
ABSTRACT

An abstract of the thesis of Kathryn Marie Mohror for the Master of Science in Com-

puter Science presented November 13, 2003.

Title:  Infrastructure For Performance Tuning MPI Applications

Clusters of workstations are becoming increasingly popular as a low-budget

alternative for supercomputing power. In these systems, message-passing is often used

to allow the separate nodes to act as a single computing machine. Programmers of such

systems face a daunting challenge in understanding the performance bottlenecks of

their applications.  This is largely due to the vast amount of performance data that is

collected, and the time and expertise necessary to use traditional parallel performance

tools to analyze that data.

The goal of this project is to increase the level of performance tool support for

message-passing application programmers on clusters of workstations.  We added sup-

port for LAM/MPI into the existing parallel performance tool, Paradyn. LAM/MPI is a

commonly used, freely-available implementation of the Message Passing Interface

(MPI), and also includes several newer MPI features, such as dynamic process creation.

In addition, we added support for non-shared filesystems into Paradyn and enhanced

the existing support for the MPICH implementation of MPI.  We verified that Paradyn

correctly measures the performance of the majority of LAM/MPI programs on Linux

clusters and show the results of those tests. In addition, we discuss MPI-2 features that

are of interest to parallel performance tool developers and design support for these fea-

tures for Paradyn.



INFRASTRUCTURE FOR PERFORMANCE TUNING MPI APPLICATIONS

by

KATHRYN MARIE MOHROR

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Portland State University

2004



ACKNOWLEDGEMENTS

I thank Dr. Karen L. Karavanic for her guidance, patience, support, and encouragement

at every turn in this endeavour.  Without her, I would not have achieved so much.

I also thank my other committee members, Dr. Bryant York and Dr. David McClure.

Dr. York gave considerable feedack on this work and provided me with inspiration and

direction for future work.  I thank Dr. McClure for his counsel over the years and for

understanding my desire to leave Chemistry and pursue a degree in Computer Science.



TABLE OF CONTENTS

ACKNOWLEDGEMENTS .........................................................................i

LIST OF TABLES .....................................................................................iv

LIST OF FIGURES.....................................................................................v

LIST OF ACRONYMS.............................................................................vii

1  Introduction ............................................................................................1

2  Background ...........................................................................................11

2.1 Clusters of Workstations ...............................................................11

2.2 Message-Passing and the Message Passing Interface (MPI).........14

2.3 MPI-2.............................................................................................18

2.3.1  Process Management ...........................................................19

2.3.2  MPI-I/O ...............................................................................21

2.3.3  Remote Memory Access......................................................24

2.4 MPICH ..........................................................................................27

2.4.1  Overview of MPICH ...........................................................27

2.4.2  The MPICH ch_p4 Device ..................................................29

2.4.3  The MPICH ch_p4mpd Device ...........................................30

2.5 LAM/MPI ......................................................................................32

2.5.1  Overview of LAM/MPI.......................................................33

2.5.2  LAM/MPI Architecture .......................................................36

2.5.3  LAM/MPI Runtime Description..........................................37

3  Paradyn .................................................................................................41

3.1 Background....................................................................................41

3.2 Existing Paradyn Support for MPI on Clusters of

Workstations..................................................................................45

3.2.1  Paradyn and the MPICH ch_p4 Device...............................46

3.2.2  Paradyn and the MPICH ch_p4mpd Device .......................51

3.2.3  Paradyn and LAM/MPI .......................................................56

4  Related Work ........................................................................................60

5  Alterations Made to Paradyn For MPI-1 ..............................................  65

5.1 Alterations Common to Both MPI Implementations.....................65

5.2 Addition of Support for MPICH....................................................66

5.3 Considerations for LAM/MPI .......................................................68

6  Additions to Paradyn for Support of MPI-2 Features ..........................72

6.1 Discussion of MPI-2 Features Important for Performance Tool

Developers.....................................................................................72

6.2 Design for MPI-2 Feature Performance Measurement in

Paradyn ..........................................................................................74

6.2.1  Metric Changes....................................................................74

6.2.2  Hypothesis Hierarchy Changes ...........................................90

6.2.3  Where Axis Changes ...........................................................92

7  Results and Discussion .........................................................................95

7.1 Discussion of Testing Design........................................................95

7.2 Grindstone Test Suite Discussion and Results ..............................97



7.2.1  Explanation of Diagrams and Symbols .............................101

7.2.2  Small-Messages.................................................................102

7.2.3  Big-Message ......................................................................105

7.2.4  Wrong-Way .......................................................................107

7.2.5  Random-Barrier .................................................................110

7.2.6  Intensive-Server.................................................................114

7.2.7  Diffuse-Procedure..............................................................118

7.2.8  System-Time......................................................................122

7.2.9  Hot-Procedure....................................................................122

7.3 A Toy Program Test: ssTwod......................................................124

7.4 Conclusions .................................................................................125

8  Conclusions and Future Work ............................................................126

9  References ..........................................................................................128



LIST OF TABLES

1  MPI-I/O Individual and Collective File Access Operations .................23

2  MPI-I/O Split Collective File Access Operations ................................24

3  Dynamic Process Creation Metrics ......................................................75

4  RMA Metrics for Operation Counts .....................................................76

5  RMA Metrics for Bytes Transferred ....................................................77

6  RMA Metrics for Active Target Synchronization ................................79

7  RMA Metrics for Passive Target Synchronization ..............................79

8  RMA Metrics for Overall Synchronization ..........................................81

9  MPI-I/O Metrics for Operation Counts ................................................82

10  MPI-I/O Metrics for Bytes Transferred ..............................................83

11  MPI-I/O Metrics for Collective Operations Synchronization ............84

12  MPI-I/O Metrics for Non-Collective Operations Synchronization ....86

13  MPI-I/O Metrics for Overall Synchronization ...................................89

14  The Grindstone Communication Bottleneck Program Characteristics 98

15  The Grindstone Computational Bottleneck Program Characteristics 99

16  Grindstone Test Suite Results ..........................................................100



LIST OF FIGURES

1  MPICH ch_p4 Process Startup..............................................................30

2  MPICH ch_p4mpd Process Startup.......................................................31

3  MPICH ch_p4mpd Computation Begins...............................................32

4  LAM/MPI Starting the LAM Daemons ................................................37

5  LAM/MPI Starting the MPI Processes..................................................38

6  LAM/MPI MPI Computation Begins....................................................39

7  The Paradyn Performance Consultant at Program Start........................43

8  The Paradyn Performance Consultant at Program End.........................44

9  Paradyn/MPICH ch_p4 Initial Startup ..................................................47

10  Paradyn/MPICH ch_p4 Starting Remote Paradyn Daemons

and MPI Processes...............................................................................48

11  Paradyn/MPICH ch_p4 Starting the MPICH Application ..................50

12  Paradyn/MPICH ch_p4mpd Initial Startup .........................................52

13  Paradyn/MPICH ch_p4mpd Starting the MPICH Processes...............53

14  Paradyn/MPICH ch_p4mpd Initializing Paradyn Runtime.................55

15  Paradyn/LAM/MPI Starting the MPI Processes..................................57

16  Paradyn/LAM/MPI Intitialization Complete.......................................58

17  Current Paradyn Hypothesis Hierarchy...............................................91

18  Changes to Paradyn’s Hypothesis Hierarchy for MPI-2 Support .......92

19  Changes to Paradyn Resource Hierarchy for MPI-2 ...........................94

20  Paradyn PC Output for Small-Messages ...........................................103

21  Paradyn Histogram Small-Message with LAM/MPI, Server

Process Message Bytes Sent and Received .......................................104

22  Paradyn PC Output for Big-Messages...............................................106

23  Paradyn Histogram Big-Message with LAM/MPI,

Message Bytes Sent and Received ....................................................107

24  Paradyn PC Output for Wrong-Way .................................................108

25  Paradyn Histogram Wrong-Way with LAM/MPI, Message

Bytes Sent and Received ...................................................................109



26  Paradyn PC Output for Random-Barrier ...........................................110

27  Paradyn Histograms Random-Barrier, Inclusive Synchronization

Time...................................................................................................112

28  Jumpshot-3 Statistical Preview for Random-Barrier with LAM/MPI113

29  Paradyn PC Output for Intensive-Server...........................................114

30  Paradyn Histograms Intensive-Server with LAM/MPI, Inclusive

Synchronization Time for a Client Process and Server Process........116

31  Jumpshot-3 Statistical Preview for Intensive-Server with

LAM/MPI ..........................................................................................117

32  Jumpshot-3 Time Lines Window for Intensive-Server with

LAM/MPI ..........................................................................................118

33  Paradyn PC Output for Diffuse-Procedure........................................119

34  Paradyn Histogram Diffuse-Procedure with LAM/MPI,

CPU Inclusive for Three Procedures.................................................120

35  Jumpshot-3 Time Lines Window for Diffuse-Procedure with

LAM/MPI ..........................................................................................121

36  Paradyn PC Output for Hot-Procedure..............................................123

37   Gprof Analysis of Hot-Procedure.....................................................123

38  Paradyn PC Output for ssTwod with LAM/MPI...............................124



LIST OF ACRONYMS

ADI ....................Abstract Device Interface

APART...............Esprit Working Group on Automatic Performance Analysis:

Resources and Tools

ASCI ..................Advanced Simulation and Computing Program

CHAOS..............Cluster High Availability Operating System

GER ...................Guaranteed Envelope Resources

HPC ...................High Performance Computing

LAM ..................Local Area Multicomputer

LLNL.................Lawrence Livermore National Laboratory

MCR ..................Multiprogrammatic Capability Resource

MPD ..................Multi-Purpose Daemons

MPE...................MultiProcessing Environment

MPI ....................Message Passing Interface

NASA ................National Aeronautics and Space Administration

NCSA ................National Center for Supercomputing Applications

PC ......................Performance Consultant

PNNL.................Pacific Northwest National Laboratory

PVM ..................Parallel Virtual Machine

RMA..................Remote Memory Access

RPI.....................Request Progression Interface

SMP ...................Symmetric Multi-Processor

TCP....................Transmission Control Protocol

UDP ...................User Datagram Protocol



1  Introduction

The goal of this thesis is to strengthen the parallel performance tool base for

MPI programmers on Linux clusters. This work is important for several reasons. First

of all, Linux clusters are rapidly gaining popularity as supercomputing platforms. They

are useful for testing software intended for the more expensive and specialized super-

computers, as well as for computing real programs themselves.  Secondly, there is a

significant lack of software tools, including parallel performance tools, to help pro-

grammers on supercomputers complete their work efficiently and correctly.  The scien-

tists dependent upon the results of programs run on these platforms need such tools, so

that they can develop applications more quickly, and spend less time optimizing their

code.  Thirdly, performance tuning MPI applications is important because MPI is com-

monly used to write scientific programs. These programs will continue to be used in

the future because rewriting them in a newer parallel programming paradigm is not

likely to be cost-effective.

This introduction will elaborate on these points by first discussing the history

and status of Linux clusters as supercomputers. Then, it will expound upon the lack of

software tools for such platforms and explain why more work needs to be done in this

area. Following that discussion, the importance of MPI in scientific programming, and

the newer features of MPI that lack performance tool support will be examined.  Last,

the specific goals of this thesis will be outlined and the steps for achieving those goals

will be presented.
1



In 1994, the first cluster of commodity parts was built at NASA’s Goddard

Space Flight Center.  It was the result of price and performance constraints placed on

the scientists there [SSB+99].  Now, less than ten years later, clusters of workstations

running the Linux operating system are gaining serious recognition as some of the fast-

est systems in the world.  In June of 2003, a Linux cluster made with commodity pro-

cessors was ranked as the third fastest system in the world with a peak computing speed

of 11 teraflops, according to the June 2003 Top500 Supercomputer Sites list [Top503].

These systems are quickly losing their reputation as simply a low-cost alternative for

high-performance computing, and are fast becoming the system of choice to fulfill high

performance needs.

A key effort towards the development of supercomputing-caliber Linux clusters

is found in the Department of Energy’s national laboratories.  Publications from

Lawrence Livermore National Laboratory (LLNL) give reasons for moving in this

direction.  “The Linux Project Report” from LLNL argues that the low price/perfor-

mance ratio when using commodity or near-commodity parts, compared to the expense

of purchasing and maintaining proprietary hardware, make Linux clusters more attrac-

tive high-performance alternatives [GD02].  The report also says that the open-source

nature of the operating system is appealing because it can be tailored in-house to meet

the specific needs of high-performance computing (HPC).   A paper outlining the

CHAOS project at LLNL states that another advantage of clusters is overall increased

availability and manageability of the system as compared to proprietary systems

[BGG03].  In a press release in September of 2002, Bill Feiereisen, the leader of Los
2



Alamos’ Computer and Computational Sciences Division, speaking of the Linux clus-

ter called the “Science Appliance,” said:

“Future supercomputers must be cost-effective, efficient and easy to

enhance and scale. Scalable supercomputing systems that run propri-

etary operating systems clearly are a thing of the past. Instead of buying

a complete proprietary computing system, we are looking toward a

future in which a robust set of integrated, open source software tools

enables us to assemble a truly scalable supercomputer from components

that best meet our needs.”  [Dann02]

The cost-effectiveness of these systems is evident when you consider the price

of some of the other supercomputers on the Top500 Supercomputer Sites list.  For

instance, the proprietary Hewlett-Packard system, ASCI Q, housed at Los Alamos

National Laboratory, and ranked second on the June 2003 Top500 list, cost  $215 mil-

lion to build [LANL02]. The fourth ranked supercomputer, ASCI White, a proprietary

system built by IBM and located at LLNL, required a contract of $110 million

[Schw01].  In contrast, the Linux cluster, Multiprogrammatic Capability Resource

(MCR) at LLNL, which ranked third in the June 2003 list, cost under $14 million. The

LLNL 2002 Annual Report states that the MCR cluster, when regarded in terms of

operations per dollar, is number one among its supercomputers [LLNL02].  At Pacific

Northwest National Laboratory (PNNL), the fastest Linux cluster in the world to date

at 11.8 teraflops, and the fastest unclassified supercomputer in the United States, cost

only $24.5 million.  When ranked by peak performance, the PNNL cluster is the fifth

fastest supercomputer in the world [Malo02].

 A contributing factor in lower costs for these systems is the use of the freely-

available, open-source operating system, Linux.  “The Linux Project Report” from
3



LLNL argues several other advantages to using open-source software besides initial

cost.  When using proprietary software, if an error or other trouble is found, the users

must petition the software vendor for fixes.  With open-source software, it is no longer

necessary to make a feature request to an external company, not knowing when, or even

if, it will be implemented. The changes to the software can be made in-house, keeping

the users’ needs in mind.  Also, the use of the same operating system on different

supercomputers means that if operating system modifications can be made portable to

different hardware, the HPC improvements can be freely shared for use on other clus-

ters. The report states that the sharing of open-source software has proved to be benefi-

cial to the Linux Project and also to the Linux cluster community at large [GD02]. The

result of this sharing is the CHAOS Linux distribution, used as the operating system for

clusters at LLNL.

Another factor that determines overall cost of a supercomputer is the ongoing

expense of maintaining the system.  Experiences at LLNL have shown that Linux clus-

ters are generally more available and easier to maintain than their proprietary counter-

parts [BGG03].  Availability in computer systems refers to the amount of time that the

system is ready and accessible to users.  The researchers at LLNL state that because

clusters are made from commodity or near-commodity parts, it is more cost-effective to

keep spares on hand in case of part failure.  Also, the very nature of clusters make the

system independent of individual part failure; the failure of one node in the cluster does

not necessarily affect the running capability of the cluster.  The maintenance of cluster

systems can be simpler than that of proprietary systems.  Researchers at LLNL com-
4



pared some routine tasks performed on the MCR cluster and ASCI White and found

some surprising results.  For instance, a reboot of the MCR cluster took about thirty

minutes, whereas ASCI White took five hours for a reboot. A complete reinstall of the

MCR cluster required about eighty minutes, while the same maintenance operation on

ASCI White lasted about one week [BGG03].

There is a great  need for system software to support programmers of applica-

tions for use on supercomputing systems.  System software is any software that sup-

ports application programs but is not specific to any particular application and typically

includes the operating system, user environment software, development tools, debug-

ging, profiling and monitoring tools, and utility programs.   The National Science

Foundation finds the need for support software for users to be urgent and recommends

that more work be done to develop software tools for supercomputing platforms. They

have found that software tools are necessary for computational researchers to complete

complex and innovative work [NSB03]. The researchers in the Linux Project at LLNL

report that there is a need for system software to support Linux clusters [BGG03].

Baden points out the multitude of difficulties that scientific programmers have on these

types of systems; they must manage shared-memory, parallelism, locality in the appli-

cation, processes, and message-passing. He points out that the lack of software tools to

help with these problems hinders efficient implementations of application programs

[BF00].

