
Applying the Principle of Least Privilege to System Management
Interrupt Handlers with the Intel SMI Transfer Monitor

Brian Delgado
Intel Corp

USA
brian.delgado@intel.com

Tejaswini Vibhute*
Intel Corp

USA
tejaswini.vibhute@intel.com

Karen L. Karavanic
Portland State University

USA
karavan@pdx.edu

Abstract
Recent years have seen a growing concern over System Manage-
ment Mode (SMM) and its broad access to platform resources. The
SMI TransferMonitor (STM) is Intel’s most powerful executing CPU
context. The STM is a firmware-based hypervisor that applies the
principle of least privilege to powerful System Management Inter-
rupt (SMI) handlers that control runtime firmware. These handlers
have traditionally had full access to memory as well as the register
state of applications and kernel code even when their functionality
did not require it. The STM has been been enabled for UEFI and,
most recently, coreboot firmware, adding protection against run-
time SMM-based attacks as well as establishing a firmware-based
Trusted Execution Environment (TEE) capability. We provide a de-
tailed overview of the STM architecture, evaluate its protections,
and quantify its performance. Our results show the STM can protect
against published SMM vulnerabilities with tolerable performance
overheads.
Keywords
firmware, virtualization, system management mode, smm, stm, smi
ACM Reference Format:
Brian Delgado, Tejaswini Vibhute*, and Karen L. Karavanic. 2020. Applying
the Principle of Least Privilege to System Management Interrupt Handlers
with the Intel SMI Transfer Monitor. In Hardware and Architectural Support
for Security and Privacy (HASP ’20), October 17, 2020, Virtual, Greece. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3458903.3458907

1 Introduction
SystemManagement Mode (SMM) is a highly-privileged CPUmode
present on Intel® and AMD® x86 processors. The firmware run in
SMM performs many important operations at runtime such as low-
level hardware control, handling memory errors, and controlling
performance. This code is loaded by computer manufacturers. End
users are not able to inspect its operation or control its accesses
on most production platforms. SMM code can access memory and
registers belonging to the operating system, Measured Launch

*Performed some of this work while at Portland State University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HASP ’20, October 17, 2020, Virtual, Greece
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8898-6/20/10. . . $15.00
https://doi.org/10.1145/3458903.3458907

Environment (MLE)1 or applications. SMM’s privileged and isolated
environment makes it a useful mechanism for a variety of critical
system tasks.

Unfortunately, the same features that make SMM an effective
mode for critical system tasks also make it an attractive attack sur-
face to deploy malicious code due to its broad access privileges over
system memory and registers. Compromised SMM code has the
ability to locate user secrets in memory or register contents. SMM
compromises have occurred using techniques including buffer over-
flows [28], SMM call outs [15], cache attacks [34], and improper
system configurations [18]. As SMM can be used in some imple-
mentations to update the BIOS SPI chip [14], attackers could also
achieve persistence by injecting malicious code into the BIOS SPI
chip which would be loaded upon successive reboots. To reduce
SMM’s privileges, UEFI memory protections were added that limit
SMM’s ability to access hostside memory [35]. However there are
no fine-grained controls over these accesses and other resources
such as registers are still potentially vulnerable.

Addressing the potential misuse of SMM is important to protect
the system functionality that uses it. In addition, recent research has
proposed and explored novel uses of SMM for protecting server plat-
forms. Methodologies have been developed for SMM-based runtime
integrity measurement [2, 8, 33] and for Trusted Execution Envi-
ronments or TEEs [25]. Proposers of such innovative approaches
must answer the question: Can we trust SMM?

To more thoroughly address the potential vulnerability of SMM,
Intel created the SMI Transfer Monitor (STM) [12]. The STM2 is
an SMM-based hypervisor that constitutes the highest privilege
layer on the platform. It virtualizes System Management Interrupt
(SMI) handlers and restricts their access to specified resources based
on a protection policy. The STM can defend against SMI handler
accesses to particular MSRs, memory ranges, IO Ports, or PCI/PCIe
devices. This creates a barrier between SMM and the host software.

The STM software architecture is designed to allow a hypervisor
to protect itself from SMI handler accesses over its resources. The
Intel TXT launch process allows detection of changed hypervisor
files prior to launch, however, SMI handlers could potentially be
compromised after launch. The STM provides a way to mitigate
runtime attacks from compromised SMI handlers extending the
protections provided to the hypervisor.

The BIOS and MLE must opt-in to the STM before it can be
activated. Without this, the STMwould not be operational. The Opt-
In requirement resolves a tension between aMLE that does not fully

1The MLE is host software (e.g. hypervisor or operating system) that goes through a
measured launch, for example with Intel Trusted Execution Technology (TXT).
2The STM is also referred to as a dual-monitor, peer monitor, or SMM Transfer Monitor
in various literature.

https://doi.org/10.1145/3458903.3458907
https://doi.org/10.1145/3458903.3458907

trust the runtime SMI code and SMI handlers that require certain
resources in order to operate. The STM allows the SMI handlers
to access all of the resources that the BIOS statically requested at
boot time. The STM provides this list to the MLE so that it can
inspect the set of resources prior to its launch. The MLE may tear
down if it does not approve of the list. The MLE provides a set of
resources to the STM that it wants protected from the SMI handler.
The STM applies these restrictions on the SMI handler to enforce
the protection policy. The MLE can issue subsequent modifications
of the protection policy at runtime, however, the BIOS cannot.

The STM can be viewed from two perspectives: the STM CPU
functionality as described by the Intel Software Developer Man-
uals [13] and the STM Software Architecture Specification [12]
that describes one implementation of an STM software stack. This
software stack specifies an interface between the MLE and the STM
to provide commands, along with specific data structures.

In this paper we examine the configuration, functionality, and
performance of STM from the perspectives of the CPU feature and
software implementation. We provide the first published treatment
of the design and architecture of the STM, summarize its compo-
nents, and demonstrate its ability to de-privilege SMI handlers. We
also highlight the STM’s firmware-based TEE capability.

