
In Proceedings of the IEEE International Symposium on Workload Characterization (IISWC),
Sept. 2013 (c) IEEE 2013

Author's Preprint, Aug. 2013

PERFORMANCE IMPLICATIONS OF
SYSTEM MANAGEMENT MODE

Brian Delgado†, Karen L. Karavanic
Portland State University

bdelgado, karavan@cs.pdx.edu

ABSTRACT
System Management Mode (SMM) is a special x86 processor
mode that privileged software such as kernels or hypervisors
cannot access or interrupt. Previously, it has been assumed
that time spent in SMM would be relatively small and
therefore its side effects on privileged software were
unimportant; recently, researchers have proposed uses, such
as security-related checks, that would greatly increase the
amount of runtime spent in this mode. We present the
results of a detailed performance study to characterize the
performance impacts of SMM, using measurement
infrastructure we have developed. Our study includes
impact to application, system, and hypervisor. We show
there can be clear negative effects from prolonged
preemptions. However, if SMM duration is kept within
certain ranges, perturbation caused by SMIs may be kept to
a minimum.

I. INTRODUCTION
System Management Mode (SMM) is a special x86

processor mode that privileged software such as operating
systems or hypervisors cannot access. This hardware
feature was originally developed for operating system-
independent functionality such as power throttling,
hardware emulation, and running OEM code. The key
distinction of SMM is its invisibility to the kernel and the
hypervisor. The entry to SMM is through a System
Management Interrupt (SMI), a unique type of interrupt
that is much more disruptive than a traditional interrupt:
When an SMI occurs, the standard behavior is all of the
processor cores will enter System Management Mode.
[21][7] The SMI handler will then perform the requested
work, restore the interrupted context, and return. Because
all CPU threads stay in SMM until the completion of the
SMI’s work, the severity of the impact increases with the
number of cores.

In the past it has been assumed that time spent in SMM
would be relatively small and therefore its side effects
were unimportant. Guidelines existed only in the form of
informal rules of thumb limiting the total amount of time
that should be taken by each SMI. Three recent trends
have increased the importance of studying the
performance impacts of SMM: security integrity checker
codes called Runtime Integrity Measurement Mechanisms
(RIMMs), virtualization, and the trend toward an
increasing number of cores per socket. In the security
realm, proposals to repurpose SMM for quick detection of
malware and rootkits to limit their damage [3][25][29] as
well as providing secure isolated execution environments

[4] dramatically change expectations over its use. Since
SMM completely pauses host software execution for the
duration of its work and the time required for these new
usages exceeds common SMI durations, there are clear
performance concerns. In recent years, applications have
moved from running on native operating systems where
they were impacted by other processes as well as the
operating system to running within virtualized
environments which added virtualization-level impacts.
SMM RIMMs would cause another source of impact on
applications as well as the virtualized environments on
which they run. Applications running under hypervisors
watched by an SMM RIMM would experience the
combined impacts of each layer.

There is currently very little available data on the
performance effects of SMM. Our work addresses this gap
by providing a measurement methodology that enables
performance analysis of SMIs, including identification of
effects at both the system and application levels due to
prolonged preemptions of the system; and quantification
of the resulting performance impacts at varying levels of
system preemption. We present results demonstrating
significant impacts at both the system and application
levels.

II. BACKGROUND

A. System Management Mode
Intel introduced SMM with the Intel 386 SL processor

and it provides “an alternate operating environment that
can be used to monitor and manage various system
resources for more efficient energy usage, to control
system hardware, and/or to run proprietary code." [14]
AMD x86 CPUs also feature SMM [2] and Intel’s Itanium
CPU features a PMI that is similar in concept to an SMI.
[15] SMM is designed such that neither privileged
software nor applications can inspect its memory
(SMRAM) [14] or directly detect time spent in this mode.
SMIs can occur for a variety of reasons including:
reporting of hardware errors, thermal throttling, power
capping, and system health checks. [16] SMIs can be
synchronous via a CPU instruction or asynchronous from
the chipset. [8] The potential exists for an SMI to preempt
time-sensitive code (e.g. code holding a global lock on one
node in a cluster), resulting in delays well beyond what the
software developer may have expected.

The x86 architecture features a variety of different
types of exceptions and interrupts. SMIs are unique in that
they are a higher priority interrupt than Nonmaskable
Interrupts (NMIs) and device interrupts. [14] SMM has the

† The author was a full-time employee of Intel Corp. while
this work was done.

 2

benefit that other interrupts will not preempt it, but has the
side effect that other device interrupts will only be handled
after it has finished its work. [3] Intel has released a tool
called the “Intel BIOS Implementation Test Suite” (BITS)
[22] that counts and measures SMIs occurring on a system
and checks that their latencies are within "acceptable"
limits (currently defined as 150 microseconds). This rule
of thumb has been the only available guideline for latency
tolerance.

B. Implementing Runtime Integrity Measurements in
System Management Mode

In recent years, many IT organizations and end-users
have begun using virtualization; however because
hypervisors operate at a low level on the platform and
have visibility into all virtual machines running on the
system, they are unfortunately a tempting target for
malicious attacks. For example, security researchers have
shown a layered attack on the Xen hypervisor designed to
install a stealth backdoor. [27] The attack replaces the
contents of a privileged hypervisor interface (Xen
hypercall) with malicious code. The attack also alters the
debug exception handler to detect and execute code
contained in malicious packets. The debug exception
occurs before the firewall begins filtering packets, and
Domain 0 never sees the packet.