 An example of system software for which there is a deficiency on supercom-

puting systems is parallel performance tools. A parallel performance tool is a software
5



tool that helps application programmers understand the performance issues of their

programs. One reason these tools are important is because it is quite difficult to achieve

the peak advertised performance of parallel systems.  In general, the actual perfor-

mance of the system can be orders of magnitude less than its peak advertised perfor-

mance.  According to a communication referenced by Gordon Bell, clusters usually

deliver 5-15% of their peak advertised performance [BG02]. It is likely these numbers

could be improved through performance tuning of applications. Dan Reed, Director of

the NCSA, states that many users view performance optimization as an “unavoidable

evil” because existing performance tools are not intuitive to use [RAD+98]. Reed

expects the need for research in this area will increase as the complexity of the systems

for parallel programming will increase.

Evidence of the need for performance tool research can be found in a recent

study that looked at communication behavior in message-passing programs.  In that

study, the researchers were forced to limit the problem size for one of their experiments

because the trace files generated by the performance tool they were using grew to be

unmanageable in size [VM02]. In another study, the authors pointed out that for only a

48 task run, the binary tracefile that was generated by their performance tool was 225

MB [Vett02]. Reed estimated that instrumentation to record function entry and exits on

a parallel system with hundreds of processors could easily generate a data volume of 10

MB/second [RAD+98]. This issue of problematically large data files generated by per-

formance tools is likely to be more important in the future as supercomputers become

capable of running even more concurrent processes and thus generate even more per-
6



formance data.  Another example of the need for performance tool research is from

Portland State University.  A research project was stalled and could not continue

because there wasn’t an existing performance tool that could fulfill its needs [Kear03].

The goal of the study was to examine the performance differences in two different MPI

implementations on Linux clusters. When it came time to do more detailed analysis so

the researchers could fully explain the performance differences they saw, they were

unable to find a performance tool to help them.  The product of this thesis will allow

that project and other similar projects to continue.

The Message Passing Interface (MPI) emerged as a standard in 1994 as MPI-

1.2 and was widely accepted by the scientific programming community. There are sev-

eral features of MPI that account for its widespread acceptance and use.  One is that

MPI permits efficient implementations of the interface regardless of machine character-

istics. Another selling aspect of MPI is that it allows for MPI programs to be run trans-

parently on heterogeneous systems.  Yet another feature is that the same MPI source

code should be able to run without change on different computing platforms, given that

MPI libraries exist on those platforms.  The interface was attractive to parallel pro-

grammers and was used to build many scientific applications.  Even though there are

new parallel programming paradigms today that are arguably easier for application pro-

grammers to use, such as data parallel languages and parallelizing compilers, the cost

of translating legacy MPI code to a newer paradigm can be prohibitive and would in

some cases require a complete rewrite of the code [BKS+00].  For this reason, it is
7



arguable that performance tuning for MPI applications will continue to be important in

the future.

In 1997, another version of MPI was released that extends the functionality of

the original interface. This version is called MPI-2. Some of the new features this ver-

sion provides for are parallel file access, dynamic process creation, and one-sided com-

munications.  Among the freely-available MPI implementations, complete support for

the MPI-2 Standard has not yet been achieved.  However, the LAM/MPI implementa-

tion supports most of the new standard.  There is little performance tool support for

these new features, likely because the MPI implementations had not yet provided for

them, so there wasn’t much demand.  Interest in performance tuning MPI-2 features

will likely increase as the MPI implementors provide support for the standard.  Appli-

cation programmers may adopt the new features as the performance of their programs

can be increased.  For instance, NASA’s Goddard Space Flight Center reports a 39%

improvement in throughput after replacing MPI-1.2 non-blocking communication with

MPI-2 one-sided communication in a global atmospheric modeling program

[PCL+02].

The goal of this thesis is to strengthen the parallel performance tool base for

MPI programmers on Linux clusters. To achieve our goals, we chose to increase the

level of support for MPI into an existing parallel performance tool, Paradyn

[MCC+95]. The specific contributions of this thesis are: the implementation of support

for the MPI-1 features of LAM/MPI into Paradyn; the implementation of support for

non-shared filesystem clusters into Paradyn; the investigation of items of interest in
8



MPI-2 for parallel performance tool developers; and the design of support for MPI-2

features into Paradyn.

The steps necessary for achieving the thesis contributions were to: understand

Paradyn and LAM/MPI startup procedures; make necessary changes to Paradyn to

accommodate LAM/MPI’s startup needs; verify that existing Paradyn functionality for

MPI-1.2 correctly reports values for LAM/MPI; and identify/design necessary changes

to Paradyn for support of MPI-2 features

The choice was made to use the Paradyn Performance Tool instead of creating a

new tool to serve this purpose for Linux clusters.  Paradyn is an established research

tool with appealing characteristics.  Paradyn is freely available, well-documented, and

relatively easy to use. Paradyn already supported the MPI implementation, MPICH. A

primary feature of Paradyn is its Performance Consultant, which drills down automati-

cally into the user’s program and finds performance bottlenecks. Paradyn also supports

dynamic instrumentation, which is the insertion of performance measurement instruc-

tions into a running program. This dramatically decreases the amount of data that must

be collected over the course of the program and is a convenience feature for the appli-

cation programmer. Paradyn was developed to aid in solving grand challenge problems

and is used as a research tool in national laboratories.

Chapter 2 of this document reviews the background information necessary for

understanding this thesis.  Chapter 3 covers the specifics of the Paradyn Performance

Tool and its initial level of support for message-passing on clusters of workstations.

Chapter 4 is a literature review of related work.  Chapter 5 discusses the preliminary
9



changes that were necessary to make Paradyn operational for message-passing on a

cluster of workstations with a non-shared filesystem and outlines the alterations to

Paradyn that enabled performance measurement of LAM/MPI applications. In Chapter

6, we identify items of interest to performance tool developers in MPI-2 and design

support for MPI-2 for Paradyn.  Chapter 7 shows and examines the results of various

tests of the changes in Paradyn.  In Chapter 8 we conclude and discuss future work.
10



2  Background

This chapter provides some of the background information needed to under-

stand our work.  Section 2.1 gives some basic information about clusters of worksta-

tions and also discusses their advantages and disadvantages.  Next, Section 2.2

describes the parallel programming paradigm, message-passing, and the Message Pass-

ing Interface (MPI).  Section 2.3 outlines the additions to MPI from MPI-2 and

explains some details of a few important features.  Section 2.4 provides background

information about the MPICH implementation of MPI.  Finally, Section 2.5 discusses

the LAM/MPI implementation of MPI.

2.1  Clusters of Workstations

A cluster of workstations is a group of complete computers that are connected

by a communication network and are able to work together as a single unit [HX98].

The computers that make up the cluster are individually known as nodes.  The collec-

tion of nodes are said to make up a loosely-coupled system, in contrast to a tightly-cou-

pled one in which the processors in the system are directly associated with the multiple

memories. In other words, in a tightly-coupled system, the different processors are able

to use high-speed communication mechanisms, such as shared memory.  The intercon-

nects between the processors in tightly-coupled systems are generally proprietary.  In

the loosely-coupled cluster, the processors on different compute nodes must use

another method of communication, such as TCP sockets over Ethernet, which is much

slower than shared-memory communication.  Note that a cluster could be a loosely-
11



coupled collection of nodes, where each node contains multiple processors that are

tightly-coupled.

The appeal of cluster systems is multi-fold, and largely stems from their com-

position of commodity, off-the-shelf parts. In general, commodity parts have very low

price/performance ratios.  For example, we can compare the relative peak compute

speeds and costs of ASCI White, a tightly-coupled supercomputer of proprietary IBM

design, and the MCR Linux cluster, both of which are at Lawrence Livermore National

Laboratory.  The price/performance ratios are $8.93 million/teraflop for ASCI White

versus $1.27 million/teraflop for the MCR cluster.

Another advantage of a cluster of commodity computers is that these types of

systems can be upgraded relatively easily. For instance, because the compute nodes are

made from commodity parts, some of those parts could be replaced with newer compo-

nents.  This type of upgrade was performed at Pacific Northwest National Laboratory

on its Linux cluster, taking its peak compute speed from 6.2 teraflops to 11.8 teraflops

[McMi03].

Yet another appeal of clusters is the ease of providing spares in case a compute

node should fail, adding to the overall increased availability of the system. The idea is

that the cluster is not dependent upon any one node. Upon a particular node’s failure, it

can be replaced or the work load can be redistributed among the remaining compute

nodes.  In contrast to this, if the shared memory of a large symmetric multi-processor

(SMP) fails, the entire system will be brought down.
12



While the advantages of cluster systems are compelling, there are drawbacks

which largely involve the loosely-coupled nature of the systems.  Perhaps the largest

difficulty that arises is how the compute nodes should communicate in order to emulate

a shared-memory environment between the processors on different nodes.  The diffi-

culty lies in making this emulation as efficient as possible to minimize the incurred

overhead.  The common choices for achieving this are to use a software layer to emu-

late distributed shared memory, use remote procedure calls, or use message-passing.

This type of communication is most easily accomplished using a message-passing

model, whereby the nodes share information with each other by passing messages.

Another model, most suited to the object-oriented programming paradigm, is a distrib-

uted object approach.  In this model, different objects in the program would reside on

different nodes of the cluster.  One object would utilize a remote procedure call to

invoke a method of another object on another node, thereby distributing the workload.

The experiments for this thesis were run on the Wyeast Cluster in the High Per-

formance Computing Lab at Portland State University.  Wyeast consists of forty-eight

compute nodes.  Each compute node is a symmetric multi-processor machine com-

prised of two 866 MHz processors.  The nodes each have two Fast Ethernet network

cards and are connected by two identical switches, one for each set of network cards.

This setup could allow traffic to divide across the two networks, potentially doubling

the network speed.  Each compute node has 512 MB of SDRAM.   The operating sys-

tem on each node is Linux RedHat 7.2, kernel version 2.4.7-10smp.
13



2.2  Message-Passing and the Message Passing Interface (MPI)

In the message-passing model, the separation of the address spaces of the pro-

cesses on different compute nodes is plainly visible to the application programmer.

Separate processes are not capable of transparently manipulating or reading each

other’s variables.  The processes must execute explicit send/receive or read/write oper-

ations if the sharing of data is necessary.  The cooperation of all processes involved in

the exchange is required.  The programmer must also resolve any interaction issues,

such as mapping the data across the compute nodes and the synchronization of compu-

tation and communication.

The Message Passing Interface (MPI) is the leading standard for the message-

passing model [SOH+99].  It was designed to be portable to a wide-variety of parallel

computing systems, including clusters of workstations.  Version 1 of this interface,

MPI-1, was released in 1994 and Version 2, MPI-2, was released in 1997 [MPI03].  In

the early 1990’s, before the design of MPI, several message passing libraries had been

developed. Some examples of such libraries are: PVM [GBD+94], P4 [BL94], Chame-

leon [GS93], Zipcode [SSD+94], Express [FK94], and PARMACS [CHH+94].  The

development of MPI was inspired and influenced by these message-passing implemen-

tations. The designers of the MPI Standard sought to preserve the desirable features of

the existing implementations and to avoid the pitfalls uncovered by these earlier works

[SOH+99].

Key goals of the MPI Forum were: to provide a degree of portability across

hardware platforms, to give the ability to run transparently on heterogeneous systems,
14



and to allow efficient implementation on machines with different characteristics

[SOH+99].  The first of these goals means that the same MPI source code should be

able to run on different platforms, given that MPI libraries exist on those platforms.

The second says that a single MPI program should be able to be run across heteroge-

neous systems, or collections of processors with different architectures.  The conver-

sions necessary for the internal representation of datatypes of the system is done

implicitly by the MPI implementation.  The last goal is reflected in that the MPI Stan-

dard does not specify how its communication operations will take place, but simply

defines the semantics of those operations.  This allows implementors of MPI to carry

out the operations in the most efficient way possible for each system. These aims were

reached and are primary factors in the continued popularity of MPI.  Implementations

of MPI exist for nearly all major computer platforms and have language bindings for C,

C++, and Fortran.  These achievements mean that, for the most part, an MPI program

written in one of these languages can be run without change on different platforms.

Implementations of MPI support the Standard to varying degrees.  In this work, we

focus on two freely-available implementations, LAM/MPI and MPICH. In general, the

degree to which the implementation supports the MPI Standard is publicly available.

However, it is possible to attempt to validate a particular implementation with MPI val-

idation suites.  A list of freely-available validation suites can be found on Argonne

National Laboratory’s MPI web page [ANL03].

An MPI program is made up of one or more MPI processes that can run either

on one machine or across multiple machines.  A process in MPI is defined by a
15



(group,rank) pair.  A group refers to a collection of processes that share an intracom-

municator.  An intracommunicator is an identifier that defines the group and is gener-

ally used for communication purposes within the group.  Within each group, or

intracommunicator, each process is assigned a rank.  This rank is an identifier of the

process with respect to the intracommunicator. It is important to note that a process can

belong to more than one group and can thus be defined by more than one (group,rank)

pair. While a (group,rank) pair uniquely defines a process, a process does not define a

unique (group,rank) pair.  An MPI programmer is able to create new intracommunica-

tors at runtime if subdivisions of groups are desired.  It is also possible for two intrac-

ommunicator groups to establish an intercommunicator between them.  Another

possibility allows the merging of the groups sharing the intercommunicator into one

new intracommunicator.  The generic term for an intercommunicator or intracommuni-

cator, when the specific type does not matter, is communicator.

In general, data in MPI programs is exchanged between processes by explicit

send and receive operations. There are several variations of these operations, including

blocking and non-blocking functions.  According to definitions in the MPI specifica-

tion, a blocking send or receive call is one that does not return until the arguments used

in the call can safely be reused.  For the send call, this means that the function could

return even if the matching receive has not actually finished or even received the data; it

merely means that, upon the return of the function, the programmer is free to reuse the

send buffer without fear of corrupting the data that is intended to be sent.  For the

blocking receive call, the function return guarantees that the receive buffer will hold the
16



data that was sent, regardless of whether the matching send operation has completed.

A non-blocking operation in MPI is one that returns immediately, whether or not the

send or receive buffers can safely be reused.  It is up to the MPI programmer to make

sure that the operations have completed with explicit test and wait MPI function calls.

The test calls will inform the programmer as to whether the send or receive has fin-

ished.  The wait calls will block until the operation in question has finished.  While

non-blocking operations could potentially decrease the overhead of communication by

allowing the overlap of computation and communication, their use causes increased

complexity for the MPI programmer.

In MPI, there are point-to-point communications and collective communica-

tions. Point-to-point communication refers to the exchange of data between a pair of

MPI processes.  Point-to-point operations can be blocking or non-blocking.  The send-

ers and receivers of these operations are identified by their rank with respect to a com-

municator. Collective communication refers to the simultaneous exchange of data

between a group of processes that share a communicator. There are many types of col-

lective operations including barrier synchronization across all members of the group,

gathering data from all members of the group to one member, scattering data from one

member to the group, and reduction variations of the scatter and gather methods that

perform an arithmetic operation on the data, such as a sum, max, min, or a user-defined

function. The number of MPI routines for collective communications is quite extensive.
17



2.3  MPI-2

This section describes the MPI-2 additions to MPI.  First, we give an overview

of what is new in MPI-2.  Afterward, we discuss what we consider to be the most

important additions to MPI-2 from the perspective of this work.

The MPI Forum released MPI-1 knowing that they had omitted several topics

important to parallel programming [GHL+98].  Their motive was to release the first

version so that people could start using it, because they knew it was going to take a

while for them to design the rest of it properly. The major additions to MPI from MPI-

2 are dynamic process creation, parallel I/O, and one-sided communication.  MPI-2

also defines thread support for MPI programs, explains the semantics of collective

communication over intercommunicators, and provides methods for establishing com-

munication between non-related MPI processes and applications.  Other contributions

from MPI-2, are mixed language convenience features, standard C++ bindings, recom-

mendations for using MPI with Fortran90, and clarification of ambiguities in the MPI-

1.2 Standard [MPI03].

Another addition to MPI from MPI-2 is the Info object. This object is a param-

eter to many of the new MPI-2 routines.  It is a variable length string of (key,value)

pairs.  The content in the string is MPI implementation and platform dependent.  It is

intended to be a way for the programmer to provide information to an MPI implemena-

tion.  Even though this feature decreases the portability of MPI programs, the Forum

felt the addition was necessary so that the MPI implementations could optimize the

new functionalities of MPI-2.  For instance, the Info argument to the MPI-I/O routines
18



can be used for specify file access patterns to the MPI implementation, so that it can

potentially optimize file manipulation.