The key contributions of this paper are:
(1) STM security policies that defend against known vulnerabil-

ities.
(2) A methodology for evaluating STM protections.
(3) A preliminary analysis of STM performance overhead.
The rest of the paper is organized as follows: Section 2 pro-

vides background on SMM and virtualization. Section 3 provides
an overview of the STM architecture. We discuss our STM setup in
Section 4. We demonstrate examples of the STM’s protections in
Section 5. We provide performance details on the STM including
its impact on SMI latency and application performance in Section 6.
We discuss related work in Section 7. We provide our conclusions
in Section 8.
2 Background
In this section, we provide background on SMM and virtualization.
These may be skipped by readers already familiar with these topics.
2.1 System Management Mode Overview
SMM is a highly-privileged operating CPU mode present on Intel
and AMD processors. It was originally added to the 386SL proces-
sor [13]. On Intel platforms, this mode is used to perform platform
functions related to flash updates, power management, handling
memory errors, system hardware control, device emulation, man-
aging UEFI variables, among many other uses [21, 27]. SMM code
resides in a hardware-protected memory region called SMRAM. A
range register called the SMMRange Register (SMRR) protects SMM
memory from being read or modified by code executing outside of
SMM. SMRAM is also protected from DMA access via DMA protec-
tion over the TSEG memory region that, by convention, matches
the SMRR. CPU threads enter SMM by asserting an SMI. An SMI
is the highest privilege interrupt and has higher priority than any
other interrupt even Non Maskable Interrupts (NMIs) [13].

When an SMI is generated and there is no active STM, the CPU
threads will transition to SMM entry code at the next instruction

boundary. They may enter SMM in 16 bit mode, transition to 32
bit mode, and then to 64 bit mode. The interrupted register state of
each CPU thread is stored in the SMRAM Save State Map [13]. SMM
Dispatcher code locates the appropriate SMI handler and transfers
one CPU thread to the SMI handler while other CPU threads wait.
Figure 1 provides an overview of this flow.

When in SMM, the SMM page tables are operational and have
traditionally been configured to allow SMI handlers to access host-
side memory. These SMM page tables are not affected by how the
host-side hypervisor has configured its page tables, for those are
only operational when the CPU threads are not in SMM.

Once the work of the SMI has been completed, all of the CPU
threads issue an RSM (resume) instruction. Upon exiting SMM,
the saved processor state is restored from the SMRAM Save State
Map and the CPU threads start executing from where they were
interrupted.

Recent research has explored novel security-related uses of SMM.
Examples include EPA-RIMM [8], SPECTRE [37], HyperSentry [2],
and HyperCheck [33] which use SMM to perform runtime integrity
measurement for rootkit detection. EPA-RIMM extended SMM to
utilize all available cores of a multicore architecture for runtime
integrity measurement.
2.2 Virtualization
Virtualization creates an abstract hardware environment for each
virtual machine by software called the hypervisor. The hypervi-
sor has direct access to the hardware and the ability to allocate
resources to its virtual machines. Intel’s Virtualization Technology
(VTx) provides CPU-level support that simplifies the enabling of
operating systems to support virtualization and also reduces perfor-
mance degradations. As the STM is a VTx hypervisor, we provide
background on the necessary relevant VTx details.

To distinguish the hypervisor context from that of the virtual
machine, VTx establishes a Root (hypervisor) and Non-Root mode
(virtual machine). Only the Virtual Machine Extensions (VMX) Root
mode is able to perform privileged VTx instructions. The hypervisor
can optionally allow virtual machines to directly access hardware.
Certain instructions executed in the virtual machine are trapped
and handled by the hypervisor. During this handling, the processor
transitions from VMX Non-Root mode to the VMX Root mode (a
“VMEXIT" event). After the hypervisor assists the operation, it can
resume the guest by transitioning back to VMX Non-Root mode
via the VMRESUME instruction. This is a “VMENTRY" event.

Figure 1: SMI Processing without STM

2

The hypervisor maintains most CPU state in a Virtual Machine
Control Structure (VMCS). This VMCS has a host and a guest por-
tion for the hypervisor and guest CPU state, respectively. The hy-
pervisor will allocate one VMCS per virtual CPU in the VM. These
VMCSs allow the hypervisor to manage the VM’s privileges and ex-
ecution. VTx provides bitmap-based controls that govern whether
accesses to particular system resources such as IO Ports, MSRs,
memory ranges, and PCI devices will trap to the hypervisor. The
hypervisor can perform these operations on behalf of the VM and
inject the results into the virtualized guest’s state, or it can intercept
the operation. A virtual machine can issue a request to its hyper-
visor using a VMCALL. These instructions cause a VMEXIT from
the VM so that the hypervisor can perform an operation on behalf
of its guest. When the hypervisor needs to turn off virtualization,
it issues a VMXOFF instruction.
3 STM Architecture
In this section, we describe the architecture of the STM reference
implementation. We provide details on its provisioning, launch,
runtime operation, and teardown.
3.1 STM Overview
When the STM and MLE are operational, there are two hypervi-
sors present on the system. The STM virtualizes the SMI handler
and the MLE virtualizes guest operating systems. From a privilege
perspective, the STM is the higher privilege level as the MLE issues
VMCALLs to the STM, just as a VM would issue to its hypervisor.
This is shown in Figure 2. The STM enforces restrictions over the
SMI handler’s accesses to MLE resources to apply the principle
of least privilege. The STM is only operational when it has been
launched by the MLE and one of the following occurs:

(1) An SMI is generated.
(2) An SMI handler causes an exception during SMI processing.
(3) The MLE or SMI handler issues a VMCALL.

Figure 2: VMCALLs with STM

3.2 STM Threat Model
The STM’s threat model assumes that attackers can exploit vulner-
abilities in SMI handlers at runtime to compromise the MLE. The
MLE is assumed to be trusted to launch the STM, configure it, and
tear it down. However, care must be taken by the STM to avoid
compromises of its integrity by either the SMI handlers or the MLE.
The STM protects its own memory region from the SMI handler via
page tables and relies upon SMRR and TSEG protections to guard its
memory from host-side code. Technologies such as Intel TXT and

Intel Boot Guard [22] can be used to gain assurance that the SMI
handlers are initially unmodified. These technologies should also
be used to verify the integrity of the MLE before launching it. Thus,
ensuring that the boot time static integrity of these various compo-
nents is maintained. The STM endeavors to provide assurance at
runtime that the set of accesses performed by the SMI handler are
in accordance with the prescribed policy. By applying the principle
of least privilege to SMI handlers, the risk of compromised SMI
handlers can be mitigated.

The STM applies a traditional security design approach that adds
a more trusted layer below code that is not fully trusted. The STM
hypervisor is smaller than traditional hypervisors. For example,
the STM codebase is roughly 10% the size of Xen 4.12 in lines of
code based on our CLOC [6] analysis. Compared to the set of SMI
handlers on a typical platform, the STM accesses fewer platform
resources and does not perform a varied set of operations. The STM
is cryptographically measured prior to launch by the TXT ACM
module to determine if the STM module has unexpectedly changed.
Unlike OEM SMI handlers, the STM is open-source and available
for inspection.