The goal of a RIMM is to provide quick notifications
of attacks by scanning key portions of the hypervisor on a
periodic basis and generating alerts for unexpected
changes. In the example described above, a RIMM could
detect this attack if it were to hash Xen hypercall code and
compare the current hash of the injected code with the
initial measurement or similarly detect unexpected
changes in the debug exception handler. RIMMs can also
enforce a security assumption that no two virtual machines
should be sharing memory by examining the Xen data
structure that controls domain memory allocations (the
grant tables); or watch security sensitive components such
as the hypervisor’s code in memory, the Interrupt Delivery
Table (IDT), memory segment descriptors, VM exit
handlers, and Machine State Registers that can cause
jumps during execution. [3]

In order to ensure that the RIMM itself isn’t
compromised, some have proposed that the RIMM be
implemented in SMM. SMM’s protected memory [27] is
extremely useful for the protection of the RIMM itself.
One proposed SMM RIMM, HyperSentry [3], updates the
SMI handler to work with a measurement agent that runs
in the hypervisor and uses SMM code to ensure that the
agent has not been compromised before transferring
execution to the agent. HyperSentry waits for a discrete
hardware controller to generate an SMI that brings all CPU
threads into SMM and directs one CPU thread to inspect
the RIMM agent along with the hypervisor data structures
while the other CPU threads wait. HyperCheck is another
SMM RIMM that “aims to detect the in-memory, Ring-0
level (hypervisor or general OS) rootkits and rootkits in
privileged domains of hypervisors.” [25] HyperCheck
implements a small monitoring agent in SMM to check
security-sensitive values such as the CR3 register on the
CPU, which controls paging. HyperCheck places its
measurement agent in SMM, unlike the split model in

HyperSentry. SMM times measured for each are (40 ms, 1
per sec) for HyperCheck and (35 ms, 1 per 8 secs or 1 per
16 secs) for HyperSentry.

SPECTRE is a recent SMM RIMM that examines
hypervisors, operating systems, and user processes for
certain attacks including heap spray, heap overflow, and
rootkit detection. SPECTRE can detect heap spray attacks
in 25-31 ms, heap overflow attacks in 32 ms, and the
KBeast rootkit in 5 ms. [29] The amount of SMI latency
proposed for the various SMM RIMMs is significantly
longer than common rules of thumb that we described in
Section A.

Besides the long and currently unbounded software
preemptions and periodic interrupts, there is another
concern about the SMM RIMM approach: malware could
seek to evade detection by operating for short periods of
time and then going dormant to lessen the chance of being
observed by the SMM RIMM. [24] This implies that an
SMM RIMM would need to do frequent checks as well as
be scheduled to execute randomly.

C. Implementing Workload Isolation Using System
Management Mode

A recent paper by Azab et al. describes a mechanism
called SICE which allows for workload isolation in
untrusted cloud environments. [4] SICE relies upon two
key SMM features to facilitate this mechanism: SMRAM
for memory protection, and SMIs as the interface to the
isolated environment. The total end-to-end time required
from enter to exit of the isolated environment is 67
microseconds. In SICE’s multi-core mode this is a one-
time overhead, but in “time-sharing” mode, the isolated
execution environment is context switched with regular
applications and system code on the same core, and this
overhead would be incurred on every context switch.

III. RELATED WORK
The effects of SMIs are quite unique in comparison to

other interrupts occurring on the system. Traditional
device interrupts can preempt running application code,
however, they are able to provide acknowledgement to the
hardware and set up mechanisms for future processing. [5]
SMIs cannot typically be deferred in this manner and all
CPU threads leave the host environment and transition into
the SMI handler upon receiving an SMI. Thus they have a
broader system impact than a traditional device interrupt.
The operating system also isn’t able to mask SMIs as it
can with traditional device interrupts which results in the
potential for an SMI occurring at an unexpected point in
time. An Intel whitepaper noted that SMIs present serious
complications to the XenoMai RTOS microkernel as they
are invisible to the RTOS scheduler. [13] Latency-
sensitive users attempt to disable SMIs to remove their
impact [11] [30] and others use tools to detect their
occurrence. [26]

The developers of both HyperSentry and Hypercheck
included some performance evaluation in their proposals
for SMM RIMMs, including end-to-end execution times,
limited studies of the performance impact on host
software, and a detailed time breakdown. Our focus by
contrast is to characterize the performance impacts of the

 3

SMM more generally and deeply, in a way that will be
relevant for broader usages of SMM.

Our evaluation is similar to previous workload
perturbation studies examining the effect of noise from
software heartbeats and system daemons [19] hardware
interrupts [5], and network interrupts. [23] Ferreira et al
[10] have found that noise's effect on an application may
be reduced by absorption; conversely, the impact of noise
can be amplified when it occurs at a performance-sensitive
time. Since SMIs are the highest priority interrupt, they
affect the platform on a greater scale than these other types
of noise. The operating system timer interrupt that
Beckman et al study [5] is itself at risk from asynchronous
SMI noise.

IV. METHODOLOGY
Empirically measuring the effects of SMIs involves
challenges in both generating and measuring the time
spent in SMM. The BIOS of commodity systems is
essentially a black box to the user and its code resides in a
hardware protected region, so generating the needed SMIs
for this study was challenging. We developed three
different SMI generation techniques for this study:
Chipset-based, Blackbox SMI, and Modified BIOS.