2.3.1  Process Management

MPI-1 says that MPI programs consist of a fixed number of processes all started

simultaneously.  In other words, the number of processes in an MPI-1 application is

determined at the beginning of the application and cannot be changed afterward. Some

parallel programmers find this restrictive and desire the ability to dynamically create

and terminate MPI processes at runtime.  In designing the interface for dynamic pro-

cess creation, the MPI Forum sought to maintain the platform independence of the

Standard. To do this, they chose to not address resource control in the interface. Exam-

ples of resource control the Forum did not define were the addition and removal of

nodes in the parallel virtual machine, the reservation and scheduling of resources, and

the return of information about available resources. Fortunately, the Forum was able to

learn about the advantages and pitfalls of dynamic process creation from PVM.  There

were several requirements the Forum sought to uphold in the design of process man-

agement for MPI-2. First, the MPI-2 process model must be valid across different com-

puting platforms.  Second, MPI must not take over operating system responsibilities;

there must be a clean interface between system and application software.  Third, MPI

must guarantee communication determinism; it can’t introduce race conditions.  Last,

MPI-1 programs must work under MPI.
19



The functionality the Forum gave MPI for process management was to: allow

for creation and termination of processes after MPI application has started, permit com-

munication to be established between newly started processes and existing processes

even if they share no parent-child relationship, and provide for communication between

existing, non-related MPI applications.

The ability to dynamically start MPI processes was defined in two functions:

MPI_Comm_spawn and MPI_Comm_spawn_multiple.  Each of these starts a speci-

fied number of processes and returns an intercommunicator for information interchange

between the parent communicator and the child communicator. All children created by

a spawning operation share an intracommunicator. MPI_Comm_spawn_multiple

allows the loading of several different binaries, while MPI_Comm_spawn requires that

all processes be an instance of the same executable.  The spawning operations are

defined to be collective over the parent and child communicators.  This means that all

processes in the parent communicator must call the function, which will not return until

all the child processes have been created and initialized.  This also means that a child

process has a communicator for a parent (i.e. a group of processes).

Given the many different types of parallel computing systems, the MPI Forum

realized that there was not a way to specify where and how the new processes should be

created in a platform independent way.  In order to allow this flexibility in process cre-

ation, they said that an argument to the spawn functions could be used to specify this

information in a platform and MPI implementation dependent way.
20



Another part of the process management features of MPI-2 is the ability to

establish communication between MPI processes that don’t have a parent-child rela-

tionship and between existing, non-related MPI applications.  Some of the difficulties

of this lie in knowing how to contact the other process with no prior established com-

munication.  MPI-2 provides function interfaces for publishing and retrieving contact

information from a name server or other such service: MPI_Publish_name and

MPI_Lookup_name.  The procedures created by the Forum for this functionality are

reminiscent of socket functions: MPI_Open_port, MPI_Close_port,

MPI_Comm_accept, and MPI_Comm_connect.  They also define the ability for two

MPI processes connected on a Berkeley socket to get an intercommunicator with

MPI_Comm_join.

2.3.2  MPI-I/O

Another important addition to MPI-2 is parallel file I/O.  This definition does

not refer to terminal I/O (stdout,stdin,stderr), but to file access.  The Standard does not

specify the library interface to access data, how files can be accessed by non-MPI pro-

grams, how files are organized in directories, what filenames are allowed, file protec-

tion policies, or file storage mechanisms. It was designed to work with a wide range of

existing file systems.  MPI derived datatypes are used to partition a file for use by mul-

tiple processes.  This allows the use of heterogeneous systems to be transparent to the

user.  Again, the use of the Info argument is allowed so that the programmer can give
21



hints to the MPI implementation on how to set up the data file for efficient use. This is

in terms of both file access patterns and I/O hardware.

There are two different types of file pointers in MPI-I/O: shared and individual.

The shared file pointer is common to all processes in the communicator that opened the

file.  The individual file pointer belongs to one specific process only.  This allows for

flexible file access operations.

There are many different functions defined in the MPI-2 interface for file

access. They are varied to allow many efficient access patterns. The opening and clos-

ing of a file are collective operations over a communicator and are defined as

MPI_File_open and MPI_File_close. There are several types of routines for read-

ing and writing in MPI: collective, ordered collective, split collective, individual block-

ing, and individual non-blocking.  Table 1 lists the file access operations that are

collective, ordered collective, or individual.
22



The MPI Forum also defines operations for file access that are split collective.

In other words, a single collective file access operation is split into two function calls: a

begin routine and an end routine.  This essentially allows for collective non-blocking

file access.  After the begin routine returns, the processes can do useful work before

calling the end routine.  The buffers given to the begin routine cannot be used until the

Table 1: MPI-I/O Individual and Collective File Access Operations

Operation File Pointer Collective Blocking

MPI_File_read/
MPI_File_write

Individual No Yes

MPI_File_read_all/
MPI_File_write_all

Individual Yes Yes

MPI_File_read_at/
MPI_File_write_at

Explicit

Offset

No Yes

MPI_File_read_at_all/
MPI_File_write_at_all

Explicit

Offset

Yes Yes

MPI_File_iread/
MPI_file_iwrite

Individual No No

MPI_File_iread_at/
MPI_File_iwrite_at

Explicit

Offset

No No

MPI_File_read_shared/
MPI_File_write_shared

Shared No Yes

MPI_File_iread_shared/
MPI_File_iwrite_shared

Shared No No

MPI_File_read_ordered/
MPI_File_write_ordered

Shared Yes Yes

MPI_File_seek Individual No Yes

MPI_File_seek_shared Shared Yes Yes
23



matching end call completes.  The split collective file access routines are shown in

Table 2.

There are many other operations in MPI-I/O that are not discussed here. There

are several books that discuss this topic in detail [May01, GHL+98, GLT99].

2.3.3  Remote Memory Access

The last major feature of MPI-2 is one-sided communication, or Remote Mem-

ory Access (RMA). This allows the exchange of data between processes in such a way

that only one process needs to specify the sending and receiving parameters.  This is

helpful for programs that may have data access needs that change at runtime.  It saves

all involved processes from having to do computation to discover the new data access

parameters.  Only one process needs to know the parameters and can perform the data

exchange operation on its own.  This form of message passing is achieved by separat-

Table 2: MPI-I/O Split Collective File Access Operations

Operation File Pointer

MPI_File_read_all_begin/
MPI_File_write_all_begin
MPI_File_read_all_end/
MPI_File_write_all_end

Individual

MPI_File_read_at_all_begin/
MPI_File_write_at_all_begin
MPI_File_read_at_all_end/
MPI_File_write_at_all_end

Explicit

Offset

MPI_File_read_ordered_begin/
MPI_File_write_ordered_begin
MPI_File_read_ordered_end/
MPI_File_write_ordered_end

Shared
24



ing the synchronization from the communication.  There are three data exchange oper-

ations: MPI_Put (remote write), MPI_Get (remote read), and MPI_Accumulate

(remote update). There are many synchronization routines that enable the efficient use

of RMA on different computing platforms.  The memory access model is similar to a

weakly coherent memory system [GHL+98]. The correct ordering of accesses to mem-

ory must be enforced by the user with synchronization calls.

There are two types of remote memory operations.  One is active target, which

means that data moves from one process’s memory to the memory of another, and both

processes are explicitly involved in the communication.  This is similar to message

passing except all data transfer information is provided by one process only, and the

second process participates only in synchronization. The other is passive target, which

means that data moves from the memory of one process to the memory of another pro-

cess, and only the origin process is explicitly involved in transfer.  This is similar to a

shared memory model.

Two types of time periods are defined for this model. The first is an access

epoch.  This is the time between synchronization calls when remote memory access is

allowed. This refers to the origin process (the process executing a put or get operation).

The second type is an exposure epoch, which is the time between synchronization calls

when a process’s memory is exposed.  This refers to the target process (the target of a

put or get operation).

The memory exposed or accessed by a process is called a “window.”  Each pro-

cess in the communicator used to create a window specifies the region of memory that
25



they wish to share. The creation of a window is a collective operation over a communi-

cator.  The function MPI_Win_create returns a window object that will be used by

the processes in subsequent RMA operations. When the group of processes is finished

with the window object, they all call MPI_Win_free with the window object as a

parameter. This free operation is collective over all processes in the communicator that

created the window object.

The synchronization operations for the active target model can either involve

the entire group of processes represented by the communicator or a subset of that

group.  There are four functions that are used to coordinate subsets of processes in the

group: MPI_Win_start (start an access epoch), MPI_Win_Complete (ends an access

epoch), MPI_Win_post (starts an exposure epoch), and MPI_Win_wait (ends an

exposure epoch). The function MPI_Win_fence is collective and is used to coordinate

all the processes in the communicator.  The function is called twice, once to open the

window for access/exposure, and again to stop the access/exposure epoch. The second

call to MPI_Win_fence will not return until all memory access functions on that win-

dow have completed.

The passive remote memory model uses MPI_Win_lock and

MPI_Win_unlock to coordinate memory access. These functions can be used to lock

the exposure window on one process without its explicit cooperation.  The  unlock

function will not return until all memory access operations on the specified window

have completed.
26



The last addition to MPI that we discuss is the ability to name MPI objects. The

MPI routines in this feature family allow the user to associate printable identifiers with

MPI objects such as communicators, windows, and datatypes.  This is useful anytime

the programmer needs to receive detailed information about the MPI program: when

debugging, reporting errors, or measuring its performance.  For example, if the pro-

grammer doesn’t name a communicator, then it is given an implementation dependent

identifier, perhaps an integer. If there are many communicators in the program, it is dif-

ficult for the programmer to match the integer identifier to a particular group of pro-

cesses.  However, if the group is identified by a human readable string provided by the

programmer, the matching of process group to communicator object is much simpler.

2.4  MPICH

This section provides information about the MPICH implementation of the MPI

Standard. Section 2.4.1 gives an overview of MPICH. Section 2.4.2 tells how an MPI

application starts with the MPICH ch_p4 device.  Last, Section 2.4.3 explains the

details of starting an application with the MPICH ch_p4mpd device.

2.4.1  Overview of MPICH

The MPICH implementation is developed at Argonne National Laboratory.  It

was first released in May 1994, which was the same year as the MPI standard.  The

MPICH implementors were able to achieve such an early release date by working

closely with the MPI Forum and developing their implementation alongside the devel-

opment of the MPI Standard [GLD+96]. Another reason that the MPICH implementa-
27



tion was quickly released is that it was built on top of existing message-passing

libraries: P4 and Chameleon.  The current version of MPICH fully supports MPI-1.2

and a very little of MPI-2. A beta version of MPICH2 is available, which is the MPI-2

version of MPICH.  This beta version currently supports active-target RMA and

MPI-I/O [MPIC03].

The architecture of MPICH is designed to be portable and to allow for perfor-

mance optimizations on different platforms [GLD+96].  The MPI functions are imple-

mented on top of the Abstract Device Interface (ADI). The ADI is the means by which

MPICH achieves portability and performance.  All MPI functions are implemented in

terms of macros and functions that make up the ADI. There are many implementations

of the ADI in MPICH. One of these is the channel interface. The channel interface can

be very small, and is the quickest way to provide support for a new environment. Only

five functions in the channel interface need to be implemented to support a new system.

The most important channel interface implementation is Chameleon; the “CH” in

MPICH stands for Chameleon.  Chameleon provides portability in terms of macros,

which incur no runtime overhead, because the macros are resolved at compile time

Chameleon macros exist for most vendor message-passing systems, including P4.

An MPICH installation is described in terms of the ADI implementation that it

uses.  There may be more than one ADI implementation, or device, available for a

given system.  For instance, we use both the ch_p4 and ch_p4mpd devices on our clus-

ter.  The ch_p4 device is a P4 implementation.  The MPICH development team consid-

ers the ch_p4 device to be outdated and is in the process of perfecting a replacement for
28



it, the ch_p4mpd device.  The ch_p4mpd device uses Multi-Purpose Daemons to pro-

vide enhanced process management and quick process startup [Thak00].

2.4.2  The MPICH ch_p4 Device

The procedure for starting an MPICH ch_p4 program is relatively simple.  The

mpirun command creates a procgroup file that includes all the nodes that are to partic-

ipate in the computation.  It then launches the first copy of the application, giving the

procgroup file as an argument.  The application runs until it comes to MPI_Init.  At

this point, it analyzes the procgroup file and creates the slaves. If the slave is created on

the same node as the master process, the slave is created using fork.  Otherwise, a

remote shell command is used to start the slave on the remote node.  Each slave is

started with a parameter that tells it that it is a slave process.  It is also given the host-

name of the master node along with the port number on the master node to be used for

communication.  Each of the slaves runs until MPI_Init is encountered.  Figure 1

shows these events.

At this point the slaves parse the command line arguments and communicate

back to the master node.  Port information and any user supplied command line argu-

ments are exchanged.  At the end of MPI_Init, the distinction between master and

slave processes ceases to exist and the computation begins.
29



Figure 1:  MPICH ch_p4 Process Startup
This shows the startup procedure for the MPICH ch_p4 device. The mpirun

process starts the master MPI process, which in turn, starts the slaves.

2.4.3  The MPICH ch_p4mpd Device

The MPICH ch_p4mpd device uses daemon processes to help control the MPI

application. As a result the procedure to start an application with this device is slightly

more complicated. First of all the user must start the mpd daemons on the nodes. The

mpd daemons are connected in a ring.  Then, the user starts the mpirun process which

connects to its local mpd through a unix socket.  These events are shown in Figure 2.

The mpd daemons fork manager processes called mpdman, one for each MPI

process to be started. The mpdman processes are started consecutively around the ring,

beginning at the “next” mpd daemon, unless otherwise specified.  Then, the manager

processes themselves form a communication ring.  These steps are shown in Figure 2.
30



Figure 2:  MPICH ch_p4mpd Process Startup
This shows the first steps in starting an MPICH ch_p4mpd application. The

top figure shows that the mpirun process connects to the mpd daemons. The

bottom figure shows the mpd daemons starting mpdman processes, one for

each MPI process that will be started. The mpdman processes are connected

in a communication ring.
31



The mpdman processes each spawn an MPI process using fork.  The mpirun

process disconnects from the mpd daemon and connects to the first mpdman process.

Stdin from mpirun is redirected to the client of this manager process.  The mpdman

processes intercept standard I/O from the MPI processes and also deliver command line

arguments and environment variables from mpirun to them.  Figure 3 depicts these

events.  After this initialization is finished, the computation begins.

Figure 3:  MPICH ch_p4mpd Computation Begins
The last steps in the startup procedure for MPICH ch_p4mpd programs are

shown here. The mpdman processes spawn the MPI processes. Input and

output from the MPI processes is redirected through the mpdman processes.

2.5  LAM/MPI

This section discusses the LAM/MPI implementation of the MPI Standard.

Section 2.5.1 gives an overview and some history of the implementation. Section 2.5.2

discusses its architecture. Last, Section 2.5.3 describes the LAM runtime environment

and how MPI programs are started with LAM/MPI.
32



2.5.1  Overview of LAM/MPI

LAM/MPI is an implementation of the MPI Standard.  It was originally devel-

oped at the Ohio Supercomputer Center. Later, LAM/MPI became the responsibility of

the Laboratory for Scientific Computing (LSC) at the University of Notre Dame under

the direction of Dr. Andrew Lumsdaine.  In the fall of 200, LAM/MPI moved with Dr.

Lumsdaine to Indiana University and the Open Systems Laboratory, which is where the

project resides today [LTA03].

LAM/MPI is currently in version 7.0 and is freely distributed as an open-source

implementation of the MPI standard.   It is a full implementation of the MPI-1.2 Stan-

dard and a partial implementation of the MPI-2 Standard.  The MPI-2 functionality

supported includes dynamic process creation (MPI_Spawn), MPI Client/Server, one-

sided communication, C++ bindings, and MPI I/O.  LAM/MPI exceeds the MPI Stan-

dard by offering Guaranteed Envelope Resources (GER) [Saph97].  GER is a promise

to the user of  how much buffer space is available for pending communication.  The

MPI Standard makes no mention of such a guarantee.

The are other features of LAM/MPI that make it appealing to parallel program-

mers, especially those working with clusters of workstations. For instance, LAM/MPI

contains hooks that enable specialized debuggers to examine MPI message-passing

queues and the state of programs with respect to MPI communicators.  Supported

debuggers include TotalView (Etnus) and The Distributed Debugging Tool (Streamline

Computing).  Another feature is its support for several different communication trans-

port layers, including Myrinet [Seit01]. LAM/MPI also contains collective algorithms
33



for efficiently utilizing SMP clusters, using network transport to communicate between

processes on different nodes and shared memory to communicate between processes on

the same node. LAM/MPI offers support for heterogeneous clusters of workstations as

well as for Globus [FKN+02] and Interoperable MPI [GHD00], which allow an MPI

application to span clusters of clusters which may have heterogeneous hardware as well

as heterogeneous MPI environments.

The acronym LAM stands for Local Area Multicomputer.  LAM is based upon

the Trollius project from the Ohio Supercomputer Center [SLG+00].  The goals of the

Trollius project were to provide support for general process management and commu-

nication (process to process message passing) in a multicomputer, while striving to pro-

vide portability across topologies and hardware [Burn99]. LAM/MPI is built upon the

LAM that grew from the Trollius project. The LAM layer is independent of MPI. For

instance, PVM was implemented on top of LAM [BDV94].

