processed by determining how many computations it did 
and how much time they took. The OpenSSL benchmark 
sets up a signal (SIGALRM) for three seconds in the 
future and performs computations until the signal arrives. 
The workload reported that the computations took 2.74 
seconds when we used 100 ms SMIs but the expected 3 
seconds when no SMIs occurred. Our examination of 
OpenSSL showed that it used the Linux kernel’s times 
function which reports the amount of user time, system 
time, child user time, child system time used by a process.  

Our measurements using a more recent kernel (3.7.6) 
showed different behavior. This configuration reported 
that the OpenSSL benchmark was computing for the full 3 
seconds both when 100 ms SMIs were enabled and when 
they were disabled.  depicts the scaling of times billed to 
the application for varying durations of SMIs for the two 
kernel versions.     

To root cause the discrepancy, we instrumented the 
two Linux kernels to log the flow of time-keeping data 
used by the times and accompanying functions. We also 
added a tracepoint in the OpenSSL application to capture 

the time when the signal handler function was called in the 
application and two tracepoints before and after the 
computations began in the benchmark.  

We started SystemTap to monitor key variables in the 
kernel functions responsible for the reported process time 
statistics: do_sys_times, thread_group_times,  
thread_group_cputime, task_sched_runtime, 
do_task_delta_exec, and scale_utime. We then 
started an OpenSSL benchmark run using “openssl speed 
sha512”, with the February 9, 2013 code snapshot of 
SystemTap. This test allowed us to compare the reported 
amount of time billed to the process with the tracepoints 
gathered in the application using the CPU’s TSC.  

The results show that the SIGALRM signal was 
received after three seconds in both kernel versions. For 
the 2.6.32 kernel, this highlighted the discrepancy between 
the amount of application time as measured by the TSC 
and the kernel.  One kernel function explained the 
discrepancy: scale_utime. This is used to reduce over 
or under-counting of user or system time due to the point 
in time when the user or system task was actually 
interrupted.  The code scales the operating system timer 
tick-based values against the scheduler’s record of total 
runtime. With a 100 ms SMI per second, this function 
increased the billed user time by ~10% which 
compensated for the loss of time spent in SMM, while for 
the no SMI scenario, the user time wasn’t scaled 
accordingly. Table 5 shows the scaling calculation for the 
first three second OpenSSL measurement. As the 2.6.32 
kernel didn’t call this function in the do_sys_times 
codepath, the user time wasn’t adjusted to include the 10% 
of time spent in SMM leaving the billed process times 
lower in the 2.6.32 kernel. 

 

TABLE 5 USER TIME SCALING IN SCALE_UTIME - 3.7.6 KERNEL 

Variable Notes No 
SMIs 

100 ms 
SMI/sec 

utime Unscaled user time 3,003 2,708 
rtime Scheduler’s 

sum_exec_runtime 
3,008 3,002 

total User + system 3,009 2,709 
[Scaled user 
time] 

(rtime * utime) / total 3,002 3,000 

 
 

 
Figure 5 Time Billed to OpenSSL Benchmark on Xen HVM Centos 6.3 
guest 
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E.  Discussion 
Our examination of disruptions to the regularity of the 

scheduler_tick shows several important effects. In 
some cases with short but frequent scheduling, SMIs can 
resonate with the timer interrupt resulting in extended 
periods of time where the timer interrupt handling may 
occur late relative to a regular time tick. This may result in 
timer interrupt handlers closer together or further apart 
than traditionally done. Additionally, with the longer SMI 
scheduling option, SMIs that exceed the length of the 
timer interrupt will cause timer interrupts to be missed. 
However, the kernel can keep its internal jiffy count 
accurate. With long SMIs, there can be long periods of 
time between entries into the process scheduling function. 
Virtualized environments may experience longer delays as 
multiple shorter delays coalesce into longer delays. 
Applications may experience longer wait times since the 
OS scheduler cannot run.   

In the case of an idle tickless kernel, determining if a 
timer interrupt was delayed or lost due to an SMI is not as 
straightforward. Our results show that the kernel remained 
idle while SMIs were occurring which is expected since 
the kernel is unaware of the loss of control due to SMIs. 
The C-state analysis showed that while the kernel was idle, 
the CPU’s power utilization was affected by the SMI 
activity. The short but frequent SMI scheduling scenario 
resulted in the CPU running in higher power C-states due 
to frequent wakeups from SMIs that circumvent the 
power-saving processor modes. 