Chipset-based. Our initial results were gathered by
turning on varying frequencies of hardware-generated
(chipset) SMIs using the SWSMI_TMR feature. This
approach does not require access to the BIOS, however the
significant shortcomings are an inability to specify precise
SMI durations or generate longer SMIs than 0.11ms on our
system. The feature is also not supported on all
motherboards. We approximated longer SMIs by
generating a large number of short SMIs (“short but
frequent”). The caveat is that these short SMIs didn’t
preempt the system for the duration of a single longer SMI
in one interval.

Blackbox SMI. As an improvement to Chipset-based,
we created a device driver that called existing software
SMIs by writing specific values to an IO port typically
configured to generate SMIs (“APM_CNT” on Intel, "SMI
Command Port" on AMD). These SMIs consume time
away from host software control corresponding to the
amount of work to be done which is typically longer than
the durations supported in the Chipset SMI approach. In
order to find longer SMIs, we created software to discover
them by writing various values to APM_CNT and deriving
the SMI processing time by taking timestamps before and
after the SMI generation. With this method, we found
several SMIs that consumed 5ms or more. However, our
key concern with this approach is that without knowing
more about what the SMI was actually doing, we couldn’t
rule out the possibility of performance side effects. For
example, if the SMI adjusted the CPU frequency, we
would be introducing a side effect into our measurements.

Modified BIOS. Greater precision requires modifying
the SMI handler. This option is not typically available to
end-users, but we had the ability to modify our SMI
handler to allow a user-configurable amount of delay. In
this approach we added twelve values that could be written
to the APM_CNT port to generate varying levels of SMI

delays: (in ms) 1.43, 5, 10, 20, 50, 99, 495, 990, 5k, 10k,
20k, 64k. When the SMI handler received control, it would
delay in a loop for the specified amount of CPU cycles
before returning control to the host software. In this way,
all CPUs left the host software and stayed in SMM for the
specified amount of time. This mechanism provided a
useful way to preempt the system for a controllable
duration. In order to calculate the delay length in SMM,
we used the CPU’s time-stamp counter (TSC). The TSC
can be influenced by CPU frequency in some
configurations, however many modern CPUs support
“Constant TSC” to ensure that the duration of CPU clock
isn’t influenced by changes in CPU frequency. [14] To
ensure that the delays were of the expected length we took
a CPU timestamp before and after generating a long SMI,
calculated the delta; and double-checked the wall clock
times of the longer delays.

As we triggered our Blackbox SMI and Modified BIOS
delays using an OUT CPU instruction which needs to be
executed from Ring 0, we developed device drivers for
each system we measured: Xen 4.1.2, Centos 6.0/6.3, and
Windows Server 2012, to trigger SMI delays once a
second. For Xen we used the kernel work queues to
schedule our software SMI once a second. For Windows
Server 2012, we used the kernel function IoStartTimer to
schedule one SMI/second. Our test setup additionally
allows us to generate a single SMI on demand.

V. SYSTEM LEVEL EFFECTS
Unlike the application-level delays caused by

multiprogramming, the delays caused by time in SMM
represent time intervals where the processor is not under
OS control. What are the effects of this "invisible"
processing time? To answer this question, we investigated
the effects of SMM time on the kernel, focusing on the
code that immediately follows each timer interrupt.

A. Timer Interrupt Effects
Traditionally many important scheduling and statistical

operations in the Linux kernel happened on a regular timer
tick interval, e.g. {100, 250, 300, 1000} times a second.
For power savings reasons, the “tickless kernel” option has
been added, allowing the kernel to remain idle longer by
avoiding unnecessary wake-ups. If the next scheduled
timer event would occur after the next periodic timer tick,
the kernel would reprogram “the per-CPU clock event
device to this future event” allowing the CPU to remain
idle longer. [20] In both traditional and tickless operation,
our inspection of the Linux 3.1.4 kernel showed that once
the kernel wakes, it runs several key functions in
do_timer which update the kernel’s internal clock count
(jiffy) and wall clock time, and calculate the load on the
system. (See Figure 1.) Then it calls
update_process_times which charges time to
executing processes, runs high resolution timers and raises
SoftIRQs for local timers, checks if the system is in a quiet
state for RCU callbacks, does printk statements, runs IRQ
work, calls scheduler_tick and then runs timers that
are due. [17] The scheduler_tick function performs
several important tasks including updating scheduler
timestamp data, updating timestamps for processes on the

 4

run queue, updating CPU load statistics based on the run
queue, invoking the scheduler, updating performance
events for the Linux Performance Event subsystem,
determining if a CPU is idle at the clock tick, and load
balancing tasks between CPU run queues.

Intel technical documentation notes “All interrupts
normally handled by the operating system are disabled
upon entry into SMM” [14] which presents the possibility
for an SMI to perturb timer interrupts and consequently
impact the important scheduling operations in
scheduler_tick as a side effect.

To investigate the degree to which SMIs preempted
timer interrupts, we instrumented the Linux kernel
do_timer and scheduler_tick functions. For
do_timer we logged a trace point just after the timer
interrupt occurs, recording the total number of SMIs
processed (“SMI count” obtained via an MSR read of
MSR_SMI_COUNT) and the time of the entrance to the
function from RDTSC. For scheduler_tick, we logged
the CPU number, the SMI count, and the timestamp from
RDTSC. We extracted our traces with the SystemTap
utility. [9] In post-processing, we calculated the deltas
between successive handlings of the timer ticks. (See Figure
3).

Our regular timer tick scenario has a timer tick every
millisecond. We generated SMIs using the chipset timer
for the short but frequent scenarios and the Blackbox SMI
method for the hybrid and long SMI scenarios. Our test
system was an Intel DQ67SW board running native Centos
and the 3.1.4 Linux kernel.