The LAM layer is evident in the LAM/MPI implementation as the lamd dae-

mon.  An instance of this daemon runs on every node in the multicomputer.  This dae-

mon adds functionality for process monitoring and debugging.  It is possible to take

snapshots of the progress and states of the processes in the MPI application with infor-

mation gathered by the lamd daemons.  They also lend fault tolerance by “shrinking”

the multicomputer as nodes fail and have the capability of  “growing” the multicom-

puter as nodes are added.  It has been argued that the existence of the lamd daemon

makes LAM/MPI the choice MPI implementation for development and debugging of

applications [Saph97].
34



Communication between processes in the multicomputer can happen one of two

ways. The communications can either be routed through the lamd daemon or they can

go directly to the target process.  When the messages are passed through the lamd dae-

mons, process monitoring and debugging is enabled. However, this mode is not recom-

mended for most production environments as the indirection may lead to added

communication overhead.  The other mode of communication, called client-to-client

(c2c), is deemed to be more efficient. However, its implementation is not portable and

would likely require modification of the LAM/MPI code to accommodate a new sys-

tem.  The c2c mode uses TCP as its default protocol.  The TCP sockets are connected

between processes at initialization and are kept open for the duration of the application

to avoid the overhead of reconnecting the sockets [LT00].  The user of LAM/MPI can

switch between these two message-passing modes at application startup via a command

line argument.  LAM/MPI does not need to be recompiled for the switch.  In this way,

LAM/MPI gives the user an opportunity to use support for process management and

debugging with a platform independent implementation, as well as a means for efficient

communication that can be tailored for speed on the target system.

LAM/MPI has been proclaimed by some to be the “clear choice” for MPI appli-

cations on Beowulf clusters [ASQ99].  Several studies have shown that LAM/MPI out-

performs MPICH on clusters of workstations when running in c2c mode

[ASQ99,Nevi96,OF00].
35



2.5.2  LAM/MPI Architecture

The architecture of LAM/MPI is layered.  The upper stratum is the MPI layer,

which is portable and completely separate of the actual means of communication

[LT00].  This upper layer uses the Request Progression Interface (RPI) to access the

machine and protocol dependent lower layer, the Trollius core. The RPI is responsible

for all communication between the MPI ranks.  All MPI communication functionality

is implemented in this interface by ten primitives [LT00].  Messages are viewed as

“requests” by the RPI.  The state of the request progresses from start to active to done

as the message is processed.

There are two versions of the RPI, LAMD-RPI and C2C-RPI.  These corre-

spond to the communication modes mentioned earlier, either through the lamd daemon

or client-to-client.    The LAMD-RPI is portable and provides for process monitoring

and debugging. It uses UDP for message passing, implementing its own time-out and

retransmission policy [CLMR99]. The C2C-RPI, on the other hand, is not portable, but

provides a means for more efficient message passing.  The C2C-RPI has three flavors:

tcp, sysv, and usysv. The user is able to choose between these communication methods

via a command line argument to mpirun at runtime.  In tcp, the ranks communicate

solely through TCP sockets.  The sysv choice uses TCP sockets to send messages to

ranks that are on different nodes, but uses shared memory to do so to ranks on the same

node. This method uses SYSV semaphores for locking the shared memory. The usysv

mode is the same as sysv, but uses spin-locks to protect shared memory.  In C2C-RPI,
36



the TCP connections are made at initialization time (MPI_Init) and are kept open for

the duration of the application.

2.5.3  LAM/MPI Runtime Description

The LAM environment must be established before any MPI programs can be

run.  The LAM environment is started by issuing the lamboot command.  This com-

mand takes a text file listing of machine names and from it forms a multicomputer.  It

does this by invoking the hboot command on the remote nodes. This attempts to start

a lamd process on each machine in the multicomputer.  These events are depicted in

Figure 4.

Figure 4:  LAM/MPI Starting the LAM Daemons
This figure shows the steps for starting the LAM environment. The user

invokes the lamboot command, which starts hboot on each node. The

hboot processes each start a LAM daemon.
37



Then each node communicates a dynamic port back to the lamboot process.

The lamboot process collects each of these ports, then sends the list of ports, along with

the respective hostnames, out to each node in the configuration file.  If a machine fails

to respond to the lamboot process (i.e. fails to send back its dynamic port) within a cer-

tain time limit, lamboot uses the wipe command to terminate the LAM environment

and reports the error.

In order to run MPI processes under LAM, the user must invoke the mpirun

command with the appropriate arguments.  The mpirun process establishes itself with

the local lamd process, setting up a unix domain socket for communication with the

lamd daemon. The arguments given to mpirun are used to set up the MPI application’s

Figure 5:  LAM/MPI Starting the MPI Processes
The mpirun process instructs the LAM daemons to start the MPI processes.

environment. Once mpirun has parsed and processed all the arguments, a data structure

representation of the MPI application’s environment is made. Using this data structure,
38



the mpirun process contacts its local lamd daemon, giving it the name of each execut-

able that is to be part of the MPI application, the node on which the executable should

be run, and any necessary arguments for that executable.  Figure 5 shows these steps.

The lamd daemon local to the mpirun process sends messages to the lamd dae-

mons on the other nodes informing them of the executables they should start and any

runtime information they might need.  After the remote MPI processes are started, the

remote lamd daemons return the process identifiers for the newly started executables.

If there were any unsuccessful attempts to start the executables, the entire MPI applica-

tion is terminated and an error is returned to the user.  After the MPI processes have

been started, mpirun is able to gather information about all the processes in the MPI

Figure 6:  LAM/MPI MPI Computation Begins
Information about all the processes in the MPI application is distributed to all

the LAM daemons.
39



application. The mpirun process instructs its local lamd daemon to distribute this infor-

mation to the remote lamd daemons. This information will be provided to the MPI pro-

cesses when necessary.  Figure 6 depicts these events.

The mpirun process waits on the termination of all processes in the MPI appli-

cation before it exits. If any of the processes die with an error the mpirun process kills

the entire MPI application and reports the error.
40



3  Paradyn

This chapter will discuss the Paradyn Parallel Performance Tool.  Section 3.1

begins by giving background information about Paradyn.  Section 3.2 outlines the

existing level of support Paradyn had for MPI before our changes.

3.1  Background

In this section, we discuss the most relevant aspects of the Paradyn Parallel Per-

formance Tool.  For more complete information, the reader is invited to explore the

Paradyn User’s Guide [PG03].

Paradyn is an automated parallel performance tool developed at the University

of Wisconsin. Paradyn was chosen for this project because of its ease of use, appealing

features, and existing support for MPICH.  Paradyn is freely available and well-docu-

mented. Paradyn was developed to aid in solving grand challenge problems and is used

as a research tool in national laboratories.

Paradyn employs dynamic instrumentation to insert performance measurement

instructions into programs at runtime.   This method is more convenient for the user

than is found with traditional performance measurement tools. The user does not need

to insert the instructions on his/her own or recompile the code whenever performance

measurement is desired.  Dynamic instrumentation also allows for the reduction in the

amount of performance data that must be collected from the parallel application, as the

decision on what to instrument can be made dynamically. This allows performance

measurement instructions to be removed from “uninteresting” code segments at run
41



time.  The reduction in performance data is significant when one considers that data

must be collected from every process in the application, possibly a very large number.

The ability to change what performance measurements are taken at runtime is a conve-

nience feature for the application programmer.

Paradyn is a profiling tool, which means that it collects summary information

about program runs, such as execution times and the number of calls.  This aggregate

data is typically used to characterize program behavior and find where a program is

spending most of its time. A profiling tool can be contrasted with a tracing tool, which

records information about significant events in the execution of a program in such a

way that the events can be reconstructed later.  A tracing tool generally provides more

detailed information about program execution than does a profiling tool.  However,

tracing tools tend to generate large data files due to the volume of information that they

collect.  Dan Reed, Director of the NCSA, estimated that a tracing tool that records

function entry and exits on a parallel system with hundreds of processors could easily

generate a data volume of 10 MB/second [RAD+98].  Paradyn is scalable in that the

profile data it collects is kept in a pre-set amount of memory. If Paradyn collects more

data than will fit in the allocated memory, it aggregates the data that it has already col-

lect into a smaller space and then continues to collect data into the newly freed space.

Paradyn automatically detects performance bottlenecks for the user with its Per-

formance Consultant (PC). The PC starts by investigating several common metrics at a

high level in the program. If any appear to be bottlenecks, the PC investigates them fur-

ther. The results of this search are displayed at runtime in the Performance Consultant
42



window.  Figure 7 shows the Performance Consultant window before the bottleneck

search begins. We see that the three top-level hypotheses, ExcessiveSyncWaitingTime,

ExcessiveIOBlockingTime, and CPUBound, are all green, which means their values

are unknown.

Figure 7:  The Paradyn Performance Consultant at Program Start
This figure shows the Performance Consultant window before program execution begins. The

test results of the three top-level hypotheses are unknown.

In Figure 8, the Performance Consultant window display for the program’s end

is shown.  Here we see that the top-level hypothesis CPUBound has tested true, so the

box representing it has turned blue.  We also see that the Performance Consultant has
43



drilled down into the user’s program to find the performance bottleneck.  Now that it

has established what the problem is, it now needs to find where the problem exists.

Figure 8:  The Paradyn Performance Consultant at Program End
This figure shows the Performance Consultant window after the Performance Consultant has

finished its analysis. It has found the program to be CPUBound and the bottleneck location to

be the function bottleneckProcedure, so its box is blue. It has also correctly determined

that the other procedures are not bottlenecks for this program, so their boxes are pink.

We see that the PC has investigated two locations for the bottleneck: Machine

and Code. In this simple example, there is only one machine used for the program, tig-

ger.cs.pdx.edu.  The Performance Consultant has determined that the bottleneck exists

on this machine and has refined further to search the Process locations.  This example

only has one process and it has tested true for being a bottleneck location.  Then, we
44



see that the search has continued from Process to Code.  There, the Performance Con-

sultant determined that the functions main and bottleneckProcedure are locations

where the program is CPU bound.  The Performance Consultant also discovered that

the other functions in the program, named irrelevantProcedureX are not CPU

bound, so their boxes are pink, for false. Similarly, for the top-level hypothesis CPUB-

ound, the search in the Code hierarchy continued. The Performance Consultant drilled

down to find than main and bottleneckProcedurewere computational bottlenecks.

Then, it searched Machine locations, and found tigger.cs.pdx.edu to be the location of a

bottleneck.  Next, it searched Process locations and determined that the process hot-

procedure is CPU bound. Note that the text in this box is in italics. This indicates that

it is a shadow node, or a copy of the other node representative of the same process, and

will not be refined further.

3.2  Existing Paradyn Support for MPI on Clusters of Workstations

When we started this project, Paradyn did not support clusters with a non-

shared file system. We were unable to start any MPI programs that used multiple nodes

without this support.  Also, it did not measure certain metrics, such as number of mes-

sages, or message bytes sent and received, for MPICH programs written in C/C++ on

our system. Paradyn did have some support for the MPICH ch_p4mpd device. MPICH

ch_p4mpd programs could be started and run with Paradyn. However, some important

command line arguments for mpirun were not supported, such as -m and -wdir, which

allow the user to specify a machinefile and a working directory, respectively.  The
45



MPICH ch_p4 device was not supported by Paradyn on our system.  We discovered a

bug in Paradyn that precluded us from running any ch_p4 programs. Paradyn did start

and run LAM/MPI programs.  However, it only supported the -np argument to

mpirun.  Given LAM/MPI’s extensive and flexible arguments to mpirun, this was

quite limiting.  Paradyn did not support multiple executables in an MPI program.

3.2.1  Paradyn and the MPICH ch_p4 Device

Here we explain the startup procedure for MPICH ch_p4 programs under Para-

dyn.  In order to run an MPICH ch_p4 program under Paradyn, the user invokes the

Paradyn frontend.  On the Paradyn user interface, the user specifies several parameters

such as working directory,  host of the master MPICH program, and the mpirun com-

mand itself. If the master MPICH process is to be run on the localhost, Paradyn spawns

the mpirun process using fork.  Otherwise, Paradyn uses a remote shell command to

start mpirun on another host.  Instead of telling mpirun to start the MPICH program

that the user specified, Paradyn tells mpirun to start a script that was generated by Para-

dyn, which is represented by pdd-scr in Figure 9.  Thus, the mpirun process starts the

Paradyn script.  The script contains commands to start a Paradyn daemon.  The argu-

ments to the Paradyn daemon startup command inform the Paradyn daemon of the

MPICH program that the user specified.   Next, the Paradyn daemon opens up a com-

munication socket with the Paradyn frontend.  This chain of events is illustrated in the

first box of Figure 9, below.  In the diagram, the squares represent compute nodes and

the ovals represent running processes on the compute nodes.  The arrows symbolize a
46



parent-child relationship between the processes.  The solid line depicts a communica-

tion socket.

Figure 9:  Paradyn/MPICH ch_p4 Initial Startup
This figure shows the initial process startup for Paradyn and the MPICH

ch_p4 device. We see that the paradyn process starts mpirun, which, in turn,

runs a script that starts a Paradyn daemon. Then, the Paradyn daemon starts

the master MPICH process, stops in it main and reports to the Paradyn fron-

tend that it is ready. At this point, the Paradyn frontend displays the “Run”

button to the user.

The Paradyn daemon then forks the master MPICH process. A communication

pipe is established between the MPICH process and the Paradyn daemon. The MPICH

process is stopped in the beginning of main. The Paradyn daemon communicates back

to the frontend that it is ready.  The second box in Figure 9 shows these steps.  In this

diagram, a thicker arrow is used to portray communication over a socket.  The thin

arrow still represents a parent-child relationship between processes, and the dotted

arrow shows control of the MPICH program by Paradyn.

At this point the “Run” button on the Paradyn user interface is enabled.  Once

the user clicks on the “Run” button, the Paradyn frontend communicates to the Paradyn

daemon that it can proceed.  The Paradyn daemon continues the master MPICH pro-

cess.  The master MPICH process is responsible for starting the other MPICH pro-
47



Figure 10:  Paradyn/MPICH ch_p4 Starting Remote Para-
dyn Daemons and MPI Processes
The top figure shows what happens after the user hits the “Run” button on the

Paradyn user interface. The Paradyn frontend instructs the daemon to run the

process. The master MPICH process then starts Paradyn generated scripts.

These scripts execute Paradyn daemons. In the bottom figure we see that the

Paradyn daemons on the remote nodes start the MPI processes and then stop

them in main.  They report to the Paradyn frontend that they are ready.
48



cesses that make up the parallel application.  However, the master MPICH process is

told that it is supposed to start the Paradyn generated script.  As a result, a script is

started on each node, which in turn starts a Paradyn daemon.  The top diagram in Fig-

ure 10 shows this series of events.  Note that in this diagram, the thin arrows that span

two compute nodes do not represent a parent-child relationship between processes, but

depict a remote shell command to start those processes.

Communication sockets are opened between each Paradyn daemon and the

Paradyn frontend.  Each of these Paradyn daemons forks at least one MPICH process

and possibly more, depending upon user specifications in the command line arguments

to mpirun.  The slave MPICH processes are stopped in main.  The Paradyn daemons

communicate back to the frontend that they are ready.  This is illustrated in the bottom

diagram of Figure 10.

The Paradyn frontend communicates to the daemons that they can proceed. As

a result, the daemons continue the MPICH processes, as seen in the top diagram of Fig-

ure 11.

At this point, internal MPICH initialization is done, such as the exchange of

hostnames and port numbers between each of the slave MPICH processes and the mas-

ter MPICH process. When initialization is complete, the program exits MPI_Init and

begins to execute the user’s code.  The bottom diagram of Figure 11 shows these

events. The bidirectional dotted arrows represent the exchange of information between

the MPICH processes.  The dotted lines are used to symbolize that the MPICH pro-

cesses are running under the control of the Paradyn daemons.
49



Figure 11:  Paradyn/MPICH ch_p4 Starting the MPICH
Application
The top figure shows that the Paradyn frontend instructs the daemons to start

the MPI processes. The bottom diagram shows the exchange of information

between the MPI processes during MPI_Init. The processes are still under

the control of the Paradyn daemons.
50



3.2.2  Paradyn and the MPICH ch_p4mpd Device

Here we discuss the startup procedure for the MPICH ch_p4mpd device under

Paradyn.  On the surface, running MPICH using the mpd daemons with Paradyn is the

same as running with the non-daemon form of MPICH. The user still specifies startup

parameters on the Paradyn user interface, such as working directory, host of the master

MPICH program, and the mpirun command.  However, behind the scenes, the situa-

tion is much different. In the first place, the user must make sure that the mpd daemons

are running before invoking the mpirun command.  An mpd daemon must be running

on every node that is to be a part of the MPICH application.  These daemons are con-

nected in a ring as seen in the top diagram of Figure 12.