The STM architecture does not allow the host-side hypervisor
to make changes that impact the security of the SMI handlers or
STM. A compromised host-side hypervisor would only be able to
disable the STM and remove the enhanced protections over SMI
handler accesses to host-side resources provided by the STM. If the
attacker had compromised the hypervisor and disabled the STM,
the hypervisor would already be compromised and disabling STM
protections would not result in additional practical benefit. In this
scenario, the hypervisor would perform like a legacy hypervisor
that had not performed an Opt-In to the system and would continue
functioning without STM protections.
3.3 STM Provisioning
The STM requires BIOS provisioning before it can be launched by
theMLE. The BIOSmust reserve a memory region in SMRAM called
MSEG (“Monitor Segment"). It then must copy the STM binary into
MSEG from a firmware volume and opt-in to the STM by setting bit
0 of IA32_SMM_MONITOR_CTL MSR (0x9B) and also recording
the location of MSEG by programming the address into bits 31:12
of this MSR.

The BIOS also creates a TXT_PROCESSOR_SMM_CPU_
DESCRIPTOR data structure in memory that provides configura-
tion information that the STM refers to while configuring the SMI
handler. A key element of this data structure is the BIOS Required
Resource list which enumerates the set of resources needed by the
SMI handlers at runtime.

STM Opt-In for the MLE has a static portion in which the MLE
header is updated during compile time to indicate support for an
STM. For a TXT launch, the SINIT ACM module will consult this
bit to determine if the MLE supports an STM.
3.4 STM Launch
The STM launch is performed by the MLE via the following steps:

(1) For TXT scenarios: The MLE must indicate support for the
STM in the MLE header. This allows pre-launch software,
e.g. trusted boot, to trigger configuration and measurement

3

of the STM when it issues the GETSEC[SENTER] instruc-
tion. This instruction masks (disables) SMIs until the STM
re-enables them. SMImasking allows the STM to be launched
without SMIs occurring during the STM launch process. The
measurement of the STM is stored in TPM PCR 17 and pro-
vides an ability to inspect the STM’s hash before proceeding.
The “SINIT" module3 also creates initial page tables for the
STM to access the first 4GB of memory. This allows the STM
to begin in 64 bit paged and protected mode.

(2) The MLE allocates a VMCS that is used only for launching
the STM and issue a VMCLEAR for this VMCS to prepare
it for use. It then issues a VMCALL on a single CPU thread
(“InitializeProtectionVMCALL").

(3) The CPU checks theOpt-In bit of the IA32_SMM_MONITOR_
CTL MSR and locates the STM from the MSEG location spec-
ified in the MSR. If the Opt-In bit is not set, the launch will
not succeed.

(4) The CPU consults the STM header which is located at the
base of the STM binary inMSEG and utilizes this to configure
the STM entry environment. The header specifies the code
offset where the first STM instructions will be found.

Once the first CPU thread enters the STM, it creates an initial
environment to prepare the STM for entry by all CPU threads.
This includes establishing internal data structures and creating
additional page tables, as needed, to address additional memory.
The STM also needs to establish a VMCS for transitions to and
from the MLE.4 The STM must also establish a VMCS for the SMI
handler guest.5

Following the STM’s initial initialization, it is able to service
VMCALLs from theMLE and the SMI handler. Each VMCALL brings
only one CPU thread into the STM and allows other CPU threads
to continue processing. In scenarios where it is desirable to send all
CPU threads into the STM (for example, when establishing a new
protection policy), it is the responsibility of the calling environment
to rendezvous the CPU threads.
3.5 Protection Requests
3.5.1 Resource Protection When the first thread returns from the
STM to the MLE, the MLE may optionally request a list of all re-
sources that the BIOS SMI handler requested access to via the
GetBiosResource VMCALL to the STM. The MLE can then inspect
the list and issue its protection request(s) via the ProtectResource
VMCALL. For the STM to protect a resource, the BIOS must not
have requested access to the resource in the Required Resource list.
Applying protection requests before SMIs are unmasked allows the
STM to enforce the protections before SMI handlers are able to be
active.

The STM uses VTx permission bitmaps as the cornerstone of
its ability to set policies over the set of accesses allowed to the
SMI handler guest. MSR and IO Port protections are accomplished
by configuring the MSR and IO bitmaps, respectively. Memory
and MMIO protections are enabled by configuring the EPT for the
SMI handler guest. The MLE provides the address of host physical
3An authenticated code module (“ACM") used by Intel TXT
4This is termed the “SMI VMCS" in the STM reference implementation as it represents
the inbound path for an SMI.
5This is termed the “SMM" VMCS in the STM reference implementation.

memory pages for the STM to protect. PCI device protections are
accomplished by adjusting the IO Bitmap.

The STM informs the MLE which resources it was able to protect.
After the MLE has completed its protection requests, it performs
a CPU rendezvous and issues the StartStm VMCALL on all CPU
threads which directs the STM to launch its SMI handler guest, turn
SMIs back on and resume operation.
3.5.2 SMRAM Save State Map Protections The MLE can request
the STM to protect the MLE’s and virtual machine’s registers in
the SMRAM Save State Map from being viewed or modified by the
SMI handler via the Protected Domains feature. To accomplish this,
the MLE executes a ManageVmcsDatabase VMCALL to request
the STM to store a VMCS pointer along with one of the following
policy options [12].

(1) “Unprotected": Present all register state to the SMI handler
and do not revert any modifications

(2) “Integrity Protected OUT/IN": Preserves integrity of register
state. It only allows register modifications by the SMI handler
to IO ports listed in the IO Port trap list and EAX.

(3) “Fully Protected OUT/IN": Preserves confidentiality and in-
tegrity of register state. This option only presents minimal
registers to SMI handler and rolls back changes to other
registers.

(4) “Fully Protected": Preserves confidentiality and integrity.
The policy precludes IO IN/OUT operations. No register
modifications by the SMI handler are allowed.

3.6 SMI Processing with an STM
When an STM is present, the STM receives all the CPU threads
following an SMI as shown in Figure 3. The STM receives control
in 64 bit mode with paging enabled. (Figure 1 provides the flow for
the non-STM scenario described in Section 2.1.)