Because the timer interrupt takes precedence over
executing code, whether the CPU is idle or busy does not
impact the regularity of the regular timer ticks. For this
reason, we depict only the idle CPU data in this section.
After establishing a baseline with no regular SMIs, we
measure the effect of short but frequent SMIs using the
Chipset-based SMI generation. Following this, we utilize a
Blackbox SMI scenario of a batch of 8 5ms SMIs, once a
second to represent an SMM RIMM that takes 40ms per
second to do integrity measurements using a time-sliced
approach.

To analyze the data, we narrow our focus to the deltas
between successive invocations of scheduler_tick to
highlight SMI-caused delays. Numerous short SMIs cause
jitter in the timer interrupt handling. Since SMIs take
precedence over timer interrupts, the deltas between
successive timer interrupts depart from the expected 1ms.
Deltas greater than 1ms occur due to an SMI firing when a
timer interrupt would have taken place (Table 1). The
delay in timer interrupt handling results in the greater than
1 ms delta, that in turn results in the next timer interrupt
occurring after less than 1ms.

Table 1 shows a small sample of the jitter in the
handling of timer interrupts. This effect eventually
dissipates, but occurs again as the timer interrupt and SMI
occurrences coincide. Even when regular SMIs are short,
they can happen to occur at precisely when the timer
interrupt fires, resulting in a period of irregular timer
interrupts for the short but frequent SMI scenario. Figure 2
depicts this effect.

For the Blackbox SMI scenario of a batch of eight 5ms
SMIs a second, when the batch concludes, execution

returns back to the operating system until another SMI
occurs. In this scenario and a longer blackbox SMI
scenario with a 104ms SMI, the privileged software suffers
significant portions of time where no forward progress can
be made.

These results show that both long and short SMIs can
preempt the timer interrupt with different patterns. The
short but frequent scenario caused periods of jitter in timer
interrupt handling. The long SMI scenarios showed that
user and kernel tasks are completely frozen for extended
periods of time and a number of timer ticks were missed.

B. Timer Interrupts with Xen
To examine the effects of SMIs on timer interrupts in a

virtualized environment, we repeated the measurements
with a Xen HVM Linux guest running under Xen 4.1.2.
The results show that running a virtualized guest
introduces a small degree of jitter in the regularity of the

Figure 1 Timer Interrupt Code Flow

	
Figure 2 SMI Pre-emption of Timer Interrupt Handling

Table 1 SMI Occurrences and Timer Interrupts

 5

	
(a) Reg. Timer Tick, Baseline (No SMIs), Idle CPU	

	
(b) Reg. Timer Tick, 0.11 ms SMI (500/sec), Idle CPU	

	 	
(c) Reg. Timer Tick, 5 ms SMI (8/sec), Idle CPU (d) Reg. Timer Tick, 104 ms SMI (1/sec), Idle CPU

	 	
(e) VIR: Reg. timer tick, Baseline (No SMIs), Idle CPU (f) VIR: Reg. Timer Tick, 0.11 ms SMI (16/sec), Busy CPU

	 	
(g) VIR: Reg. timer tick, 5 ms SMI (8/sec), Busy CPU, (h) VIR: Regular tmer tick, 5 ms SMI (3/sec), Busy CPU

	 	
(i) Tickless kernel, Baseline (No SMIs) (j) Tickless kernel, 0.11 ms SMI's (500/sec), Idle CPU

Figure 3: SMI Pre-emption of Timer Interrupt Handling. Scheduler_tick entry deltas for: kernel with regular timer tick (a-d); virtualized with regular timer
tick (e-h); and tickless kernel (i-j).

 6

handling of timer interrupts, and adding SMIs perturbs the
regularity further. For groups of long SMIs (e.g. groups of
eight 5 ms SMIs), the guest can experience a significantly
longer loss of control which coalesces multiple pre-
emptions into one longer one. For example, the Xen HVM
guest experiences prolonged losses of control that exceed
the 5 ms SMI in the range of 10 and 26 ms (Figure 3). We
suspect that these increased delays are the effect of SMIs
acting upon the virtual machine manager’s scheduler
which is resulting in the virtual machine not handling the
interrupt for a longer period of time and amplifying the
impact of shorter SMIs in virtual environments.

C. Tickless Kernel and CPU Power States
When the CPU is busy, the tickless kernel behaves like

the regular timer tick, since no ticks are "skipped."
During idle periods, however, the tickless kernel can
experience large gaps between successive entries into the
scheduler_tick function (e.g. up to ~200ms based on
our measurements.) Therefore, we focus here on the idle
CPU case. We expect regular SMI activity to subvert the
tickless kernel's energy savings, by waking up the CPU to
enter SMM. To test this, we gathered data on the processor
C-state utilizations using Turbostat. [6] Turbostat produces
a log of what percentage of time the processor threads
were in a given C-state. [C-states represent incremental
power-saving states from C0 (max) to C6 (idle).] We
started Turbostat, let the system idle for several seconds,
then enabled SMIs, waited a few seconds, disabled SMIs,
and ended Turbostat.