After the mpd daemons are started, the user invokes Paradyn.  Paradyn begins

by forking the mpirun process if it is to be started on the same node, or by executing a

remote shell command if it is to be started on a different node.  As in the case with the

MPICH ch_p4 device, Paradyn tells mpirun that the executable to be started is the Para-

dyn generated script that will start the Paradyn daemons. The mpirun process then con-

nects to the mpd daemons and informs them to start the script.  The dotted arrows

between the mpd daemons in the top diagram of Figure 12 demonstrate their ring of

communication.  The solid arrow from the Paradyn frontend to the mpirun process

denotes a parent-child relationship, and the dashed line between the mpirun process

and the mpd daemon shows a communication connection.
51



Figure 12:  Paradyn/MPICH ch_p4mpd Initial Startup
The top figure shows the first steps in starting an MPICH ch_p4mpd program

with Paradyn. First, the user sets up the mpd daemons. Then the user invokes

Paradyn, giving it the mpirun command to start the MPI program. Paradyn

starts mpirun, which connects to its local mpd daemon. The bottom diagram

shows that the mpd daemons have launched mpdman processes, one for each

MPI process.  The mpdman processes each start a Paradyn generated script.
52



The mpd daemons then fork manager processes called mpdman. One mpdman

process is forked for each instance of the MPICH program that will make up the appli-

cation.  The manager processes are forked consecutively around the ring, starting with

the “next” node from the one on which the mpirun process was started, wrapping

around the ring if necessary.  The manager processes form a communication ring

among themselves.  Each manager then starts an instance of the Paradyn generated

script. This series of events is portrayed in the bottom diagram of Figure 12. In the fig-

ure, the situation where more than one MPI process is to be started on a node is shown

in the upper right node, where two mpdman processes are forked.  The dotted arrows

between the mpdman processes shows their communication ring.

Figure 13:  Paradyn/MPICH ch_p4mpd Starting the
MPICH Processes
Each Paradyn script starts a Paradyn daemon. Each Paradyn daemon starts an

MPI process.
53



At this point the mpirun process disconnects from the mpd daemon and con-

nects to the first mpdman process that was started.  This mpdman process is the man-

ager of the master MPICH process.  Each instance of the Paradyn generated script

starts a Paradyn daemon.  These daemons then open up communication sockets with

the Paradyn frontend.  The Paradyn daemons then fork the slave MPICH processes.

These events are illustrated in Figure 13.  The solid lines between the mpdman pro-

cesses and the mpd daemons show open communication between them. The solid lines

between the Paradyn daemons and the Paradyn frontend represent sockets for commu-

nication.

A communication pipe is established between the MPI processes and their par-

ent Paradyn daemons. The MPI processes are stopped in main. The Paradyn daemons

communicate to the Paradyn frontend that they are ready. In the top diagram of Figure

14, the dotted arrows between the Paradyn daemons and the MPI processes indicate

Paradyn control of the MPI processes.

At this point, the “Run” button in the Paradyn user interface is enabled.  When

the user clicks on it, the Paradyn frontend instructs the Paradyn daemons to continue

the MPI processes. The MPI processes are instructed to continue and begin to execute.

Communication between the MPI processes is managed by the mpdman processes.

The bottom diagram of Figure 14 depicts this series of events.
54



Figure 14: Paradyn/MPICH ch_p4mpd Initializing Paradyn
Runtime
The top figure shows that the Paradyn daemons stop the MPI processes in

main. They report back to the Paradyn frontend that they are ready. Then,

the Paradyn frontend enables the “Run” button on the user interface. The bot-

tom diagram show that when the user presses the “Run” button, the Paradyn

frontend instructs the Paradyn daemons to continue the MPI processes.
55



3.2.3  Paradyn and LAM/MPI

The steps for Paradyn startup of LAM/MPI programs is similar to the startup of

MPICH ch_p4mpd programs by Paradyn. The LAM environment is started by the user

as described in Section 2.5.3.  The end result of this is that there is a lamd process on

every node in the LAM environment.  The user invokes Paradyn, giving it the mpirun

command to start the MPI program. Paradyn forks the mpirun process, substituting the

executable argument given by the user for a Paradyn generated script, represented by

pdd-scr in the top diagram of Figure 15.  The script contains commands to start a Para-

dyn daemon. The arguments to the Paradyn daemon startup command inform the Para-

dyn daemon of the MPICH program that the user specified.  The mpirun process

instructs the LAM daemons to start the Paradyn script on the nodes.  This series of

events is depicted in the top diagram of Figure 15. The dark solid arrows in this Figure

represent communication over sockets.  The lighter arrows represent a parent-child

relationship.

The Paradyn scripts  then execute Paradyn daemons, instructing them to start

the MPI processes that the user specified.   The Paradyn daemons establish communi-

cation sockets with the Paradyn frontend. Then, the Paradyn daemons fork the MPI

processes.  This series of events is shown in the bottom diagram of Figure 15.  The

darker solid lines depict communication sockets.  The light arrows represent parent-

child relationships between processes.
56



Figure 15:  Paradyn/LAM/MPI Starting the MPI Processes
The top diagram shows the initial steps for starting a LAM/MPI program with

Paradyn. The user first sets up the LAM session, then invokes Paradyn, giv-

ing it the mpirun command. Paradyn tells mpirun to start a Paradyn gener-

ated script instead. Because of this, the LAM daemons launch this script.

The bottom diagram shows that the Paradyn generated scripts execute the

Paradyn daemons.  Then, each of these daemons starts an MPI process.
57



Figure 16:  Paradyn/LAM/MPI Intitialization Complete
The top diagram shows that the Paradyn daemons stop the MPI processes in

main. Then they report back to the Paradyn frontend that they are ready.

The Paradyn user interface enables the “Run” button. The bottom diagram

shows that after the user hits the “Run” button, the Paradyn frontend instructs

the Paradyn daemons to continue the MPI processes.
58



A communication pipe is established between the MPI processes and the para-

dyn daemons. The MPI processes are told to stop. At this point, the Paradyn daemons

communicate to the Paradyn frontend that they are ready.  The dotted arrows between

the Paradyn daemons and the MPI processes indicate Paradyn control of the MPI pro-

cesses.  After receiving the message that the daemons are ready, the Paradyn frontend

enables the “Run” button user interface.  The top diagram of Figure 16 shows these

events.

 When the user hits the “Run” button, this causes the Paradyn frontend to tell

the Paradyn daemons to continue the MPI processes.  The MPI processes establish

themselves with the LAM daemons in MPI_Init. When initialization is complete, the

program returns from MPI_Init and begins to execute the user’s code, as shown in the

bottom diagram of Figure 16.
59



4  Related Work

There are several options available to MPI programmers when faced

with the task of optimizing the performance of their programs. In general, there

are two types of applications to help: debuggers and performance tools. Debug-

gers allow the programmer to capture the state of their program at a specific

time, while performance tools usually provide measurements of performance

aspects of the program execution.

Some debuggers designed specifically for message-passing are Total-

View [ELLC03], MQM (Message Queue Manager) [PTC03], and Panorama

[MB93]. These products provide the capabilities of examining message queues

at particular points in time, as well as stepping through sections of code. While

these are useful for determining performance problems, it can be tedious to find

the information in this manner, mainly due to the large number of tasks.

Most parallel performance tools are of the post-mortem viewers of trace

data.  Generally, a static visualization of the data is provided to help the pro-

grammer more easily understand the performance of the program. Tools of the

post-mortem variety include Jumpshot [ZLGW99], Vampir [NAW+96], Para-

Graph [HF93],and AIMS [Yan94].  Post-mortem viewers do not provide the

flexibility of a tool like Paradyn that uses dynamic instrumentation.  The deci-

sion on what to measure must be made before the program starts and cannot be

changed during execution as it can with Paradyn.  This limits optimizations for

the amount of performance data that must be collected, and also is not as conve-
60



nient for the user. The user has to re-run the program to alter what performance

data is being collected. Jumpshot and Vampir are viewers of static post-mortem

data.  Some post-mortem tools also provide an animation of trace data.  Exam-

ples are ParaGraph and AIMS. Because these tools use trace data, they are able

to gather very detailed information about program execution. However, collect-

ing such detailed data increases the possibility of generating unmanageably

large trace files.

Another post-mortem performance viewer is mpiP, developed at

Lawrence Livermore National Laboratory [VM01].  It is a profiling tool as

opposed to a tracing tool, and reportedly collects a relatively constant amount of

performance data, regardless of the program’s execution time.  Thus, it is more

scalable to long-running programs than are tracing tools.  The tool is able to

present a statistical analysis of which MPI functions are using most of the pro-

gram’s time, and breaks them down by callsite and MPI rank. However, unlike

Paradyn, mpiP does not present a program callgraph, but only identifies the par-

ent function of the MPI calls.  It does not present information on how the per-

formance data may change over time like Paradyn does, but gives a statistical

analysis of the program over the entire execution.

Performance toolkits aim to be more than just simple performance tools,

and provide a variety of tools in a kit to help the user understand the perfor-

mance of the program.  Examples are TAU [MBM94] and Pablo [RAN+93].

TAU is a post-mortem analyzer that also supports dynamic instrumentation.
61



However, the level of support for dynamic instrumentation is not nearly at the

same level as it is in Paradyn.  The  user is not able to direct TAU to insert

instrumentation for specific metrics during runtime.  TAU lacks the automatic

diagnosis features of Paradyn.  Pablo is also a kit of tools to be used for perfor-

mance diagnosis of programs.  While it provides features such as source instru-

mentation on the level of loops and basic blocks, it does not have much support

for the Linux platform.

A post-mortem analysis tool that also provides performance monitoring

of a running program is XMPI, which is distributed by LAM/MPI as an envi-

ronment for running, debugging, and visualizing MPI programs in the LAM

environment [LTJ03]. The user is not required to complete any instrumentation

steps, such as recompiling or linking; the MPI program must simply be started

by XMPI. The execution trace can be viewed at runtime or post-mortem. This

tool is still in the early stages of development.  A beta version of XMPI only

supports LAM/MPI 6.5.9.  Also, because it is a tracing tool means that the

potential for large trace file problems exists.

There are other tools in addition to Paradyn that provide automated

analysis of the performance data, to relieve the programmer from having to pro-

cess the program execution data manually.  Examples are Kappa-Pi [EM98],

Peridot [WM01], KOJAK [WM00], and Prophesy[TWS03].  Both Kappa-Pi

and Peridot are designed to measure the performance of message-passing pro-

grams.  Each has a scheme similar to Paradyn’s for searching for performance
62



bottlenecks.  However, both are tracing tools.  The downside of this is the

potential for problems with very large trace files, such as those we encountered

using the MPE library. Neither of these tools has been released yet. KOJAK is

a project from the Research Centre Juelich whose goal is a generic automatic

performance analysis environment for parallel programs [WM00]. This product

has been released and supports MPI on the Linux platform.  However, KOJAK

does not provide the performance analysis at runtime; the user must wait until

the program execution is completed for KOJAK to begin its analysis of the trace

data.  Prophesy is an automated performance tool that allows the user to utilize

performance data from multiple executions in the computation of the program

performance model.  The performance models generated by Prophesy can be

used to predict program performance on different platforms. Prophesy does not

give runtime performance analysis like Paradyn, but analyzes the programs

post-mortem.

We found only three tools that support MPI-2 features of MPI.  Vampir

supports MPI-I/O. It provides trace information of the MPI-I/O operations and

statistics such as operation count, bytes read/written, and transmission rate.

However, Vampir is a post-mortem viewer of performance data, and as such

does not allow the flexibility of runtime performance viewing.  It also does not

provide any automated performance diagnosis.  The Totalview debugger sup-

ports the naming of communicator objects, so it can display user-defined names

for communicators in the user interface. Pablo supports the MPI-I/O features of
63



MPI-2. However, Pablo utilizes source code instrumentation, so the user cannot

change what performance data is collected at runtime as can be done with Para-

dyn.  Also, Pablo does not include support for the Linux platform.  We believe

that an implementation of our changes for MPI-2 in Paradyn would be the first

performance tool of its kind to support MPI-2.
64



5   Alterations Made to Paradyn For MPI-1

We made several alterations to Paradyn in order to achieve support for MPI-1

applications. Section 5.1 describes the changes that were common to both MPI imple-

mentations used in this project. Section 5.2 discusses changes for MPICH. Section 5.3

outlines the alterations we made to support LAM/MPI.

5.1  Alterations Common to Both MPI Implementations

We added three environment variables for this additional support.  The first is

PARADYN_SHARED_FILESYS.  If this variable is set to ‘false’, then support for a

non-shared filesystem is enabled.  The next environment setting, PARADYN_MPI,

determines which implementation of MPI is being used.  It can be set to either ‘LAM’

or ‘MPICH’. The last variable is PARADYN_MACHINEFILE and it is set to the full

path location of a listing of the machines to be used for the MPI program.  The format

of the file is MPI implementation dependent.  If ‘LAM’ is specified for

PARADYN_MPI, then the file should conform to the machinefile format specified by

LAM/MPI, and likewise for MPICH.  This variable is not required if the user chooses

to give the machinefile on the command line with MPICH.  However, LAM/MPI does

not allow a machine listing to be given on the command line, so the variable must be

defined when using LAM/MPI.
65



5.2  Addition of Support for MPICH

We made alterations to Paradyn for MPICH. First, we changed Paradyn to sup-

port a non-shared filesystem. Then, we altered the metric definitions file for Paradyn to

enable complete measurement of MPICH performance.  We also spent considerable

time diagnosing a problem that Paradyn 4.0 had with the MPICH ch_p4 device on our

system.  We do not include discussion of the changes to Paradyn for the ch_p4 device

in this document as they are not directly relevant to this thesis.  This section first

describes the changes to Paradyn for support of a non-shared filesystem with the

ch_p4mpd device and then outlines the metrics definitions changes that we made for

MPICH.

In order to support a non-shared filesystem with Paradyn, we need to ensure

that the Paradyn generated script, as described in Section 3.2, exists on each node that

will have an MPI process running on it.  We determine which machines need to have

the file, and then copy the file out to the correct working directory on those nodes.  To

discover the nodes that need the file, we inspect the command line arguments to

mpirun.  The MPICH ch_p4mpd device has a relatively simple set of command line

arguments to specify where to start the MPI processes.

-np <n>: number of processes to start

-g <group_size>: start group_size processes per mpd daemon

-m <machinefile>: a listing of the machines to be used

-1: do not start first process locally

-wdir <directory>: specifies directory for program

Without our changes, Paradyn only supported the -np argument.  We added

code to process the -m and -wdir arguments. To discover the nodes that need a copy of
66



the Paradyn generated file, we begin by parsing either the command line supplied

machinefile or, if that is not given, by looking at the file referenced by

PARADYN_MACHINEFILE.  Next, we inspect the value given to the -np argument

(n) to find out how many processes were going to be run. Then, Paradyn copies its gen-

erated script out to the first n machines into the directory specified by the user.  The

user is allowed to override the directory specified to Paradyn in the process definition

with the -wdir argument to mpirun. In that case, Paradyn copies the generated script

file to the directory specified to mpirun.

After we completed the alterations to Paradyn for support of a non-shared file-

system, we discovered that we were unable to gather data for MPI performance metrics

for MPICH C/C++ programs. We found the cause of this to be the way that the MPICH

implementation chose to support the MPI Profiling Interface.  The MPI Specification

requires that every MPI routine be callable by an alternative name for profiling pur-

poses.  The Forum declared that each MPI routine also be accessible with a PMPI pre-

fix.  For example, MPI_Send must also be callable by the name PMPI_Send.  The

purpose of this is to provide a mechanism by which users can write profiling wrapper

routines for the MPI functions.  By default, the MPICH implementation uses weak

symbols to support this requirement. The use of weak symbols means that a program is

able to override an external identifier already defined in a library; the linker will not

complain that there is more than one definition of an external symbol.  The MPICH

implementation uses a directive to tell the compiler that, for example, PMPI_Send is a

weak symbol for MPI_Send.  When the user calls MPI_Send in their application, it
67



resolves to the definition for PMPI_Send.  However, when the user links in the MPI

profiling library, that library has a definition for MPI_Send. In this case, when the user

calls MPI_Send, it resolves to the strong symbol for MPI_Send in the profiling library.

The MPI_Send in the profiling library is a wrapper that does some performance mea-

surement and then calls PMPI_Send. The designers of the MPICH implementation do

this to reduce the size of the MPICH library. Otherwise, two copies of the library need

to be compiled, one for each callable name.  A user can override MPICH’s default

behavior and make two copies of the library by giving the --disable-weak-symbols

flag to configure during compilation.

When MPICH is installed using the default configuration, the symbols for the

MPI routines in the binary image of an MPICH program resolve to their PMPI counter-

parts. The MPI metrics definitions in Paradyn 4.0 did not account for this completely.

The metric definitions included the profiling function names for Fortran programs, but

not for programs written in C/C++. This limited the performance data we could gather

for MPICH programs written in C/C++ on our system. To overcome this, we added the

C family forms of the PMPI function names to Paradyn’s metric definitions file.  For

this task, the challenge was in finding the source of the problem, whereas the actual

addition of the C family forms of the functions to the metrics definitions was trivial.