The Linux kernel source code contains assumptions 
about SMI durations in several places. For example, the 
function that calibrates the CPU’s TSC during boot 
native_calibrate_tsc, uses the  tsc_read_refs 
function which has special handling of SMI disturbances. 
tsc_read_refs checks two close reads of the CPU’s 
timestamp counter to ensure that they are less than the 
declared SMI_THRESHOLD=50000 (CPU clocks) to 
avoid a scenario where an SMI occurs between the two 
reads. If the system cannot obtain two close reads of the 
TSC of a duration less than the SMI_THRESHOLD, it 
will try up to five times before returning. Prolonged or 
inopportune SMIs could result in a situation where the 
TSC couldn’t be used as the clocksource for timing due to 
an inability to properly calibrate it. Other clocksource 
calibration sections of the Linux kernel feature similar 
concerns over the impact of an SMI hitting during 
calibration including functions pit_calibrate_tsc 
and hpet_next_event. 

Our results raise the question of how the operating 
system should account for process times when there is 
prolonged SMI activity on the system: include any SMI 
times with the billed process time using the times 
mechanism, or leave this time out of the billed amount? 
There are benefits and drawbacks to both approaches. 
Reporting time inclusive of SMI times has the drawback 
of charging applications for time spent outside of their 
process which could penalize some applications more than 
others depending on when the SMIs happened to occur. In 
our study this resulted in all three seconds being attributed 
via the times mechanism to a process without discarding 
the portion of the time spent in SMM. The exclusion of 

SMI times in process time accounting can lead to 
discrepancies as well. In the case of OpenSSL running on 
the 2.6.32 kernel, the workload concluded after three 
seconds based on the CPU’s TSC, however the process 
only believed that it had used 2.74 seconds when 100 ms 
SMIs were active. When SMIs were infrequent and had 
short durations, their effect on process accounting could 
essentially be overlooked. For environments that are 
sensitive to accurate billing of time to users such as cloud 
providers, new mechanisms are required to more 
accurately account for the amount of time consumed by 
long SMIs. However, resolving the fundamental issues in 
process time accounting will require kernel changes and 
possible SMM RIMM involvement.  

Our analysis of system level SMM effects shows 
several negative impacts from prolonged SMM time.  
While certain sections of the Linux kernel have special 
handling for SMI occurrences, other sections could have 
differing behavior upon experiencing prolonged SMI 
durations. Software advances such as tickless kernels, 
while implemented for other reasons, increase the 
tolerance of SMM preemptions. Our detailed results 
demonstrate that systems can spend longer in SMM than 
current guidelines, however, there are problems that arise 
at durations below those contemplated for SMM RIMMs.   

We showed that SMIs cause periods of timer-interrupt 
jitter in the short but frequent scenario and extended 
periods of delays for the longer SMI scenarios. These 
impacts delay handling of timer interrupts and postpone 
work on all cores until the SMI completes. Additionally, in 
an environment where power savings are of increasing 
importance, SMM RIMMs would bring a reduction in the 
amount of time CPUs can remain in low power states. In 
an extreme SMI preemption, we showed a device driver 
that failed because it interpreted the delay as unresponsive 
hardware. 

VI. APPLICATION LEVEL EFFECTS 
Because even slight delays can have a perceptible 

impact on applications, we designed a study to investigate 
the impact of prolonged SMIs on several types of 
workloads.  The correlation of application and noise 
granularity [5] is quite relevant to the SMI-based 
perturbation investigation as SMIs could be long or short, 
frequent or infrequent, occur regularly or irregularly. 

A. Kernel Compilation 
Linux kernel compilation involves several key aspects 

of platform performance including CPU operations, disk 
I/O, and memory accesses. We used Xen 4.2.1 with a 
Centos 6.3 Domain 0, and a Centos 6.3 HVM guest with 
one virtual CPU and two GB of RAM.  

The results (Figure 6) show increases in total 
compilation time that very closely match the level of 
SMM preemption. Taking 10% of the CPU cycles away 
for the 100 ms SMI scenario resulted in a 10.8% increase 
in the duration of the kernel compilation.  