In Figure 3, we show the baseline case for the tickless
kernel without SMIs. The timing of the scheduler_tick
entries varies widely as the kernel avoids unnecessary
wake-ups to achieve power savings. The bottom graph
shows the results for 500 SMIs/second. It is not readily
apparent from the graph if a timer interrupt has been
delayed or the kernel was simply idle for a long period of
time. To look more closely, we must examine the raw
trace data (see Table 2). This shows that the kernel sleeps
through the SMI activity as indicated by the increasing
SMI count during long periods of kernel idleness. The
tickless kernel adaptive timer mechanism is unaware of
SMIs and while the kernel is idle, the CPUs transition in
and out of SMM processing SMIs. Fortunately, the Linux
kernel (since version 2.6.19) has a mechanism to avoid
missing jiffy updates due to lost timer ticks by determining
how many timer ticks were missed (ticks) and
incrementing the jiffy count accordingly in do_timer.
Without such a mechanism, jiffy updates would be lost.
The results of our instrumentation (Table 3) show that the
do_timer function increments the ticks value after
receiving control following an SMI. When an SMI
preempts the kernel for five ms, the kernel determines that
five timer ticks were missed and sets the ticks value
accordingly and adds that value to the jiffies count. When
our group of eight SMIs concludes, our instrumentation
shows the SMI count staying steady and the ticks value
returning to one as the SMIs subside.

The kernel remained idle through the SMIs, however
the CPU was actively processing SMIs. If we limited our
analysis to our tickless kernel instrumentation, we would
miss a large amount of activity on the system. The kernel

instrumentation correctly indicates that there were long
periods of idle in the kernel which traditionally would
correlate to the CPUs ability to transition into deeper sleep
states. However, with SMM RIMMs, regular SMIs are
also occurring which would keep the CPU active.

Figure 4 shows that SMIs bring the CPU out of the
lowest power C6 state and into the higher power-
consuming C0 and C1 states. The short but frequent
scenario results in more time spent in higher power C-
states than the hybrid scenario that has longer SMIs.

TABLE 2 TICKLESS KERNEL AND 500 SMIS/SECOND

SMI Count 23,351 23,382 23,433
scheduler_tick delta (ms) 40 62 102

TABLE 3 DO_TIMER TICKS MECHANISM

SMI Count Ticks Delta (ms)

19,082 1 1.00

19,083 5 5.21

19,084 5 5.15

… … …

19,090 1 0.63

19,090 1 1.00

Figure 4 C-States and SMIs

TABLE 4: WARNINGS RECEIVED WITH SMM DELAYS

SMM
time
(ms)

Warning

1.43 ALSA sound/usb/pcm.c:1213 delay:
estimated 144, actual 0

5 - 999 ALSA sound/usb/pcm.c:1213 delay:
estimated [336 to 384], actual 0

1000 ALSA sound/usb/endpoint.c:391 cannot
submit urb (err = -27)

 7

D. Device Driver Impacts
During the previous testing, we noticed a potential

problem with USB audio. To study this effect we chose
one representative example, a Linux driver for USB
speakers, run with a set of Logitech S-150 USB speakers
and Linux 3.7.1 kernel on Centos 6.0. We booted into the
GUI and began playing a streaming audio file from
YouTube. While playing the audio file, we generated
progressively longer SMIs using our modified BIOS
approach while checking the system log.

USB audio relies upon careful synchronization to keep
the audio playback in sync. In our measurements, SMIs
perturbed the delay mechanism used by the PCM code and
generated warnings starting with our lowest duration SMI
and continuing up to 1 second (see Table 4). The warning
results from the snd_pcm_delay function which defines
the playback delay as "the overall latency from the write
call to the final DAC.” [1] The code provides a warning
when the delay estimate is off by more than 2 ms. At 1
second preemption, the USB speaker audio stopped.

USB traces gathered using usbmon [31] showed gaps
in the USB activity that corresponded very closely with the
length of the generated SMI indicating that SMIs
preempted USB activity until after the SMI terminated.
While we noticed warnings generated at the level of SMI
preemptions anticipated for SMM RIMMs, actual driver
errors occurred significantly higher than this level.
However, the user experience must also be considered and
in an equivalent test in Windows using a Microsoft
LifeChat LX-3000 USB headset, we subjectively noticed
clear audio distortions at 20ms SMIs.

E. Linux Process Accounting Anomaly
While preparing for OpenSSL SHA512 benchmarks in

our virtualized Centos 6.3 HVM Xen guest with 2.6.32
kernel, we noticed an unexpected phenomenon: When we
increased the duration of the SMIs using our modified
BIOS, the reported throughput didn’t decrease
correspondingly. We also noticed that OpenSSL’s reported
computation time decreased as we generated longer SMIs.
The workload reports throughput in bytes per second
processed by determining how many computations it did
and how much time they took. The OpenSSL benchmark
sets up a signal (SIGALRM) for three seconds in the
future and performs computations until the signal arrives.
The workload reported that the computations took 2.74
seconds when we used 100 ms SMIs but the expected 3
seconds when no SMIs occurred. Our examination of
OpenSSL showed that it used the Linux kernel’s times
function which reports the amount of user time, system
time, child user time, child system time used by a process.

Our measurements using a more recent kernel (3.7.6)
showed different behavior. This configuration reported
that the OpenSSL benchmark was computing for the full 3
seconds both when 100 ms SMIs were enabled and when
they were disabled. depicts the scaling of times billed to
the application for varying durations of SMIs for the two
kernel versions.

To root cause the discrepancy, we instrumented the
two Linux kernels to log the flow of time-keeping data
used by the times and accompanying functions. We also
added a tracepoint in the OpenSSL application to capture

the time when the signal handler function was called in the
application and two tracepoints before and after the
computations began in the benchmark.

We started SystemTap to monitor key variables in the
kernel functions responsible for the reported process time
statistics: do_sys_times, thread_group_times,
thread_group_cputime, task_sched_runtime,
do_task_delta_exec, and scale_utime. We then
started an OpenSSL benchmark run using “openssl speed
sha512”, with the February 9, 2013 code snapshot of
SystemTap. This test allowed us to compare the reported
amount of time billed to the process with the tracepoints
gathered in the application using the CPU’s TSC.