5.3  Considerations for LAM/MPI

When embarking upon this project, LAM/MPI was in version 6.5.9 and Para-

dyn was in version 3.0. Paradyn 3.0 was unable to start and instrument LAM/MPI pro-
68



grams.  Because of this, considerable time was spent understanding both programs to

see how they could be made to cooperate with each other.  We never fully determined

why the pair would not work together.  One reason could be that in LAM/MPI 6.5.9,

when the MPI processes were started by the Paradyn daemons,  the LAM processes

were not able to properly install themselves with the LAM daemons.  In any case, we

did design two scenarios for Paradyn to start LAM/MPI applications.  Both designs

involved having the Paradyn daemons attach to the already running MPI programs.

However, at about the same time, both software groups released new versions,

LAM/MPI 7.0 and Paradyn 4.0. A simple test run showed that whatever problems pre-

vented the compatibility of the two previous versions no longer existed.  What

remained was to accommodate LAM/MPI’s more extensive set of command line argu-

ments to mpirun and to verify that Paradyn was correctly measuring the metrics of

LAM/MPI programs.

LAM/MPI has a comparatively robust and flexible set of arguments to mpirun

that allow the user to specify where the MPI processes should be started. The machines

and processors in the system are defined in a startup file that is given to lamboot.  The

nodes are indexed in the order they are listed in the machinefile. LAM/MPI allows the

user to specify how many processors each machine has in the machinefile. They can do

this by putting an explicit cpu=x next to the machine name in the machinefile, where x

is a number representing processor count, or by listing the machine’s name multiple
69



times, once for each processor in the machine. Each processor in the system is given an

also index, in order of listing in the machinefile.

There are four different ways to specify the number of MPI processes to be

started:

1. By direct CPU count: For direct CPU count, the command line argument -np n

argument simply denotes that n processes be started on the first n processors.

2. By node specification: For node specification, there are two options.  The user can

give the argument N to mpirun, which means to run one copy of the process on

each node in the LAM session.  The user can also designate a subset of the nodes

using a LAM/MPI specific notation of the form nR[,R]*, where R denotes a range

of nodes within the defined number of nodes, [0, num_nodes).  For example, the

user could specify n0-2,4, which would start an MPI process on nodes 0,1,2, and

4.

3. By processor specification: For processor specification, there are two options. The

command line argument C tells LAM/MPI to start one MPI process on every pro-

cessor in the LAM session.  The user can also indicate a subset of processors by

using a notation like the one for selecting nodes.  The specification is of the form

cR[,R]*, where this time, R denotes a range of processors within the defined num-

ber of CPU’s [0, num_cpus).  It is also possible for the user to give a mixture of

node and processor specifications on the command line.

4. By application schema:  An application schema is text file in which users can indi-

cate where MPI processes should be started.  An application schema allows even
70



more flexibility for the user.  It provides support for heterogeneous systems and

multiple binaries in the MPI program

We altered Paradyn to support the first three of these. We chose them because they are

the most commonly used for running LAM/MPI programs.

We determine which machines will need a copy of the Paradyn generated script

by parsing the command line arguments and mapping them to the specified nodes,

according to the list referenced by PARADYN_MACHINEFILE.  Then, Paradyn cop-

ies the script to those nodes. It should be noted that this mechanism will not work if the

user opts to lamgrow and/or lamshrink the LAM session without also changing the file

pointed to by PARADYN_MACHINEFILE.

No other changes are required for Paradyn to support the MPI-1 features of

LAM/MPI. We performed several tests which show Paradyn is instrumenting and mea-

suring the performance of LAM/MPI programs. The tests and their results are given in

Chapter 7.
71



6  Additions to Paradyn for Support of MPI-2 Features

This chapter discusses items of interest for parallel performance tool support of

MPI-2.  Section 6.1 discusses which MPI-2 features are most important for consider-

ation by performance tool developers.  Section 6.2 describes our proposed changes to

Paradyn for support of MPI-2, including new metrics and changes to both the Perfor-

mance Consultant and Paradyn’s Where Axis.

6.1  Discussion of MPI-2 Features Important for Performance Tool Developers

The most important new functionalities of MPI-2 that are of interest to perfor-

mance tool developers are:

• dynamic process creation,

• RMA,

• MPI-I/O,

• thread support,

• the ability to name MPI objects, and

• language mixing.

The first four of these features are likely to have performance impacts on MPI

programs, potentially positive and negative.  The last three features are important in

that they may effect the internal structure of performance tools used for MPI programs.

The following paragraphs discuss each of these features in turn and point out the topics

of interest to performance tool developers.

Measuring the performance of dynamic process creation is important because

these operations could represent serious performance bottlenecks if used incorrectly.

First of all, a spawning operation includes the time to start the child processes, which is
72



non-trivial in itself.  Secondly, the operation is collective over two communicators,

those of the parent group of processes and the child group of processes.  The potential

synchronization required for this operation could be time consuming.  We believe that

MPI programmers will want to know the specific performance costs to their programs

from these operations.

RMA provides a mechanism by which MPI programmers can improve the com-

munication performance of some programs. However, the RMA interface is quite flex-

ible, so it is possible the programmer could use a suboptimal combination of the

functions provided.  Also, the fact that the interface contains collective operations

means that synchronization bottlenecks can occur. MPI programmers who use this fea-

ture will be interested in optimizing the communication performance of their programs.

File I/O has traditionally been a performance bottleneck for programs.  MPI

programmers can improve performance by utilizing the parallel file I/O operations

included in MPI-2.  The MPI-I/O interface is extensive, allowing the programmer to

find the best combination of file operations for the program.  In addition, there are

many options for the Info argument for this feature.  These flexibilities increase the

chances that a less than optimal combination could be chosen.  Programmers will

desire performance measurement for MPI-I/O to help find the best combinations of file

operations and access settings.

Features that require consideration from the perspective of performance tool

internal structure are: thread support, the naming of MPI objects, and language mixing.

The addition of thread support means that performance tools for MPI programs should
73



support multi-threaded applications. The ability to name MPI objects is of importance,

because the performance tool can display the user defined names for MPI objects in the

user interface. This will facilitate user’s interpretation of the performance data. Lan-

guage mixing could have an effect on how the programs are instrumented, especially

for those that do automated source-level instrumentation. Performance tools will need

to support programs with source files written in different languages.

6.2  Design for MPI-2 Feature Performance Measurement in Paradyn

In this section, we outline our proposed changes to Paradyn for support of MPI-

2 features.  Section 6.2.1 lists and describes the metric changes we propose.  Section

6.2.2 shows our changes for Paradyn’s Hypothesis Hierarchy. Last, in Section 6.2.3 we

give our changes to Paradyn’s Where Axis.

6.2.1  Metric Changes

We propose new metrics to Paradyn to enable the performance measurement of

some of the more important MPI-2 features. We designed metrics for dynamic process

creation, RMA, and MPI-I/O.  Table 3 shows the new metrics for dynamic process cre-

ation.  Tables 4-8 show the metrics proposed to measure the performance of RMA.

Tables 9-13 list the metrics for MPI-I/O.
74



We created the metric spawn_count for counting spawning operations per unit

time, because applications that spawn processes are likely to use a runtime calculation

for determining when and/or how many processes will be started.  The user may wish

to gather performance data with this metric to determine when and how many pro-

cesses are being started in the application.

The time required for spawning processes is likely to be significant.  For this

reason, we created the metric spawn_time to measure the wall clock time spent in

spawning operations. A spawning operation is collective over two communicators and

thus may incur synchronization overhead, which could include the time for all pro-

cesses to be started.  The tool user may wish to collect performance data pertaining to

the time spent in spawning operations.

Table 3: Dynamic Process Creation Metrics

Metric Description MPI Functions

 Operation Counts

spawn_count A count of the number of

times per unit time a

spawning operation occurs

MPI_Comm_spawn,

MPI_Comm_spawn_multiple

Synchronization Time

spawn_time Inclusive wall clock time

spent in spawning opera-

tions

MPI_Comm_spawn,

MPI_Comm_spawn_multiple
75



We created metrics in Table 4 for counting RMA operations so that users could

collect performance data about the number of RMA operations that occur in a unit of

time. There are individual metrics for counting each of the RMA data transfer routines,

and one metric, rma_ops, that counts all of the data transfer operations.

Table 5 shows metrics that count the bytes of data transferred per unit time as a

result of RMA operations.  There are metrics for counting the bytes due to each of the

RMA data transfer operations individually.  Also, there is a general byte-counting met-

ric, rma_bytes, that represents of all the data transfer operations.

Table 4: RMA Metrics for Operation Counts

Metric Description MPI Functions

rma_put_ops A count of the number of

Put operations per unit

time.  Aggregation is total

Put operations.

MPI_Put

rma_get_ops A count of the number of

Get operations per unit

time.  Aggregation is total

Get operations.

MPI_Get

rma_acc_ops A count of the number of

Accumulate operations per

unit time.  Aggregation is

total Accumulate opera-

tions.

MPI_Accumulate

rma_ops A count of the number of

Put, Get, and Accumulate

operations per unit time.

Aggregation is total RMA

operations.

MPI_Put, MPI_Get,
MPI_Accumulate
76



The next set of metrics are for the measurement of synchronization time due to

RMA operations.  Although RMA is designed to reduce the synchronization overhead

of data transfer operations in MPI, there will still be some synchronization time, the

amount and distribution of which is largely dependent upon the MPI implementation.

Table 6 shows the metrics we designed for RMA active target synchronization,

at_rma_sync_wait and at_rma_sync_wait_incl. These metrics represent the wall clock

time spent in the MPI functions listed in Table 6. The data collected with the inclusive

metric, at_rm_sync_wait_incl, includes not only the time spent in these MPI functions

but also the time spent in any routines called by those functions.

We selected these functions for active target synchronization waiting time based

on the possibility that they could block, waiting on a state change of another process.

Table 5: RMA Metrics for Bytes Transferred

Metric Description MPI Functions

rma_put_bytes Number of bytes put per

unit time.  Aggregation is

total bytes put.

MPI_Put

rma_get_bytes Number of bytes gotten per

unit time.  Aggregation is

total bytes gotten.

MPI_Get

rma_acc_bytes Number of bytes accumu-

lated in the target process.

Aggregation is total bytes

accumulated.

MPI_Accumulate

rma_bytes Sum of RMA byte count

metrics.  Aggregation is

total RMA bytes.

MPI_Put, MPI_Get,
MPI_Accumulate
77



MPI_Win_fence could incur synchronization waiting time as it is a collective call.

Also, the MPI-2 Standard states that it will usually act as a barrier routine, which

means that the synchronization overhead could be particularly high.  The function

MPI_Win_start could cause synchronization waiting time as it is allowed to block

until matching MPI_Win_post calls have been executed on each process in the target

group.  In fact, any of the routines, MPI_Win_start, MPI_Win_complete,

MPI_Put, MPI_Get, or MPI_Accumulate are allowed to block until the correspond-

ing MPI_Win_post has been issued on the target processes.  Thus, any of them could

contribute to synchronization waiting time.  However, the data transfer routines,

MPI_Put, MPI_Get and MPI_Accumulate are not included in the active target met-

rics even though they could contribute to synchronization time. They are included with

the general RMA metrics found in Table 8. The reason for this is that it is impossible to

distinguish between a data transfer routine being used in active target synchronization

versus passive target synchronization just by looking at the function state itself.  The

MPI-2 Standard says that the function MPI_Win_wait will block until all outstanding

MPI_Win_complete calls have been issued, and as such could add to the synchroniza-

tion waiting time, so it is incorporated into the active target metrics.
78



The passive target RMA metrics, pt_rma_sync_wait and

Table 6: RMA Metrics for Active Target Synchronization

Metric Description MPI Functions

at_rma_sync_wa

it

Wall clock time spent in

active target RMA syn-

chronization routines dur-

ing time interval.

Aggregation is total active

target synchronization

time.

MPI_Win_fence,
MPI_Win_start,
MPI_Win_complete,
MPI_Win_wait

at_rma_sync_wa

it_incl

Inclusive wall clock time

spent in active target RMA

synchronization routines

during time interval.

Aggregation is total inclu-

sive active target synchro-

nization time.

Table 7: RMA Metrics for Passive Target Synchronization

Metric Description MPI Functions

pt_rma_sync_wa

it

Wall clock time spent in

passive target RMA syn-

chronization routines dur-

ing time interval.

Aggregation is total pas-

sive target synchronization

time.

MPI_Win_lock,
MPI_Win_unlock

pt_rma_sync_wa

it_incl

Inclusive wall clock time

spent in active target RMA

synchronization routines

during time interval.

Aggregation is total inclu-

sive passive target synchro-

nization time.
79



pt_rma_sync_wait_incl, are shown in Table 7. The passive target metrics give the wall

clock time spent in the passive target RMA routines shown in Table 7 per unit time.

The metric pt_rma_sync_wait_incl not only includes the time spent in the passive tar-

get routines, but also the wall clock time spent in any functions called by those rou-

tines.  The functions MPI_Win_lock, MPI_Win_unlock, MPI_Put, MPI_Get,

or MPI_Accumulate could all incur synchronization waiting time. However, the data

transfer routines are not included in the passive target metric. They are included in the

general RMA synchronization metrics found in Table 8, because the data transfer rou-

tines could be used in both passive target and active target synchronization. The MPI-2

Standard requires that MPI_Win_unlock not return until the data transfer is complete

at both the origin and target.  The Standard also says that MPI_Win_lock or the data

transfer routine could block until the lock is acquired at the target.  For these reasons,

these functions could both contribute to passive target synchronization waiting time.

The metrics for overall RMA synchronization wall clock time are shown in

Table 8.  For the most part, the functions included for these metrics are the passive tar-

get and active target synchronization routines.  Also included are MPI_Win_create

and MPI_Win_free. MPI_Win_create is collective and thus carries the possibility

of synchronization overhead. The MPI-2 Standard states that MPI_Win_free requires

a barrier synchronization; thus it will incur synchronization waiting time.  The metric

rma_sync_wait_incl not only includes the wall clock time spent in the functions in

Table 8, but the time spent in any routine called by those functions.  Also, the data

transfer routines are included in the general RMA metric as they could contribute to
80



either passive target or active target synchronization.

The next set of metrics we created are for the performance measurement of

MPI-I/O.  These new metrics can be seen in Tables 9, 10, 11, 12, and 13.  They were

developed to keep track of the number of I/O operations, count the bytes transferred,

and measure wall clock time of the operations.

The metrics in Table 9 are for keeping count of the number of MPI-I/O opera-

tions that occur per unit time.  The metric par_read_ops counts the number of parallel

read operations, while par_write_ops counts the write operations.  Last, par_io_ops

keeps track of all I/O read, write, and seek operations.

Table 8: RMA Metrics for Overall Synchronization

Metric Description MPI Functions

rma_sync_wait Wall clock time spent in

RMA synchronization rou-

tines during time interval.

Aggregation is total syn-

chronization time.

MPI_Win_fence,
MPI_Win_create,
MPI_Win_free,
MPI_Win_start,
MPI_Win_complete,
MPI_Win_wait,
MPI_Win_lock,
MPI_Win_unlock,
MPI_Put,
MPI_Get,
MPI_Accumulate

rma_sync_wait_i

ncl

Inclusive wall clock time

spent in RMA synchroni-

zation routines during time

interval.  Aggregation is

total inclusive synchroniza-

tion time.
81



Table 9: MPI-I/O Metrics for Operation Counts

Metric Description MPI Functions

par_read_ops A count of the

number of parallel

read operations per

unit time.  Aggre-

gation is total read

operations.

MPI_File_read(_at)(_all),
MPI_File_iread(_at),
MPI_File_read_shared,
MPI_File_read_ordered,
MPI_File_read(_at)_all_begin,
MPI_File_read_ordered_begin

par_write_ops A count of the

number of parallel

write operations

per unit time.

Aggregation is

total write opera-

tions.

MPI_File_write(_at)(_all),
MPI_File_iwrite(_at),
MPI_File_write_shared,
MPI_File_write_ordered,
MPI_File_write(_at)_all_begin,
MPI_File_write_ordered_begin

par_io_ops A count of the

number of parallel

read and write

operations per unit

time.  Aggrega-

tion is total read

and write opera-

tions.

MPI_File_read(_at)(_all),
MPI_File_iread(_at),
MPI_File_read_shared,
MPI_File_read_ordered,
MPI_File_read(_at)_all_begin,
MPI_File_read_ordered_begin,
MPI_File_write(_at)(_all),
MPI_File_iwrite(_at),
MPI_File_write_shared,
MPI_File_write_ordered,
MPI_File_write(_at)_all_begin,
MPI_File_write_ordered_begin,
MPI_File_seek,
MPI_File_seek_shared
82



Table 10 shows the metrics designed for measuring the number of bytes trans-

ferred to and from a file. These metrics keep track of the bytes transferred for both col-

lective and non-collective MPI-I/O read and write operations.  The metric

par_read_bytes counts the number of bytes read from files, while par_write_bytes

counts those written to files.   The general metric, par_io_bytes, counts the bytes that

were read from or written to files with MPI-I/O.