Figure 3: SMI Processing with STM

The STM uses the VMCS associated with each CPU thread to
retrieve and set state for the interrupted host-side context across
all the CPUs instead of the traditional SMRAM Save State Map. The
STM populates the SMRAM Save State Map for each CPU thread
based on their corresponding host-side VMCS. This populated SM-
RAM Save State Map can be accessed by the SMI handler during
its execution. If the VMCS is for one of the Protected Domains
(Section 3.5.2), the registers may be scrubbed based on the policy
before the SMI handler VM gets control and also roll back changes

4

to the Save State Map. At this point, the STM loads the SMI handler
VMCS and is ready to invoke the SMI handler.

The STM sends all the CPU threads in the SMI handler VM. The
STM then assigns only one CPU thread to perform the actual SMI
handler task in the SMI handler VMwhile the other CPU threads are
sent to execute a spinloop in the SMI handler VM until the actual
work CPU thread completes its execution. Once the work thread
finishes its execution, it and the other CPU threads execute the RSM
instruction to VMEXIT from the SMI handler VM into the STM. The
STM returns control to the interrupted context via a VMRESUME
into the MLE or its guests. The STM may also receive VMEXITs
from its SMI handler guest due to the SMI handler accessing IO
Ports, MSRs or memory beyond the usual set of VMEXIT conditions
such as executing exiting CPU instructions among other causes.
3.7 STM Teardown
The MLE can tear itself and its guests down by executing the VMX-
OFF instruction. The STMwill not execute VMXOFF as this must be
done by the MLE. The IA32_SMM_MONITOR_CTL MSR controls
whether SMIs will be unmasked when the MLE executes VMXOFF.
4 Experiment Infrastructure
We deployed the STM on a Minnowboard Turbot dual core with
Silvermont Atom processors system with 2 GB RAM, with Minnow-
Max 1.01 UEFI firmware, the Xen 4.11 hypervisor, and Ubuntu 14.04
with kernel 4.11 for Xen’s Domain 0. TheMinnowboard Turbot is an
open developer platform that allows modification of the firmware
to support the STM. In this section we describe modifications to
enable the STM on this platform. We used publicly-available Xen
code to launch the STM and define security policies.6

4.1 STM enabling and Opt-In
Minnowboard Max’s firmware code is based on an open-source
UEFI EDK-II implementation.7 But this implementation does not
support STM in its entirety. Hence, we first built the STM obtained
from its repository8 in isolation and then compiled EDK-II along
with the newly built STM binary. This process enables adding STM
support to the BIOS when combined with adding the BIOS support
modules from the repository as well.
4.2 STM Launch
The Minnowboard Turbot does not support TXT and hence the
boot process of our setup does not go through the SINIT-based
measurement which would occur with a true TXT-based MLE.

We perform the following steps to launch the STM:
(1) BIOS STM Opt-In: The Valid bit of the SMM_MON_CTL MSR

should be set and Intel VT-x should be enabled.
(2) Allocate a temporary VMCS per logical CPU : The Xen patches

create a temporary VMCS during the initial STM launch
VMCALL. This VMCS is used only for the very first VMCALL
on each CPU.

(3) Initiate InitializeProtection VMCALL on only one logical pro-
cessor: On this VMCALL, the STM initializes the BIOS re-
source list and sets up the environment for running the SMI

6https://github.com/PPerfLab/xen/tree/stm-optin
7https://github.com/tianocore/edk2
8https://github.com/jyao1/STM

handler as its guest. This VMCALL is executed on logical
CPU 0, the BSP.

(4) Execute ProtectResources VMCALL: In the ProtectResourceVM-
CALL, we provide a set of protection policies for the STM to
enforce. We describe these policies in Section 5.

(5) Execute StartStm VMCALL on all the logical CPUs: On this Xen
VMCALL, the STM launches the SMM guest. The VMCALL
for this step must be executed on all the logical CPUs.

(6) Manage VMCS Database VMCALL: This VMCALL allows fine-
grained protection policies over SMI handler access to host-
side CPU register state. This can preclude SMI handlers from
viewing or modifying CPU registers from the interrupted
context.

Each of the above steps are performed only if their previous step
was successfully executed. If any of the step fails then changes are
rolled back and the STM is not enabled [32].

When destroying its VMs, the MLE may remove the correspond-
ing VMCSs from the VMCS Database. To do so, the MLE should
invoke the ManageVmcsDatabase VMCALL with the remove option
and the pointer to the VMCS to be removed. The patches imple-
mented this in Xen when destroying the VM. To teardown the
STM, the Stop STM VMCALL is invoked in vmx_cpu_down before
VMXOFF is issued.
5 STM Protection Evaluation
In order to evaluate the ability of the SMI Transfer Monitor to
protect SMI handlers, we added and removed policies to/from the
STM, and verified the results. To enable these tests we implemented
an evaluation tool, Sandboxed, to trigger SMI handler accesses. In
this section we list the vulnerabilities we address, then describe
Sandboxed, then detail our study results.
5.1 Known Vulnerabilities Tested
Security researchers have demonstrated multiple methods of attack-
ing a running operating system from SMM. One method, Thinkpwn,
demonstrates that a vulnerable SMI handler can be co-opted to exe-
cute attacker-provided code from a pointer in a CPU register [5].
Another example, LightEater, demonstrated SMM’s ability to ex-
tract secrets from the Tails OS [15]. Schiffman, et al. demonstrated
an SMM-based keylogger that intercepted USB events before they
were delivered to the OS kernel [26]. SMMDecoy provides an exam-
ple of an SMM-based USB or PS/2 keyboard injection attack [19].

Some attacks have leveraged improper platform configurations,
for example, improperly allowing SMM’s memory to be compro-
mised by not setting lock bits that protect it [9]. Rutkowska, J.
demonstrated an attack that leveraged CPU cache poisoning to
write into SMRAM memory [34]. Intel later added the SMRR fea-
ture to address this issue [29]. SMM has also been reported to be
potentially vulnerable to Spectre side channel attacks [31]. UEFI
added a SMM Communications Buffer to provide a more secure
method of exchanging data between SMM and non-SMM code. This
can avoid attacks that trick SMI handlers into modifying their own
data improperly or corrupting host memory [36].