The results show that the SIGALRM signal was
received after three seconds in both kernel versions. For
the 2.6.32 kernel, this highlighted the discrepancy between
the amount of application time as measured by the TSC
and the kernel. One kernel function explained the
discrepancy: scale_utime. This is used to reduce over
or under-counting of user or system time due to the point
in time when the user or system task was actually
interrupted. The code scales the operating system timer
tick-based values against the scheduler’s record of total
runtime. With a 100 ms SMI per second, this function
increased the billed user time by ~10% which
compensated for the loss of time spent in SMM, while for
the no SMI scenario, the user time wasn’t scaled
accordingly. Table 5 shows the scaling calculation for the
first three second OpenSSL measurement. As the 2.6.32
kernel didn’t call this function in the do_sys_times
codepath, the user time wasn’t adjusted to include the 10%
of time spent in SMM leaving the billed process times
lower in the 2.6.32 kernel.

TABLE 5 USER TIME SCALING IN SCALE_UTIME - 3.7.6 KERNEL

Variable Notes No
SMIs

100 ms
SMI/sec

utime Unscaled user time 3,003 2,708
rtime Scheduler’s

sum_exec_runtime
3,008 3,002

total User + system 3,009 2,709
[Scaled user
time]

(rtime * utime) / total 3,002 3,000

Figure 5 Time Billed to OpenSSL Benchmark on Xen HVM Centos 6.3
guest

 8

E. Discussion
Our examination of disruptions to the regularity of the

scheduler_tick shows several important effects. In
some cases with short but frequent scheduling, SMIs can
resonate with the timer interrupt resulting in extended
periods of time where the timer interrupt handling may
occur late relative to a regular time tick. This may result in
timer interrupt handlers closer together or further apart
than traditionally done. Additionally, with the longer SMI
scheduling option, SMIs that exceed the length of the
timer interrupt will cause timer interrupts to be missed.
However, the kernel can keep its internal jiffy count
accurate. With long SMIs, there can be long periods of
time between entries into the process scheduling function.
Virtualized environments may experience longer delays as
multiple shorter delays coalesce into longer delays.
Applications may experience longer wait times since the
OS scheduler cannot run.

In the case of an idle tickless kernel, determining if a
timer interrupt was delayed or lost due to an SMI is not as
straightforward. Our results show that the kernel remained
idle while SMIs were occurring which is expected since
the kernel is unaware of the loss of control due to SMIs.
The C-state analysis showed that while the kernel was idle,
the CPU’s power utilization was affected by the SMI
activity. The short but frequent SMI scheduling scenario
resulted in the CPU running in higher power C-states due
to frequent wakeups from SMIs that circumvent the
power-saving processor modes.

The Linux kernel source code contains assumptions
about SMI durations in several places. For example, the
function that calibrates the CPU’s TSC during boot
native_calibrate_tsc, uses the tsc_read_refs
function which has special handling of SMI disturbances.
tsc_read_refs checks two close reads of the CPU’s
timestamp counter to ensure that they are less than the
declared SMI_THRESHOLD=50000 (CPU clocks) to
avoid a scenario where an SMI occurs between the two
reads. If the system cannot obtain two close reads of the
TSC of a duration less than the SMI_THRESHOLD, it
will try up to five times before returning. Prolonged or
inopportune SMIs could result in a situation where the
TSC couldn’t be used as the clocksource for timing due to
an inability to properly calibrate it. Other clocksource
calibration sections of the Linux kernel feature similar
concerns over the impact of an SMI hitting during
calibration including functions pit_calibrate_tsc
and hpet_next_event.

Our results raise the question of how the operating
system should account for process times when there is
prolonged SMI activity on the system: include any SMI
times with the billed process time using the times
mechanism, or leave this time out of the billed amount?
There are benefits and drawbacks to both approaches.
Reporting time inclusive of SMI times has the drawback
of charging applications for time spent outside of their
process which could penalize some applications more than
others depending on when the SMIs happened to occur. In
our study this resulted in all three seconds being attributed
via the times mechanism to a process without discarding
the portion of the time spent in SMM. The exclusion of

SMI times in process time accounting can lead to
discrepancies as well. In the case of OpenSSL running on
the 2.6.32 kernel, the workload concluded after three
seconds based on the CPU’s TSC, however the process
only believed that it had used 2.74 seconds when 100 ms
SMIs were active. When SMIs were infrequent and had
short durations, their effect on process accounting could
essentially be overlooked. For environments that are
sensitive to accurate billing of time to users such as cloud
providers, new mechanisms are required to more
accurately account for the amount of time consumed by
long SMIs. However, resolving the fundamental issues in
process time accounting will require kernel changes and
possible SMM RIMM involvement.

Our analysis of system level SMM effects shows
several negative impacts from prolonged SMM time.
While certain sections of the Linux kernel have special
handling for SMI occurrences, other sections could have
differing behavior upon experiencing prolonged SMI
durations. Software advances such as tickless kernels,
while implemented for other reasons, increase the
tolerance of SMM preemptions. Our detailed results
demonstrate that systems can spend longer in SMM than
current guidelines, however, there are problems that arise
at durations below those contemplated for SMM RIMMs.

We showed that SMIs cause periods of timer-interrupt
jitter in the short but frequent scenario and extended
periods of delays for the longer SMI scenarios. These
impacts delay handling of timer interrupts and postpone
work on all cores until the SMI completes. Additionally, in
an environment where power savings are of increasing
importance, SMM RIMMs would bring a reduction in the
amount of time CPUs can remain in low power states. In
an extreme SMI preemption, we showed a device driver
that failed because it interpreted the delay as unresponsive
hardware.