The next set of metrics, shown in Table 11, are for the measurement of synchro-

Table 10: MPI-I/O Metrics for Bytes Transferred

Metric Description MPI Functions

par_read_bytes Number of bytes

read per unit time.

Aggregation is

total bytes read.

MPI_File_read(_at)(_all),
MPI_File_iread(_at),
MPI_File_read_shared,
MPI_File_read_ordered,
MPI_File_read(_at)_all_begin,
MPI_File_read_ordered_begin

par_write_bytes Number of bytes

written per unit

time.  Aggrega-

tion is total bytes

written.

MPI_File_write(_at)(_all),
MPI_File_iwrite(_at),
MPI_File_write_shared,
MPI_File_write_ordered,
MPI_File_write(_at)_all_begin,
MPI_File_write_ordered_begin

par_io_bytes Number of bytes

read and written

per unit time.

Aggregation is

total bytes read

and written.

MPI_File_read(_at)(_all),
MPI_File_iread(_at),
MPI_File_read_shared,
MPI_File_read_ordered,
MPI_File_read(_at)_all_begin,
MPI_File_read_ordered_begin,
MPI_File_write(_at)(_all),
MPI_File_iwrite(_at),
MPI_File_write_shared,
MPI_File_write_ordered,
MPI_File_write(_at)_all_begin,
MPI_File_write_ordered_begin
83



nization time due to MPI-I/O collective operations.  The first four metrics are for the

measurement of collective read and write synchronization times.  The metrics

cc_par_read_wait and cc_par_write_wait represent the wall clock time spent in

Table 11: MPI-I/O Metrics for Collective Operations Synchronization

Metric Description MPI Functions

cc_par_read_wait Wall clock time

spent in collective

read routines dur-

ing time interval.

Aggregation is

total collective

read time.

MPI_File_read(_at)_all,
MPI_File_read_ordered,
MPI_File_read(_at)_all_begin,
MPI_File_read(_at)_all_end,
MPI_File_read_ordered_begin,
MPI_File_read_ordered_end

cc_par_read_wait

_incl

Inclusive wall

clock time spent in

collective read

routines during

time interval.

Aggregation is

total inclusive col-

lective read time.

cc_par_write_wa

it

Wall clock time

spent in collective

write routines dur-

ing time interval.

Aggregation is

total collective

write time.

MPI_File_write(_at)_all,
MPI_File_write_ordered,
MPI_File_write(_at)_all_begin,
MPI_File_write(_at)_all_end,
MPI_File_write_ordered_begin,
MPI_File_write_ordered_end

cc_par_write_wa

it_incl

Inclusive wall

clock time spent in

collective write

routines during

time interval.

Aggregation is

total inclusive col-

lective write time.
84



MPI-I/O collective read and write functions.  The metrics cc_par_read_wait_incl and

cc_par_write_wait_incl record not only the wall clock time spent in the MPI-I/O col-

lective read and write functions, but also the time spent in routines called by those func-

cc_par_seek_wai

t

Wall clock time

spent in collective

seek routines dur-

ing time interval.

Aggregation is

total collective

seek time.

MPI_File_seek_shared

cc_par_seek_wai

t_incl

Inclusive wall

clock time spent in

collective seek

routines during

time interval.

Aggregation is

total inclusive col-

lective seek time.

MPI_File_seek_shared

cc_par_io_sync_

wait

Wall clock time

spent in all collec-

tive parallel file I/

O routines during

time interval.

Aggregation is

total parallel I/O

time.

MPI_File_read(_at)_all,
MPI_File_read_ordered,
MPI_File_read(_at)_all_begin,
MPI_File_read(_at)_all_end,
MPI_File_read_ordered_begin,
MPI_File_read_ordered_end,
MPI_File_write(_at)_all,
MPI_File_write_ordered,
MPI_File_write(_at)_all_begin,
MPI_File_write(_at)_all_end,
MPI_File_write_ordered_begin,
MPI_File_write_ordered_end,
MPI_File_seek_shared,
MPI_File_open,
MPI_File_close,
MPI_File_set_size,
MPI_File_preallocate,
MPI_File_set_info,
MPI_File_set_view

cc_par_io_sync_i

ncl

Inclusive wall

clock time spent in

all collective paral-

lel file I/O routines

during time inter-

val.  Aggregation

is total inclusive

parallel I/O time.

Table 11: MPI-I/O Metrics for Collective Operations Synchronization

Metric Description MPI Functions
85



tions.  Next are the metrics for measuring collective seek time, cc_par_seek_wait and

cc_par_seek_wait_incl.  These metrics will give the user the amount of time spent in

seek operations using a shared file pointer, with cc_par_seek_wait_incl including the

time spent in routines called by MPI_File_seek_shared.  The last two metrics in

Table 11 are general metrics for measuring the time spent in all collective MPI-I/O rou-

tines, both excluding and including routines called by the functions.  Because the MPI-

I/O functions in Table 11 are all collective, the possibility of there being synchroniza-

tion time due to the coordination of processes exists, as well as synchronization time

due to resource contention.

Table 12 shows metrics for non-collective MPI-I/O operations.  The first two

Table 12: MPI-I/O Metrics for Non-Collective Operations Synchronization

Metric Description MPI Functions

nc_par_read_wai

t

Wall clock time

spent in non-col-

lective read rou-

tines during time

interval.  Aggrega-

tion is total read

time.

MPI_File_read(_at),
MPI_File_read_shared

nc_par_read_wai

t_incl

Inclusive wall

clock time spent in

non-collective read

routines during

time interval.

Aggregation is

total inclusive

read time.

MPI_File_read(_at),
MPI_File_read_shared
86



metrics, nc_par_read_wait and nc_par_read_wait_incl, measure the exclusive and

inclusive wall clock time of the non-collective read operations, respectively.  The met-

rics nc_par_write_wait and nc_par_write_wait_incl keep track of the wall clock time

nc_par_write_wa

it

Wall clock time

spent in non-col-

lective write rou-

tines during time

interval.  Aggrega-

tion is total write

time.

MPI_File_write(_at),
MPI_File_write_shared

nc_par_write_wa

it_incl

Inclusive wall

clock time spent in

non-collective

write routines dur-

ing time interval.

Aggregation is

total inclusive

write time.

MPI_File_write(_at),
MPI_File_write_shared

nc_par_io_sync_

wait

Wall clock time

spent in non-col-

lective read and

write routines dur-

ing time interval.

Aggregation is

total and write

time.

MPI_File_read(_at),
MPI_File_read_shared,
MPI_File_write(_at),
MPI_File_write_shared

nc_par_io_sync_

incl

Inclusive wall

clock time spent in

non-collective read

and write routines

during time inter-

val.  Aggregation

is total inclusive

read and write

time.

Table 12: MPI-I/O Metrics for Non-Collective Operations Synchronization

Metric Description MPI Functions
87



spent in non-collective write operations.  The last two metrics in this category are for

the general measurement of non-collective MPI-I/O synchronization.  Only the non-

collective read and write functions were included for this metric, instead of every single

non-collective MPI-I/O function, as we believe only these functions will be responsible

for non-collective synchronization waiting time.

We did not include the non-blocking file access operations in the non-collective

read and write metrics.  We feel that non-blocking MPI-I/O reads and writes require

special consideration, because they are not complete until a corresponding positive

MPI_Test or an MPI_Wait function returns.  The non-blocking message-passing and

I/O operations each have a ‘request’ object parameter.  This object is then used in sub-

sequent calls to MPI_Test/MPI_Wait as a way to identify the non-blocking request.

Currently, Paradyn counts the MPI_Wait function as synchronization time due to mes-

sage passing. This definition will have to be altered to account for the different uses of

MPI_Wait.   One way to handle this would be for Paradyn to detect the non-blocking

calls and store the request objects organized by type of call: read, write, send, or

receive.  When an MPI_Wait call is encountered, Paradyn could find the matching

request object and adjust the corresponding synchronization metric accordingly.

The last set of metrics are for general MPI-I/O synchronization, and include the

collective and non-collective file operations.  The first two metrics, par_io_read_sync

and par_io_read_sync_incl, measure the wall clock time spent in parallel read opera-

tions, with par_io_sync_incl measuring the time spent in functions called by the read

operations, as well as in the read operations themselves.  The second metrics are
88



Table 13: MPI-I/O Metrics for Overall Synchronization

Metric Description MPI Functions

par_io_read_syn

c

Wall clock time

spent in read rou-

tines during time

interval.  Aggrega-

tion is total read

time.

MPI_File_read(_at)(_all),
MPI_File_iread(_at),
MPI_File_read_shared,
MPI_File_read_ordered,
MPI_File_read(_at)_all_begin,
MPI_File_read_ordered_begin

par_io_read_syn

c_incl

Inclusive wall

clock time spent in

read routines dur-

ing time interval.

Aggregation is

total inclusive

read time.

par_io_write_syn

c

Wall clock time

spent in write rou-

tines during time

interval.  Aggrega-

tion is total write

time.

MPI_File_write(_at)(_all),
MPI_File_iwrite(_at),
MPI_File_write_shared,
MPI_File_write_ordered,
MPI_File_write(_at)_all_begin,
MPI_File_write_ordered_begin

par_io_write_syn

c_incl

Inclusive wall

clock time spent in

write routines dur-

ing time interval.

Aggregation is

total inclusive

write time.
89



for write operations. As with the read metrics, the suffix _incl denotes that the metric is

an inclusive measurement of functions called by the write operations. Lastly, there are

exclusive and inclusive metrics for general parallel I/O synchronization.  Included are

all the collective and non-collective MPI-I/O functions which may cause synchroniza-

tion overhead.

6.2.2  Hypothesis Hierarchy Changes

We propose three changes to Paradyn’s Hypothesis Hierarchy, or Why Axis, for

support of MPI-2 features.  These changes will enable the Performance Consultant to

automate performance analysis of the more important MPI-2 features.

par_io_sync Wall clock time

spent in I/O syn-

chronization rou-

tines during time

interval.  Aggrega-

tion is total I/O

synchronization

time.

MPI_File_read(_at)(_all),
MPI_File_iread(_at),
MPI_File_read_shared,
MPI_File_read_ordered,
MPI_File_read(_at)_all_begin,
MPI_File_read_ordered_begin,
MPI_File_write(_at)(_all),
MPI_File_iwrite(_at),
MPI_File_write_shared,
MPI_File_write_ordered,
MPI_File_write(_at)_all_begin,
MPI_File_write_ordered_begin,
MPI_File_seek_shared
MPI_File_open,
MPI_File_close,
MPI_File_set_size,
MPI_File_preallocate,
MPI_File_set_info,
MPI_File_set_view

par_io_sync_incl Inclusive wall

clock time spent in

I/O synchroniza-

tion routines dur-

ing time interval.

Aggregation is

total inclusive I/O

synchronization

time.

Table 13: MPI-I/O Metrics for Overall Synchronization

Metric Description MPI Functions
90



1. Change top level hypothesis for ExcessiveSyncWaitingTime to include the syn-

chronization metrics for spawning and RMA operations.

2. Change top level hypothesis for ExcessiveIOBlockingTime to include the metrics

for MPI-I/O.

3. Add new hypotheses for Parallel and Non-Parallel I/O to the ExcessiveIOBlocking-

Time hypothesis hierarchy.  The Parallel hypothesis compares the MPI-I/O syn-

chronization metrics against a threshold.  The Non-Parallel hypothesis will

compare non-parallel file access metrics against a threshold.

Figures 17 and 18 illustrate the changes.  Figure 17 shows Paradyn’s Hypothe-

sis Hierarchy as it exists currently. Figure 18 displays the hierarchy with our proposed

Figure 17: Current Paradyn Hypothesis Hierarchy
This figure shows the Hypothesis Hierarchy, or Why Axis, for the current version of Paradyn.

changes.  We refine the ExcessiveIOBlockingTime hypothesis into two hypotheses for

Parallel and Non-parallel file I/O.  The new metrics for MPI-I/O are included into the

top level hypothesis, ExcessiveIOBlockingTime. There are two new hypotheses under

Parallel I/O.  The first is TooManySmallIOOps, which will compare the MPI-I/O met-

rics for operation count and byte count against thresholds.  The second is ExcessiveIO-
91



SyncTime, which will compare the MPI-I/O synchronization metrics against a

threshold. We add the synchronization metrics for RMA and spawning operations to

the ExcessiveSyncWaitingTime hypothesis.

Figure 18: Changes to Paradyn’s Hypothesis Hierarchy for MPI-2 Support
This figure shows our proposed changes to Paradyn’s Hypothesis Hierarchy for MPI-2 support.

The metrics for RMA and spawning synchronization time have been incorporated into the

ExcessiveSyncWaitTime hypothesis.  The metrics for MPI-I/O have been added to the Exces-

siveIOBlockingTime hypothesis, which accounts for both Parallel and Non-Parallel I/O.

6.2.3  Where Axis Changes

We designed five changes to Paradyn’s Where Axis to support the new MPI-2

features.

1. Display user-defined names for MPI objects in the Paradyn interface.

2. Add communicator to the top level of the Where Axis, Comm, to enable more flex-

ible focus selection. Also, remove communicator level from /SyncObject/Message.

3. Include intercommunicators and intracommunicators in the Comm hierarchy.

Detect and incorporate newly created communicators from MPI_Comm operations.

4. Incorporate newly spawned processes into the Machine Hierarchy.
92



5. Add RMA Windows and File Handles to the /SyncObject resource hierarchy.

In Figure 19, we show mock-ups of Paradyn’s Where Axis for a hypothetical MPI-2

program that spawns three child processes.  The top diagram in Figure 19 shows the

Where Axis as it is in the current version of Paradyn. In the bottom diagram of Figure

19, we show the Where Axis with our proposed changes to support MPI-2. One differ-

ence is that three newly spawned processes have been incorporated into the /Machine

hierarchy.  Another is that RMA Windows and File Handles have been added to the /

SyncObject resource hierarchy. The last changes are that the communicators have been

moved from the /SyncObject/Message hierarchy to their own Comm resource hierarchy

and are displayed with their user-defined names.

A problem that requires more work to solve is how to represent MPI-I/O files in

the Paradyn user interface.  An obvious solution is to use the filename to represent the

file in the /SyncObject hierarch of the Where Axis.  However, the MPI-2 Standard

explicitly states that an MPI-I/O filename is implementation independent and isn’t nec-

essarily just a filename at all. It could be a string with a hostname, a filesystem specifi-

cation, a filename, and a username and password.  While it will probably suffice in

most cases to use the filename in the user interface for the file object, it may be a prob-

lem in the future.  This may be more of an issue in heterogeneous systems.
93



Figure 19: Changes to Paradyn Resource Hierarchy for MPI-2
The top figure shows the Resource Hierarchy for an MPI-2 application that would be generated

using the current version of Paradyn.  The program starts out with one process that then gener-

ates three child processes.  The current version of Paradyn only detects the parent process and

none of the spawned child processes.  The bottom figure shows a Resource Hierarchy that

incorporates our proposed changes for the same application as in the top figure.  Here we high-

light three key differences: three additional processes resulting from MPI_Comm_spawn now

appear in the Machine hierarchy; RMA Windows and FileHandles are part of the SyncObject

hierarchy; and Communicators are part of a new resource hierarchy instead of the /SyncObject/

Message hierarchy. The separate Communicator hierarchy gives the programmer more flexibil-

ity in choosing a metric-focus pair.  This allows metrics to be collected for individual Commu-

nicators, which helps the programmer easily select a group of processes that may have a

particular performance issue.
94



7  Results and Discussion

This chapter outlines the testing phase of this project.  We show that the

enhanced Paradyn correctly measures the performance of all but one of the programs

we tested.  Section 7.1 discusses the rationale for our test plan.  Section 7.2 describes

the results of tests on the Grindstone Test Suite for Parallel Tools. In Section 7.3, we

give the test results for a toy MPI program, ssTwod. Section 7.4 concludes this chapter

by summarizing our findings.

7.1  Discussion of Testing Design

When it came time to determine whether Paradyn was correctly instrumenting

and gathering the performance metrics for the MPI-1 features of LAM/MPI, we faced a

challenge.  There is no common file format for performance tool output to allow for

direct comparison between them.  Also, performance tools don’t always record the

same metrics or even the same types of metrics.  For instance, most of the popular per-

formance tools for message-passing programming are tracing tools, which record

events in a program in a sequential manner, so that later, the order and timing of events

can be reconstructed.   Paradyn is for the most part a profiling tool.  A profiling tool is

one that records the amounts of time that a program spends in certain states.  The data

from these two types of tools is not directly comparable in a traditional sense.   How-

ever, we did find that by looking at the overall trends produced by the tools we chose,

that there was a basis for comparison.
95



 We decided to use the MPE profiling libraries along with the Jumpshot-3 log

file viewer from MPICH, which we were able to get to work with both MPICH and

LAM [ZLGW99].  We also used the gprof profiling tool from GNU.

There are several different log file formats that the MPE libraries can produce.