STM protection policies are designed to defend against classes
of attacks in which SMI handlers can be coerced to improperly
access host-software resources or maliciously target them. We fo-
cus our evaluation on four previously published vulnerabilities:

5

SMM-installed hypervisor rootkits, ThinkPwn, LightEater, and key-
logger/keyboard injection attacks.
5.2 STM Evaluation Tool: Sandboxed
We created a tool called Sandboxed to test the effectiveness of
the STM policies. Sandboxed has four components: CloneDriver
(SMI handler), SmiGen (Linux kernel module), Harness (Ring 3
application), and HackMe (Linux kernel module). The CloneDriver
takes commands from SmiGen that direct its accesses to memory,
MMIO, MSR and IO ports. The HackMe kernel module provides a
target for the CloneDriver to compromise. It allocates a kernel page
and continuously reads and writes to it. It can also read an MSR
value and poll an IO port like a PS/2 keylogger. We also use HackMe
to check for signs of attack. Figure 4 shows an example of the flow.

Figure 4: Sandboxed Access Flow

The CloneDriver and the SmiGen communicate via commands
specified in registers. The Harness invokes the SmiGen with dif-
ferent commands to test the applied policies with commands con-
structed as per Task specification. SmiGen is the kernel module
that generates the SMI for CloneDriver with specific commands.
This module takes a Task data structure as input. The fields of this
structure and the values that each field can take are detailed in
Table 1.

Table 1: Task Structure

Field Description
Resource Type MSR, IO Port, Memory Region
Resource The name of the resource
Operation Read or write
New Value Value to set to the specified resource

5.3 Protection Against Attacks on Memory
We perform two evaluations for the STM’s memory protection
capabilities.

5.3.1 Hypervisor Rootkit Injection and ThinkPwn-style SMM call
outs The first experiment ensures that the Xen hypervisor address
space is not writable by a malicious SMI handler. Such a handler
could install and launch rootkits if it were able to modify the mem-
ory [20]. While the attacker, in this example, has SMM access and
could run a rootkit from SMM, placing a rootkit in the hypervisor
from SMM allows the rootkit to operate for longer periods of time
without preempting the entire system.

We specified a policy to protect Xen’s kernel address space
from being written and executed by the SMI handler. Thus, we
set the RWXAttribute field of the STM_RSC_MEM_DESC structure to
preclude Write and Execute access.

Task fields set as: [Resource Type: “Memory", Resource: “Vir-
tual address of Xen Memory Page", Operation: “Write", New Value:
“abcdefgh"].

With this STM policy, the CloneDriver was unable to modify
the specified memory page and would thus be unable to install
the rootkit. The same policy helps defend against SMM Callout
attacks such as ThinkPwn, in which SMM code executes non-SMM
code with SMM privileges [23]. We simulated the ThinkPwn attack
with a non-STM BIOS and with Page Table Isolation disabled. On
such a BIOS, the CloneDriver was able to call into an arbitrary
function in the Xen kernel space. However, with the above Xen
kernel memory protection policy with STM, such an attack failed
with STM flagging the attempt as an EPT violation.
5.3.2 Attempting to steal memory secrets from SMM, similar to
Lighteater The second experiment attempts to steal a secret from
the HackMe kernel module’s memory similar to the LightEater
attack [15]. We make a protection request for host memory that
contains the memory page allocated by HackMe and invoke the
Harness with the specified Task. Upon receiving the task via SMI,
the CloneDriver converts the given virtual address to the physical
address of the page and attempts to read it.

Task fields set as: [Resource Type: “Memory", Resource: “Virtual
address of allocated kernel page", Operation: “Read"].

We tested this policy by attempting a read access to the allocated
kernel page. Since, we have specified a kernel page protection policy
as part of ProtectResource VMCALL, the STM initiated a protection
exception indicating the CloneDriver tried to violate a protection
policy.
5.4 Control-based attacks
MSRs can be an important source of information for a malicious SMI
handler. Such a handler could read or write to certainMSRs that may
be used by the host software for effective functioning. For example,
attackers could attempt to hook MSR IA32_SYSENTER_EIP to alter
the control flow [11].

We specified a policy to protect MSR IA32_SYSENTER_EIP. We
set the ReadMask and WriteMask fields of the STM_RSC_MSR_DESC
structure to 0xFFFFFFFF for MSR IA32_SYSENTER_EIP, indicating
the SMI handler is not allowed to read nor write this MSR.

Task fields set as: [Resource Type: “MSR", Resource:
“IA32_SYSENTER_EIP", Operation: “Write", New Value: “0xf"].

To demonstrate MSR protections on an MSR, we tried to modify
the value of IA32_SYSENTER_EIP from the CloneDriver on the
STM-enabled system. We invoke the Harness with the specified
Task fields. When the CloneDriver tries to write to the MSRs, the

6

write was trapped by the STM and the STM generated a resource
protection violation.
5.5 PS/2 keyloggers
SMMDecoy provides an example of an SMM-based USB or PS/2
keyboard injection attack that generates fake user authentication
credentials [19]. If these credentials are later used, the inference is
that the credentials were gathered by a keylogger on the system.
For the PS/2 flow, the flow relies upon writing to IO port 0x60 and
0x64 to inject data into the keyboard buffer.

To defend against this type of attack, we set a resource policy to
intercept writes to 0x60 and 0x64.

Task fields set as: [Resource Type: “IO Port", Resource: “0x64",
Operation: “Write", New Value: “0xf"].

We evaluated the policy on a write to port 0x64. Upon attempting
this write, the STM intercepted the operation and triggered an
exception.
5.6 Discussion
We designed and implemented an evaluation infrastructure, then
used it to show that the STM successfully defended against four
types of SMI handler-based attacks: hypervisor rootkit injection,
memory stealing, MSR-based control attacks, and keyboard attacks.
We note that our experiments implemented and tested each policy
in isolation. However, there may be scenarios in which certain SMI
handlers may need access to a given set of resources while other
SMI handlers should be precluded these accesses. With the STM,
it is also possible to create additional VMs such that independent
protection policies can be applied. More sophisticated scenarios,
for example, only selectively allowing particular accesses based on
an analysis on state, would require additional enabling in the STM.
Direct testing of these scenarios is out of the scope of this paper.
6 Performance
The time spent in SMMneeds to be carefullymanaged as it preempts
all other processing. Intel’s BIOS Bits utility provides a guideline
that warns if SMIs take over 150`s. An empirical bound has been
established by Delgado et al., who showed adverse effects on system
correctness and performance impacts with time spent in SMM
exceeding 1.5ms [7]. As SMI processing time preempts other usages,
carefully managing SMM time becomes important.

To measure the performance impact of the STM, we evaluate the
performance overhead of two SMIs for both STM-disabled and STM-
enabled configurations. Our experiments use the configuration
described in Section 4.