VI. APPLICATION LEVEL EFFECTS
Because even slight delays can have a perceptible

impact on applications, we designed a study to investigate
the impact of prolonged SMIs on several types of
workloads. The correlation of application and noise
granularity [5] is quite relevant to the SMI-based
perturbation investigation as SMIs could be long or short,
frequent or infrequent, occur regularly or irregularly.

A. Kernel Compilation
Linux kernel compilation involves several key aspects

of platform performance including CPU operations, disk
I/O, and memory accesses. We used Xen 4.2.1 with a
Centos 6.3 Domain 0, and a Centos 6.3 HVM guest with
one virtual CPU and two GB of RAM.

The results (Figure 6) show increases in total
compilation time that very closely match the level of
SMM preemption. Taking 10% of the CPU cycles away
for the 100 ms SMI scenario resulted in a 10.8% increase
in the duration of the kernel compilation.

B. Microbenchmarks with Xen
To examine system performance impacts on a broader

set of system activities, we ran two sets of benchmarks,
one for Xen’s Domain 0 (Xen 4.1.2) and one for a Centos

 9

6.0 HVM guest (Figure 7). We compared how throughput
scaled against the baseline for varying levels of SMIs
using our modified BIOS setup. For our workloads, we
used RC5-72 [12], a compute-intensive workload that
brute-forces cryptographic keys (tested on Domain 0
only); Netperf 2.5 for TCP transmit [18] using a gigabit
Ethernet device; and XDD for 128KB sequential disk
reads using an Intel X25-M SSD. [28]

The left-most bar in the chart shows the percentage of
CPU time available to the system after subtracting the
amount of time spent in SMM per second. The individual
benchmarks all experienced throughput degradations that
closely match the amount of CPU cycles taken away for
SMIs. With these workloads and long SMIs, SMM latency
cannot be hidden by the application as it comes at the cost
of performing I/O operations or computations.

By comparison, short but frequent SMI scheduling
(bottom of Figure 7) can maintain baseline throughput for
some workloads even as the amount of available CPU time
decreases. SMI usages that are able to interleave SMIs
with I/O processing may be able to avoid the full penalty
of the SMI by processing their SMM work in multiple
smaller units. The benchmarks didn’t experience any
stability issues, which helps allay concerns regarding
application or I/O device impact at these levels of SMM
preemption.

C. Latency Sensitive Application: Unreal Tournament
As the USB testing indicated, latency sensitive

applications can be problematic for SMM RIMMs. To
investigate this further we used Windows Server 2012 and
the Unreal Tournament 3 benchmark utility (UTBench) to
measure game frame rates. We used our modified BIOS
setup for these tests and show the results in Table 6.
Although the average frame rates were above 50 fps for all
durations but the 495 ms SMI, at SMI durations of 20 ms
and higher the frame rates dipped below 30 frames per
second, which is in the range of the user’s perception. The
finer-grained analysis shows that 20 ms delays only
dropped below 30 frames per second 0.92% of the time
which we didn’t notice subjectively however at 50 ms
delays, the system achieved below 30 frames per second
5.99% of the time which was visually apparent. This
latency-sensitive application showed clear sensitivities
between the 20 and 50 ms SMI durations.

D. DISCUSSION
Our results show that application level impacts from

SMM time vary based on the characteristics of the
application as well as SMI scheduling. Some usages (e.g.
compilation) experience degraded throughput while others
such as Unreal Tournament and audio playback, are
particularly sensitive to long duration SMIs as the user
experience is severely degraded. We note that the latency
sensitive applications we examined suffered user
perceptible impacts at some of the SMI durations proposed
for SMM RIMMs.

	
Figure 6: Kernel Compilation Performance for Linux/Xen

	

	

	

	
Figure 7: Xen Microbenchmarks

TABLE 6 UNREAL TOURNAMENT FRAME-RATE BINNING

 10

	

Figure 8: SMM Preemption Effects, one SMI per second

VII. CONCLUSIONS AND FUTURE WORK
In this study, we examined the impact of System

Management Mode on system and application
performance. Our results show that time spent in this mode
causes warnings, perceptible degradations for latency-
sensitive applications, throughput impacts, delays, and
inaccurate time accounting at the hypervisor, kernel, and
application levels (Figure 8).

The motivation for our study was a series of proposals
for SMM RIMMs, a novel way to improve detection of
malware in privileged software. The unique ability of an
SMM RIMM to reside in a protected location and provide
confidence that the privileged software isn’t compromised
is extremely valuable. However, our results show that the
three published SMM RIMM approaches that we surveyed
[3][25][29] will cause a range of unacceptable side effects.

For SMM repurposing to succeed, either the specific
approaches must be changed to reduce the SMM duration;
or the runtime software stack must undergo a redesign to
increase tolerance or response to the "missing time" that
results from SMIs. Shorter but frequent SMIs can remedy
some of the effects but will still take the same amount of
time away from CPU-intensive applications, result in
interrupt-handling jitter, and sacrifice the atomicity of the
security checks allowing malware an increased ability to
hide. Redesigning the software stack require a shift in
current thinking about the ability of privileged software to
control the system. SMM RIMMs break both kernel and
hypervisor assumptions of platform control as the most
privileged kernel or hypervisor code can be preempted by
an SMI.