B. Microbenchmarks with Xen 
To examine system performance impacts on a broader 

set of system activities, we ran two sets of benchmarks, 
one for Xen’s Domain 0 (Xen 4.1.2) and one for a Centos 
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6.0 HVM guest (Figure 7). We compared how throughput 
scaled against the baseline for varying levels of SMIs 
using our modified BIOS setup. For our workloads, we 
used RC5-72 [12], a compute-intensive workload that 
brute-forces cryptographic keys (tested on Domain 0 
only);  Netperf 2.5 for TCP transmit [18] using a gigabit 
Ethernet device; and XDD for 128KB sequential disk 
reads using an Intel X25-M SSD. [28]  

The left-most bar in the chart shows the percentage of 
CPU time available to the system after subtracting the 
amount of time spent in SMM per second. The individual 
benchmarks all experienced throughput degradations that 
closely match the amount of CPU cycles taken away for 
SMIs. With these workloads and long SMIs, SMM latency 
cannot be hidden by the application as it comes at the cost 
of performing I/O operations or computations.  

By comparison, short but frequent SMI scheduling 
(bottom of Figure 7) can maintain baseline throughput for 
some workloads even as the amount of available CPU time 
decreases. SMI usages that are able to interleave SMIs 
with I/O processing may be able to avoid the full penalty 
of the SMI by processing their SMM work in multiple 
smaller units. The benchmarks didn’t experience any 
stability issues, which helps allay concerns regarding 
application or I/O device impact at these levels of SMM 
preemption.   

C. Latency Sensitive Application: Unreal Tournament 
As the USB testing indicated, latency sensitive 

applications can be problematic for SMM RIMMs. To 
investigate this further we used Windows Server 2012 and 
the Unreal Tournament 3 benchmark utility (UTBench) to 
measure game frame rates. We used our modified BIOS 
setup for these tests and show the results in Table 6. 
Although the average frame rates were above 50 fps for all 
durations but the 495 ms SMI, at SMI durations of 20 ms 
and higher the frame rates dipped below 30 frames per 
second, which is in the range of the user’s perception. The 
finer-grained analysis shows that 20 ms delays only 
dropped below 30 frames per second 0.92% of the time 
which we didn’t notice subjectively however at 50 ms 
delays, the system achieved below 30 frames per second 
5.99% of the time which was visually apparent. This 
latency-sensitive application showed clear sensitivities 
between the 20 and 50 ms SMI durations.  

D. DISCUSSION 
Our results show that application level impacts from 

SMM time vary based on the characteristics of the 
application as well as SMI scheduling. Some usages (e.g. 
compilation) experience degraded throughput while others 
such as Unreal Tournament and audio playback, are 
particularly sensitive to long duration SMIs as the user 
experience is severely degraded. We note that the latency 
sensitive applications we examined suffered user 
perceptible impacts at some of the SMI durations proposed 
for SMM RIMMs.  

 
 

	  
Figure 6:  Kernel Compilation Performance for Linux/Xen 

	  

	  

	  

	  
Figure 7: Xen Microbenchmarks 
 
 
TABLE 6 UNREAL TOURNAMENT FRAME-RATE BINNING 
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Figure 8:  SMM Preemption Effects, one SMI per second 

 
 

VII. CONCLUSIONS AND FUTURE WORK 
In this study, we examined the impact of System 

Management Mode on system and application 
performance. Our results show that time spent in this mode 
causes warnings, perceptible degradations for latency-
sensitive applications, throughput impacts, delays, and 
inaccurate time accounting at the hypervisor, kernel, and 
application levels (Figure 8).    

The motivation for our study was a series of proposals 
for SMM RIMMs, a novel way to improve detection of 
malware in privileged software. The unique ability of an 
SMM RIMM to reside in a protected location and provide 
confidence that the privileged software isn’t compromised 
is extremely valuable.  However, our results show that the 
three published SMM RIMM approaches that we surveyed 
[3][25][29] will cause a range of unacceptable side effects. 

For SMM repurposing to succeed, either the specific 
approaches must be changed to reduce the SMM duration; 
or the runtime software stack must undergo a redesign to 
increase tolerance or response to the "missing time" that 
results from SMIs.  Shorter but frequent SMIs can remedy 
some of the effects but will still take the same amount of 
time away from CPU-intensive applications, result in 
interrupt-handling jitter, and sacrifice the atomicity of the 
security checks allowing malware an increased ability to 
hide.  Redesigning the software stack require a shift in 
current thinking about the ability of privileged software to 
control the system. SMM RIMMs break both kernel and 
hypervisor assumptions of platform control as the most 
privileged kernel or hypervisor code can be preempted by 
an SMI.  
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