We generated SMIs from the SmiGen kernel module and varied
the value written to port 0xB2 to trigger three SMIs for benchmark
purposes. The set of SMIs on a given system can vary significantly,
therefore we focus on three examples as follows: 1. A “Null” SMI
highlights the impact of the context switches between the host-side,
the STM, and an SMI handler, 2. The ACPI Enable SMI shows the
impact of the STM on an actual SMI, and 3. A SHA hashing example
to provide an example of a workload inside an STM TEE.

We measure the SMI latency as observed by the host software.
We started by recording the time required to enter and exit SMM
on an STM-enabled system.

We first evaluate the “Null SMI" that does not perform mean-
ingful work in SMM, however exercises the full code path through
the STM and the SMI handler before returning to the OS. On the
Minnowboard Turbot dual core the SMI latency was 168.4`s with
the STM disabled and 214.2`s with the STM enabled. Thus, the STM
adds roughly 27.2% to the total SMI processing cost. We then ana-
lyze the performance of the “ACPI Enable" SMI. This SMI handler
performs multiple IO Port reads and writes. Based on our measure-
ments, we observed that the STM added 26.2% to the SMI latency.

To further analyze the STM latency, we leveraged the STM’s
performance gathering capability. We also added tracepoints in
the code path of the Sandboxed tool to evaluate the end-to-end
SMI performance. Figure 5 shows the SMI flow under an STM. We
initiated a 1K memory hash SMI from the Sandboxed tool’s SmiGen
module. Upon receiving this request, the CloneDriver performs a
SHA256 measurement of the specified memory location. Without
the performance gathering capability, this task took 243`s. While
with the capability enabled, the task was completed in 253`s. Thus,
the performance collection added only 10`s to the latency.

The SMI latency results for the Null SMI and ACPI Enable show
that the STM introduces about 27% additional SMI latency. The use
of the STM requires extra transitions through the STM itself as well
as running the SMI handler in a virtual machine. The SMI time
required modestly exceeds the SMI latency guideline on our test
system. The total user impact is a product of time spent in SMM
and the SMI frequency. Although there is no published data on SMI
frequencies, we can assume that with a system with one SMI per
second, the impact would be quite minimal.

Figure 5: SMI flow with STM - Tracing

We leveraged the following SMM performance model as de-
scribed in [8] to analyze the STM latency.

𝑇𝑚 = 𝑇𝑒𝑛𝑡𝑟𝑦 +𝑇𝑤𝑜𝑟𝑘 +𝑇𝑒𝑥𝑖𝑡 (1)

where Tm is the total SMI latency, Tentry is the time to enter the
SMI handler from the kernel driver, Texit is the time to exit from
the SMI handler and return to the kernel driver and Twork is the
time spent in the SMI handler working. From Figure 5,

𝑇𝑒𝑛𝑡𝑟𝑦 = 𝑆𝑀𝐼𝐸𝑛𝑡𝑟𝑦 + 𝑆𝑇𝑀𝐸𝑛𝑡𝑟𝑦 + 𝑆𝑀𝐼ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝐸𝑛𝑡𝑟𝑦 (2)

𝑇𝑒𝑥𝑖𝑡 = 𝑆𝑀𝐼ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝐸𝑥𝑖𝑡 + 𝑆𝑇𝑀𝐸𝑥𝑖𝑡 + 𝑆𝑀𝐼𝐸𝑥𝑖𝑡 (3)
Figure 6 illustrates the amount of time spent in each phase of

transition. STM processing adds only 18.57`s which is only 8% of
the total SMI latency. The maximum time is spent in transition
between the SMM VM and the STM and MLE VM (kernel driver)
and the STM.

7

(a) SMI Latency: Absolute Values (b) SMI Latency: Percentages

Figure 6: SMI Round Trip Time Analysis

7 Related Work
Multiple approaches have been leveraged to improve SMI handler
security. HP SureStart [4] provides a method of analyzing the con-
trol flow of SMI handlers using a co-processor to determine if they
call a function with an unexpected call type signature. The ap-
proach also performs checks over SMBASE and CR3 to determine
if they have unexpectedly changed at runtime. BIOS Guard [22]
restricts which code modules can update the SPI chip which stores
the firmware. This can help protect against injections of malicious
code into the SPI chip but does not address runtime attacks on SMI
handlers.

UEFI Secure Boot provides detection of modified UEFI DXE mod-
ules. These modules execute prior to the operating system boot
loader. Intel Boot Guard extends these detection capabilities earlier
in the reset process by anchoring to hardware, microcode, and the
Boot Guard ACM [22]. Intel TXT provides the ability to measure
and verify the launch of an operating system or hypervisor. It lever-
ages Safer Mode Extensions (SMX) and an ACM to verify the kernel
and initrd [10]. With these capabilities, the platform owner can
determine that the measured files have not been tampered with at
measurement time.

Trusted Execution Environments (TEEs) provide a mechanism
to run code with the ability to maintain confidentiality and in-
tegrity [1]. Intel SGX provides a TEE capability for applications
that runs the trusted portion of an application in an enclave. The
untrusted portion of an application can call trusted functions in the
enclave. The trusted portion can maintain its confidentiality and
integrity against malicious privileged software. AMD SEV provides
confidentiality of a virtual machine’s memory. SEV uses a virtual
machine-specific key to encrypt the memory contents [24]. Arm
CPUs can feature TrustZone which divides execution contexts into
Secure and Non-secure worlds to protect the confidentiality and
integrity of code and data. Execution of the Secure world can be
accomplished via a Secure Monitor Call (SMC). A proposal has
been made to create an SMM-like capability using TrustZone [17].
While TrustZone provides the ability to isolate the Secure world
from the normal world, it does not provide isolation between Se-
cure world code. Arm Secure Partitions adds a virtualization-based
“Secure Partition Manager" to isolate trusted applications in the
Secure world from each other [3]. Keystone provides a TEE for the
Risc V architecture [16]. This approach creates a security monitor
that does not have any resource management tasks, simplifying its

design. Keystone leverages RISC-V’s physical memory protection
(PMP) to safeguard specific memory ranges and establish its secu-
rity monitor. STM PE extends the STM to be a TEE by loading a
hypervisor integrity measurement agent into a VM hosted by the
STM. It also supports loading a temporary codemodule into another
virtual machine of the STM [25]. As these VMs are isolated from a
potentially malicious host-software code and from each other, they
benefit from confidentiality and integrity over their code and data.
The EPA-RIMM tool for runtime integrity measurement leverages
the STM to host a hypervisor integrity measurement agent that
operates even if host software is compromised [8].
8 Conclusions and Future Work
We have provided a detailed description of Intel’s STM architec-
ture. We provided examples of security policies that defend against
specific SMM-based attacks by precluding accesses to platform re-
sources. We find the STM provides fine-grained protections against
SMI handler accesses while introducing latency costs slightly over
Intel’s BIOS Bits [30] guidelines yet within the empirical limit de-
termined by Delgado et al.