REFERENCES
[1] ALSA http://www.alsa-project.org/alsa-doc/alsa-lib/group___p_c_

m.html, accessed July 30, 2013.
[2] AMD, AMD64 Architecture Programmer’s Manual, Volume 2:

System Programming.
[3] A. Azab, P. Ning, et al., “HyperSentry: enabling stealthy in-

context measurement of hypervisor integrity,” CCS. Chicago, IL,
2010.

[4] A. Azab, P. Ning, and X. Zhang, “SICE: A Hardware-Level
Strongly Isolated Computing Environment for x86 Multi-core
Platforms,” CCS. Chicago, IL 2011.

[5] P. Beckman, K. Iskra, K. Yoshii, S. Coghlan, and A. Nataraj,:
“Benchmarking the effects of operating system interference on
extreme-scale parallel machines,” Cluster Computing 11(1): pp. 3-
16, 2008.

[6] L. Brown,: Linux Idle Power Checkup,
https://events.linuxfoundation.org/slides/2010/linuxcon2010_brow
n.pdf, accessed July 31, 2013, 2010.

[7] Camden Associates, "Device Driver and BIOS Development for
AMD Multiprocessor and Multi-Core Systems,"Advanced Micro
Devices, Inc. 2006.

[8] L. Duflot, O. Levillian, B. Morin, and O. GrumeLard, “Getting
into SMRAM: SMM reloaded,” CanSecWest. Vancouver, Canada,
2009.

[9] F. Eigler, V. Prasad, et al.: “Architecture of systemtap: a Linux
trace/probe tool,”http://sourceware.org/systemtap/archpaper.pdf,
accessed July 31, 2013, 2005.

[10] K. Ferreira, P. Bridges, and R. Brightwell, “Characterizing
application sensitivity to OS interference using kernel-level noise
injection,” Proceedings of the 2008 ACM/IEEE conference on
Supercomputing. IEEE Press: 1-12. Austin, Texas, 2008.

[11] R. Ghosh-Roy, “Disabling SMIs on Intel® ICH5 Chipsets,”
http://www.mathworks.com/matlabcentral/fileexchange/18832-
disabling-smis-on-intelr-ich5-chipsets, accessed July 31, 2013.

[12] B. Hayes, “Collective Wisdom,” American Scientist, 1998.
[13] A. Ugal, “Hard Real Time using Xenomai on Intel Multi-Core

Procesors”, white paper, Intel, 2009.
[14] Intel, Intel® 64 and IA-32 Architectures Software Developer’s

Manual (Vol. 3).

 11

[15] Intel, Intel Itanium Architecture Software Developer’s Manual,
Revision 2.3. Volume 2: System Architecture.

[16] K. Mannthey, “System Management Interrupt Free Hardware,”
IBM Linux Technology Center.
http://linuxplumbersconf.org/2009/slides/Keith-Mannthey-SMI-
plumers-2009.pdf, accessed July 31, 2013.

[17] W. Mauerer. Professional Linux Kernel Architecture, p. 909.
Wrox, 2008.

[18] Netperf, http://www.netperf.org, accessed July 31, 2013.
[19] F. Petrini, D.J. Kerbyson, and S. Pakin, “The case of the missing

supercomputer performance: Achieving optimal performance on
the 8,192 processors of ASCI Q,” SC 2003. Phoenix, Arizona ,
2003.

[20] S. Siddha, V. Pallipadi, and A. Van De Ven, “Getting maximum
mileage out of tickless,” Proceedings of the Linux Symposium,
Ottawa, Canada, 2007.

[21] P. Stultz, “System and method for processing system management
interrupts in a multiple processor system,” U.S. Patent 7,200,701
B2, issued April 3, 2007.

[22] J. Triplett and B. Triplett, “BITS: BIOS Implementation Test
Suite,”http://www.linuxplumbersconf.org/2011/ocw/system/presen
tations/867/original/bits.pdf

[23] D. Tsafrir, Y. Etsion, D. Feitelson, and S. Kirkpatrick, “System
noise, OS clock ticks, and fine-grained parallel applications.”
Proceedings of the 19th annual international conference on
Supercomputing. Cambridge, Massachusetts, ACM: 303-312 ,
2005.

[24] J. Wang, K. Sun, and A. Stavrou, “An analysis of system
management mode (SMM)-based integrity checking systems and
evasion attacks,” Technical Report, George Mason University,
GMU-CS-TR-2011-8 (2011)

[25] J. Wang, A. Stavrou, and A. Ghosh, “HyperCheck: a hardware-
assisted integrity monitor,” Lect. Notes Comput. Sci. Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 6307
LNCS: 158-177, 2010.

[26] C. Williams, “Realtime in the Enterprise,” RTLWS11, Dresden,
Germany,https://www.osadl.org/fileadmin/dam/presentations/RTL
WS11/clarkw-realtime-in-the-enterprise.pdf, accessed: July 30,
2013, 2009.

[27] R. Wojtczuk, “Subverting the Xen Hypervisor,” Black Hat, Las
Vegas, Nevada, 2008.

[28] XDD, http://sourceforge.net/projects/xdd
[29] F. Zhang, K. Leach, K. Sun, and A. Stavrou, “SPECTRE: A

dependable Introspection Framework via System Management
Mode,” DSN, Budapest, Hungary, 2013.

[30] “Configuring and Tuning HP ProLiant Servers for Low-Latency
Applications”, white paper, HP, 2013.

[31] P. Zaitcev, “The usbmon: USB monitoring framework,” Red Hat,
http://people.redhat.com/zaitcev/linux/OLS05_zaitcev.pdf,
accessed July 31, 2013.

	