The STM also provides a firmware-based TEE capability for Intel
platforms. This capability provides a way to run isolated workloads
away from a potentially malicious hypervisor and other executing
code. As all time spent in SMM comes at the cost of host processing,
these applications needs to be carefully managed. STM protections
and TEE capabilities provide the means for an effective runtime
defense mechanism that can be extended to run applications in an
isolated context. For future work, we plan to evaluate the ability to
apply more fine-grained permissions over SMI handlers by creating
multiple VMs, each with custom STM policies.
References
[1] Ahmed M. Azab and et al. Ning, Peng. 2014. Hypervision Across Worlds: Real-

time Kernel Protection from the ARM TrustZone Secure World. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security
(Scottsdale, Arizona, USA) (CCS ’14). ACM, New York, NY, USA, 90–102. https:
//doi.org/10.1145/2660267.2660350

[2] Ahmed M. Azab, Peng Ning, Zhi Wang, Xuxian Jiang, Xiaolan Zhang, and
Nathan C. Skalsky. 2010. HyperSentry: Enabling Stealthy In-context Measure-
ment of Hypervisor Integrity. In Proceedings of the 17th ACM Conference on
Computer and Communications Security (Chicago, Illinois, USA) (CCS ’10). ACM,
New York, NY, USA, 38–49. https://doi.org/10.1145/1866307.1866313

[3] Sandrine Bailleux. 2018. Secure Partitions. OSFC.
[4] Ronny Chevalier, Maugan Villatel, David Plaquin, and Guillaume Hiet. 2017.

Co-processor-based Behavior Monitoring: Application to the Detection of At-
tacks Against the System Management Mode. In Proceedings of the 33rd Annual
Computer Security Applications Conference (Orlando, FL, USA) (ACSAC 2017).
ACM, New York, NY, USA, 399–411. https://doi.org/10.1145/3134600.3134622

[5] Cr4sh. 2016. Thinkpwn. https://github.com/Cr4sh/ThinkPwn
[6] Al Danial. 2020. CLOC. https://github.com/AlDanial/cloc
[7] Brian Delgado and Karen L. Karavanic. 2013. Performance implications of System

Management Mode. In 2013 IEEE International Symposium on Workload Charac-
terization (IISWC). 163–173. https://doi.org/10.1109/IISWC.2013.6704682

[8] Brian Delgado, Tejaswini Vibhute, John Fastabend, and Karen Karavanic. 2019.
EPA-RIMM: An Efficient, Performance-Aware Runtime Integrity Measurement
Mechanism for Modern Server Platforms. In 2019 49th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN). IEEE, 422–434.

[9] Loıc Duflot, Daniel Etiemble, and Olivier Grumelard. 2006. Using CPU sys-
tem management mode to circumvent operating system security functions.
CanSecWest/core06 (2006).

[10] Jake Edge. 2010. Enabling Intel TXT in Fedora. https://lwn.net/Articles/382077/
[11] Infosec Institute. 2014. Hooking System Calls Through MSRs. (2014). https:

//resources.infosecinstitute.com/hooking-system-calls-msrs
[12] Intel. 2015. SMI Transfer Monitor (STM) User Guide.
[13] Intel. 2020. Intel® 64 and IA-32 Architectures Software Developer’s Manual (Vol.

3).

8

https://doi.org/10.1145/2660267.2660350
https://doi.org/10.1145/2660267.2660350
https://doi.org/10.1145/1866307.1866313
https://doi.org/10.1145/3134600.3134622
https://github.com/Cr4sh/ThinkPwn
https://github.com/AlDanial/cloc
https://doi.org/10.1109/IISWC.2013.6704682
https://lwn.net/Articles/382077/
https://resources.infosecinstitute.com/hooking-system-calls-msrs
https://resources.infosecinstitute.com/hooking-system-calls-msrs

[14] Corey Kallenberg, John Butterworth, Xeno Kovah, and C Cornwell. 2013. Defeat-
ing signed bios enforcement. EkoParty, Buenos Aires (2013).

[15] Corey Kallenberg and Xeno Kovah. 2015. How Many Million BIOSes Would you
Like to Infect? CanSecWest, Vancouver, Canada.

[16] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, and Dawn
Song. 2020. Keystone: An Open Framework for Architecting Trusted Execution
Environments. In Proceedings of the Fifteenth European Conference on Computer
Systems (EuroSys ’20).

[17] Tony Lo. 2016. Tailoring TrustZone as SMM Equivalent. UEFI
PlugFest. http://www.uefi.org/sites/default/files/resources/UEFI_Plugfest_
March_2016_AMI.pdf

[18] John Loucaides and Yuriy Bulygin. 2014. Platform Security Assessment with
CHIPSEC. https://cansecwest.com/slides/2014/Platform.

[19] Ijlal Loutfi. 2019. SMMDecoy: Detecting GPU Keyloggers using Security by
Deception Techniques. In Proceedings of the 5th International Conference on In-
formation Systems Security and Privacy - Volume 1: ICISSP,. INSTICC, SciTePress,
580–587.

[20] Shangcong Luan. 2016. Exploit Two Xen Hypervisor Vulnerabilities. (2016).
BlackHat 2016.

[21] Keith Mannthey. 2009. System Management Interrupt Free Hardware. http:
//linuxplumbersconf.org/2009/slides/Keith-Mannthey-SMIplumers-2009.pdf

[22] Alex Matrosov. 2017. Who Watch BIOS Watchers? https://medium.com/
@matrosov/bypass-intel-boot-guard-cc05edfca3a9

[23] Alex Matrosov, Eugene Rodionov, and Sergey Bratus. 2019. Rootkits and bootkits:
reversing modern malware and next generation threats. No Starch Press.

[24] Saeid Mofrad, Fengwei Zhang, Shiyong Lu, andWeidong Shi. 2018. A Comparison
Study of Intel SGX and AMD Memory Encryption Technology. In Proceedings of
the 7th International Workshop on Hardware and Architectural Support for Security
and Privacy (HASP ’18). ACM, New York, NY, USA.

[25] Eugene D. Myers. 2018. Using the Intel STM for Protected Execution. http://
www.platformsecuritysummit.com/2018/speaker/myers/STMPE2Intelv84a.pdf

[26] Joshua Schiffman and David Kaplan. 2014. The smm rootkit revisited: Fun with
usb. In 2014 Ninth International Conference on Availability, Reliability and Security.
IEEE, 279–286.

[27] TianoCore. 2019. UEFI Variable Runtime Cache. https://github.com/tianocore/
tianocore.github.io/wiki/UEFI-Variable-Runtime-Cache

[28] TianoCore. 2020. 8. SMRAM Overwrite in SmmVariableHandler. https://edk2-
docs.gitbook.io/security-advisory/smram_overwrite_in_smmvariablehandler

[29] TianoCore. 2020. EDK II Secure Code Review Guide. https://edk2-
docs.gitbook.io/edk-ii-secure-code-review-guide/code_review_guidelines_
for_boot_firmware/hardware_input

[30] Josh Triplett and Bert Tripplet. 2011. BITS: BIOS Implementation Test
Suite. http://www.linuxplumbersconf.org/2011/ocw/system/presentations/867/
original/bits.pdf.

[31] Liam Tung. 2018. Ex-Intel security expert: This new Spectre attack can even reveal
firmware secrets. https://www.zdnet.com/article/ex-intel-security-expert-this-
new-spectre-attack-can-even-reveal-firmware-secrets/

[32] Tejaswini Vibhute. 2018. EPA-RIMM-V: Efficient Rootkit Detection for Virtualized
Environment. Master’s thesis. Portland State University.

[33] JiangWang, Angelos Stavrou, , and Anup Ghosh. 2010. HyperCheck: A Hardware-
assisted Integrity Monitor. In Proceedings of the 13th International Conference
on Recent Advances in Intrusion Detection (Ottawa, Ontario, Canada) (RAID’10).
Springer-Verlag, Berlin, Heidelberg, 158–177. http://dl.acm.org/citation.cfm?id=
1894166.1894178

[34] Rafal Wojtczuk and Joanna Rutkowska. 2009. Attacking SMM memory via Intel
CPU cache poisoning. Invisible Things Lab (2009), 16–18.

[35] Jiewen Yao. 2016. [edk2] [PATCH V2 0/6] Enable SMM page level protection..
https://lists.01.org/pipermail/edk2-devel/2016-November/004185.html

[36] Jiewen Yao, Vincent Zimmer, and Star Zeng. 2016. A Tour Beyond BIOS Secure
SMM Communication in the EFI Developer Kit II. Technical Report. Intel.

[37] Fengwei Zhang, Kevin Leach, Kun Sun, and Angelos Stavrou. 2013. SPECTRE:
A Dependable Introspection Framework via System Management Mode. In Pro-
ceedings of the 2013 43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN) (DSN ’13). IEEE Computer Society, Washington, DC,
USA, 1–12. https://doi.org/10.1109/DSN.2013.6575343

Acknowledgments
The material in this paper is based in part upon work supported by
the National Science Foundation under Grant No. 1528185.

9

http://www.uefi.org/sites/default/files/resources/UEFI_Plugfest_March_2016_AMI.pdf
http://www.uefi.org/sites/default/files/resources/UEFI_Plugfest_March_2016_AMI.pdf
https://cansecwest.com/slides/2014/Platform
http://linuxplumbersconf.org/2009/slides/Keith-Mannthey-SMIplumers-2009.pdf
http://linuxplumbersconf.org/2009/slides/Keith-Mannthey-SMIplumers-2009.pdf
https://medium.com/@matrosov/bypass-intel-boot-guard-cc05edfca3a9
https://medium.com/@matrosov/bypass-intel-boot-guard-cc05edfca3a9
http://www.platformsecuritysummit.com/2018/speaker/myers/STMPE2Intelv84a.pdf
http://www.platformsecuritysummit.com/2018/speaker/myers/STMPE2Intelv84a.pdf
https://github.com/tianocore/tianocore.github.io/wiki/UEFI-Variable-Runtime-Cache
https://github.com/tianocore/tianocore.github.io/wiki/UEFI-Variable-Runtime-Cache
https://edk2-docs.gitbook.io/security-advisory/smram_overwrite_in_smmvariablehandler
https://edk2-docs.gitbook.io/security-advisory/smram_overwrite_in_smmvariablehandler
https://edk2-docs.gitbook.io/edk-ii-secure-code-review-guide/code_review_guidelines_for_boot_firmware/hardware_input
https://edk2-docs.gitbook.io/edk-ii-secure-code-review-guide/code_review_guidelines_for_boot_firmware/hardware_input
https://edk2-docs.gitbook.io/edk-ii-secure-code-review-guide/code_review_guidelines_for_boot_firmware/hardware_input
http://www.linuxplumbersconf.org/2011/ocw/system/presentations/867/original/bits.pdf
http://www.linuxplumbersconf.org/2011/ocw/system/presentations/867/original/bits.pdf
https://www.zdnet.com/article/ex-intel-security-expert-this-new-spectre-attack-can-even-reveal-firmware-secrets/
https://www.zdnet.com/article/ex-intel-security-expert-this-new-spectre-attack-can-even-reveal-firmware-secrets/
http://dl.acm.org/citation.cfm?id=1894166.1894178
http://dl.acm.org/citation.cfm?id=1894166.1894178
https://lists.01.org/pipermail/edk2-devel/2016-November/004185.html
https://doi.org/10.1109/DSN.2013.6575343

	Abstract
	1 Introduction
	2 Background
	2.1 System Management Mode Overview
	2.2 Virtualization

	3 STM Architecture
	3.1 STM Overview
	3.2 STM Threat Model
	3.3 STM Provisioning
	3.4 STM Launch
	3.5 Protection Requests
	3.6 SMI Processing with an STM
	3.7 STM Teardown

	4 Experiment Infrastructure
	4.1 STM enabling and Opt-In
	4.2 STM Launch

	5 STM Protection Evaluation
	5.1 Known Vulnerabilities Tested
	5.2 STM Evaluation Tool: Sandboxed
	5.3 Protection Against Attacks on Memory
	5.4 Control-based attacks
	5.5 PS/2 keyloggers
	5.6 Discussion

	6 Performance
	7 Related Work
	8 Conclusions and Future Work
	References
	Acknowledgments