The most recent and efficient of these is SLOG.  SLOG files are much smaller and

require less overhead for the performance tool than its predecessor format, CLOG. The

trouble we had with this tool is that we could not view the SLOG files that were gener-

ated from the MPE libraries.  When we ran logviewer or slog_print, we very

often received segmentation faults. We found that if we generated CLOG files and then

converted them to SLOG after the run was finished, with the clog2slog command,

that we got results more consistently. The drawback to this method was that the CLOG

files that were generated were quite large, and we often had to shorten the run times of

the programs to stay within the 2 GB file size limit on Linux. Also, sometimes the con-

version from CLOG to SLOG file formats was not successful (i.e. segmentation fault

and core dump) and we were not able to get the comparison from this other tool.

Another difficulty with the testing phase of this project is that no comprehensive

test suite for automated performance tools exists. This lack of a test bed for automated

performance tools has been noted by the APART Group and they are currently develop-

ing such a suite [MT02].  We did find the Grindstone Test Suite for Parallel Perfor-

mance Tools [HS96].  This test suite was written for PVM, but we adapted it for use

with MPI. The developers of Grindstone considered it to be a starting point for a more

comprehensive set of tests for parallel performance tools.  We found the Grindstone
96



programs to be quite helpful in determining the correctness of Paradyn’s performance

analysis of MPI programs.

Our test plan for demonstrating that Paradyn correctly measures the perfor-

mance of the MPI-1 features of LAM/MPI programs has three parts:

• Compare Paradyn’s results against expected values for programs with known

behavior

• Compare Paradyn’s results against those of another tool: gprof or MPE

• Compare Paradyn’s analysis of LAM/MPI programs against Paradyn’s analysis of

the same programs run under MPICH

For the tests we used LAM/MPI 7.0 with the sysv RPI and MPICH 1.2.5 with

the ch_p4mpd device.

7.2  Grindstone Test Suite Discussion and Results

The programs in the Grindstone Test Suite can be broken up into two catego-

ries: communication bottlenecks and computational bottlenecks. Table 14 lists the pro-

grams that have communication bottlenecks and describes their characteristics.  Table

15 shows the computational bottleneck programs and gives their behavioral descrip-

tions.
97



Table 14: The Grindstone Communication Bottleneck Program Characteristics

Test Program Characteristics

Communication Bottlenecks

Small-

messages

This program sends many small messages between several pro-

cesses.  The process with rank 0 acts as the server and the other

processes act as clients.  The clients send many small messages to

the server.  The server does not reply.

Big-message This program sends very large messages between two processes.

The bottleneck is the overhead associated with setting up and send-

ing a very large message.  The communication bandwidth limits

the speed at which the messages are passed.

Wrong-way This program simulates the problem where one process expects to

receive messages in a certain order, but another process sends them

in a different order than is expected.

Intensive-

server

This program simulates an overloaded server.  Again, the process

with rank 0 acts as the server and the other processes are the cli-

ents.  Each of the clients repeatedly sends a message to the server

and then waits for a reply.  Upon receiving a message, the server

wastes time before replying, simulating a server that is overloaded

with client requests.

Random-

barrier

This program is like the intensive-server program except that no

single process is the bottleneck. On each iteration through a loop a

random process is chosen to waste time while the other processes

wait in MPI_Barrier.
98



We give a short synopsis of the test results on the Grindstone Test Suite in Table

16.  Each program is listed along with a ‘pass’ or ‘fail’ and a summary of our findings

during testing. More detailed test results are given in the subsections to follow and are

labelled by program name.  Note, that in most cases, it was necessary to increase the

number of iterations of the program to allow adequate time for Paradyn to complete its

diagnosis. In each section detailing the test results for a particular program, the param-

eters used for running the tests, such as number of iterations and message size, are

given.   The table clearly shows that Paradyn is able to find the synchronization and

computation bottlenecks in LAM/MPI programs.  The exception is the program sys-

tem-time.  Paradyn does not have metrics for measuring system time and thus did not

find bottlenecks in the program. Discussion of this is outside of the scope of this work.

Table 15: The Grindstone Computational Bottleneck Program Characteristics

Computational Bottlenecks

Diffuse-

procedure

This program demonstrates a bottleneck that is distributed over the

processes in the MPI application.  The bottleneckProcedure
consumes ~50% of the time for the application.  Each of the pro-

cesses in the application take turns “being the bottleneck” while the

others execute irrelevantProcedures and then wait in

MPI_Barrier.

System-

time

This program spends most of its time executing in system calls.

Hot-proce-

dure

This program has a bottleneck in a single procedure, called bot-
tleneckProcedure that uses most of the program’s time.  There

are also several irrelevantProcedures that use hardly any of

the program’s time.
99



Table 16: Grindstone Test Suite Results

Test Program
Paradyn’s

Result
Details

Small-messages Pass Paradyn identified the bottleneck as being too

much message passing and showed the clients

spending too much time in MPI_Send.

Big-message Pass Paradyn showed that the bulk of the pro-

gram’s time was spent sending and receiving

messages. It also was able to give a good

count of the number of bytes sent and

received.

Wrong-way Pass Paradyn identified that the program was

spending too much time in send and receive

operations.

Random-barrier Pass Paradyn found that the program was spending

much time in MPI_Barrier because pro-

cesses were late getting to the barrier.  It also

showed that the program had a computational

bottleneck.

Intensive-server Pass Paradyn identified that the clients were wait-

ing in MPI_Send because the server was too

busy to do the matching receive on time.

Diffuse-procedure Pass Paradyn correctly showed that the program

was spending too much time in

MPI_Barrier. Paradyn did not find a com-

putational bottleneck.  We justify this in Sec-

tion 7.2.7.

System-time Fail Paradyn showed all top level hypotheses as

false.  Paradyn does not have metrics specifi-

cally for system time.

Hot-procedure Pass Paradyn correctly found that the each process

was CPUBound in the function bottle-
neckProcedure.
100



7.2.1  Explanation of Diagrams and Symbols

We created diagrams that allow us to compare the Performance Consultant’s

output for LAM/MPI and MPICH relatively easily.  We condensed the information

given by the Performance Consultant to achieve this. In the diagrams, only hypotheses

that tested true for either MPICH or LAM/MPI are shown.  The staggered ovals repre-

sent the findings for MPICH and LAM/MPI, with MPICH in the foreground.  If only

one oval is present for a hypothesis, this indicates that the result was identical for both

MPICH and LAM/MPI.  A † in a diagram of this chapter symbolizes that a mapping

has been made between what is shown in the Performance Consultant window and

what is shown in the diagram.  A common mapping is for MPI function names for

LAM/MPI and MPICH.  For instance, the Performance Consultant window shows

MPI_Send for LAM/MPI and PMPI_Send for MPICH. We use the MPI_ prefix in the

diagrams when a mapping is necessary.  In Section 5.2, we discuss the reason for the

Performance Consultant showing a PMPI_ prefix for function names with MPICH

instead of the MPI_ prefix as it does for LAM/MPI.  Another mapping takes machine

names shown in the Performance Consultant window and renames them “NodeX”,

where X is an integer representing the order the machine is listed in the machinefile

used by the MPI implementation. We also mapped process identifiers to “Process{X}”,

where here X represents the process’s MPI rank.  The last mappings are for MPI com-

municators and MPI message tags.  They are named “CommunicatorX” and “Msg-

TagX.” The X in the communicator name gives a mapping between a communicator in

MPICH and in LAM/MPI, which have different representations for the same source-
101



code object. The message tag mapping is primarily used to identify the node as an MPI

message tag.

7.2.2  Small-Messages

For the program small-messages, the following parameters were used:

10,000,000 iterations, 4 byte message size, 6 processes, 2 each on three nodes.  The

program run under LAM/MPI took approximately 515 seconds.  Figure 20 shows the

condensed form of the output from the Performance Consultant for LAM/MPI and

MPICH.  We see that the Performance Consultant found that for both LAM/MPI and

MPICH ExcessiveSyncWaitingTime is true, and drilled down into the function

Gsend_message, and even further to find MPI_Send.  This is what we would expect

to see for this program given that the clients all send messages to the server process.

For LAM/MPI, the Performance Consultant was able to discover the communicator

and message tag on which the communication was taking place.  For MPICH, the pro-

gram is found to have ExcessiveIOBlockingTime.  This may be because the MPICH

ch_p4mpd device does not currently have SMP support.  Instead of using shared mem-

ory operations to optimize communication between processes on the same machine, it

uses traditional socket communication.  The send and recv functions are included in

Paradyn’s I/O metric definitions, so ExcessiveIOBlockingTime tests true.
102



Figure 20: Paradyn PC Output for Small-Messages
This figure shows a condensed form of the Performance Consultant output for small-messages.

It compares the output for LAM/MPI and MPICH. In it we see Paradyn determined that Exces-

siveSyncWaitingTime is true for both MPI implementations and drilled down through the func-

tion Gsend_message to MPI_Send. For LAM/MPI, it also identified the communicator

that the processes are using for the message-passing. For MPICH, the Performance Consultant

found that ExcessiveIOBlockingTime is true. This is a result of the inner workings of MPICH’s

communication routines, which make heavy use of read and write system commands to

pass messages.

To further ensure that Paradyn was correctly working with this program, we

counted message bytes that were passed between the processes. By inspecting the pro-

gram itself and its per process output, we know that each client process sent 10,000,000

messages at 4 bytes each, for a total of 40,000,000 bytes, and that the server process

received 50,000,000 messages, for a total of 200,000,000 bytes.

Figure 21 is a screenshot of the histogram that Paradyn generated showing the

byte counts for the server process and one client process for LAM/MPI.  We exported
103



the data that Paradyn gathered while making the histogram and calculated the number

of bytes that were sent and received throughout the course of the program.   Our calcu-

lations on the data showed that the average bytes/second of messages received by the

Figure 21: Paradyn Histogram Small-Message with LAM/MPI, Server
Process Message Bytes Sent and Received
This is a histogram from Paradyn showing the message bytes sent and received for the server

process. We see that the server did not send any messages, but received many. The average

bytes/second of messages received by the server was 386,910.809. Multiplying this by the

number of seconds the program ran gives 386,910.809 * 515 = 199,259,066 total bytes received

at the server.  Note: The colors in this screenshot were altered for printing purposes.

server was 386,910.809 and that the average number of bytes/second sent by the client

was 77,526.34.  Multiplying these by the number of seconds the program ran, gives

199,259,066 total bytes received at the server, and 39,925,890 total bytes sent by one

client.  These numbers are slightly lower than the known values, but this is to be
104



expected.  Paradyn does not insert instrumentation into a program until runtime.  It is

understandable that some messages may have been passed before Paradyn was able to

insert the instrumentation.

7.2.3  Big-Message

The next set of tests were done with the program big-message. The parameters

we used for this program were: 1000 iterations, 100,000 byte message size, and 2 pro-

cesses, one per node. The results we gathered for this program were consistent with the

program’s behavioral description.  In Figure 22, we show the condensed Paradyn Con-

sultant output for big-message with LAM/MPI and MPICH.  The Performance Con-

sultant had identical findings for both MPI implementations.  We see that

ExcessiveSyncWaitingTime is true and that the Performance Consultant drilled through

both Gsend_message and Grecv_message to the MPI functions MPI_Send and

MPI_Recv.  It also determined the communicator on which the excessive communica-

tion was taking place.

In addition, we measured the message byte count for big-message.  By inspect-

ing the program source, we know that each process sent and received 1000 messages.

They received 400,000,000 bytes total and sent 400,000,000 bytes total.  From the per

process output we know that the program ran for approximately 68.6 seconds.  In Fig-

ure 23, we show the histogram from Paradyn of point-to-point message bytes sent and

received for one of the processes. We exported the data that Paradyn collected to create

the histogram. Then, we calculated the average bytes sent per second to be 5,800,820.4
105



and the average bytes received per second to be 5,800,482.79 for that process.

Figure 22: Paradyn PC Output for Big-Messages
Here were show the condensed Performance Consultant output for big-message with LAM/MPI

and MPICH. We see that ExcessiveSyncWaitingTime is true for both implementations and that

the PC has drilled down through the functions Gsend_message and Grecv_message
to MPI_Send and MPI_Recv. It also found the communicator associated with the commu-

nication bottleneck.

Multiplying these by the number of seconds the program ran, gives 397,936,279.44

total bytes sent and 397,913,119.394 total bytes received.  These figures are slightly

lower than the 400,000,000 reported by the processes.  This is because of the delay

before Paradyn inserts the instrumentation to count the bytes at runtime.
106



Figure 23: Paradyn Histogram Big-Message with LAM/MPI, Message
Bytes Sent and Received
This figure shows the histogram that Paradyn generated for point-to-point message bytes sent

and received for one process with LAM/MPI. We calculated the average bytes sent per second

to be 5,800,820.4 and the average bytes received per second to be 5,800,482.79. Multiplying

these by the number of seconds the program ran, 68.6, gives 397,936,279.44 total bytes sent and

397,913,119.394 total bytes received. Note: The colors in this screenshot were altered for print-

ing purposes.

7.2.4  Wrong-Way

The next program we used for testing was wrong-way. The parameters we used

were: 18,000 iterations and 1000 messages.  Again, we see that  Paradyn was able to

find the bottlenecks.  In Figure 24, we show the condensed Performance Consultant

output for wrong-way.  We see that ExcessiveSyncWaitingTime is true and that

Gsend_message and Grecv_message are the bottlenecks for both LAM/MPI and
107



MPICH.   Also, for both MPI implementations, the Performance Consultant finds mes-

sage-passing to be consuming excessive synchronization time. For MPICH, the Perfor-

mance Consultant drilled down through Gsend_message and Grecv_message to

find PMPI_Send and PMPI_Recv as synchronization bottlenecks.

Figure 24: Paradyn PC Output for Wrong-Way
Here we see the Performance Consultant has discovered that ExcessiveSyncWaitingTime is true

and that the functions send_message and recv_message are the bottlenecks for both

MPICH and LAM/MPI.  It further drilled down to find MPI_Send and MPI_Recv.

We also used Paradyn to measure the number of bytes that were sent between

the processes for wrong-way with LAM/MPI.  We see from looking at the process out-

put and from inspecting the program source that 18,000,000 messages were sent and

18,000,000 messages received.  Since 4 bytes were sent in each message, this gives a

total of 72,000,000 bytes sent and received.  The process output also shows that the

wall clock time for the program run was approximately 74.6 seconds. Figure 25 shows

the histogram that Paradyn generated to display the bytes sent and received for LAM/
108



MPI. We exported the data that Paradyn collected and calculated that process 0 sent an

average of 956,779.2 bytes per second, and that process 1 received 944,582.7 bytes per

second.  Multiplying these by the number of seconds that the program ran gives

Figure 25: Paradyn Histogram Wrong-Way with LAM/MPI, Message
Bytes Sent and Received
This is a histogram showing the bytes sent by process 0 and the bytes received by process 1. We

performed calculations on the data that Paradyn generated and found that process 0 averaged

sending 956,779.2 bytes per second and that process 1 received 944,582.7 bytes per second.

Multiplying these by the number of seconds that the program ran, 74.6, gives 71,375,728 bytes

sent and 70,465,869 bytes received. Note: The colors in this screenshot were altered for print-

ing purposes.

 71,375,728 bytes sent and 70,465,869 bytes received.  Again, these numbers are

slightly lower than the actual values. This is attributed to the delay before Paradyn was

able to insert the instrumentation to gather these measurements at runtime.
109



7.2.5  Random-Barrier

The next program we used to verify Paradyn’s measurements was random-bar-

rier.  The parameters we used for the program runs were: 800 iterations, TIMETO-

WASTE = 5, and six processes, two each on three nodes. Paradyn was able to correctly

identify the bottlenecks for this program. Figure 26 shows the condensed Performance

Consultant’s analysis of the program with LAM/MPI and MPICH.  The Performance

Consultant found that ExcessiveSyncWaitingTime is true and drilled down to find

Figure 26: Paradyn PC Output for Random-Barrier
This is the condensed Performance Consultant output for random-barrier. It shows that Paradyn

finds too much time is being spent in MPI_Barrier, and that the program is CPU-bound.

This agrees with the program’s behavioral description. The Performance Consultant is able to

pinpoint the function waste_time as the computation bottleneck.
110



MPI_Barrier as the bottleneck.  For MPICH, it drilled down to expose some of the

inner workings of the MPICH implementation, showing that PMPI_Barrier is imple-

mented as a collective communication operation with PMPI_Sendrecv.  Also for

MPICH, the Performance Consultant was able to identify the communicator and mes-

sage tag on which the excessive message passing was taking place.  For both imple-

mentations, the program was found to be CPU bound, and discovered to be so in the

function waste_time.  Due to the random nature of this program, not every process

was found to be CPU bound in waste_time. This is because that a particular process

may not be designated by the program to be the “time waster” at the point when the

Performance Consultant was measuring the CPU usage of that process.

We also used Paradyn to generate histograms of the synchronization time spent

in these programs.  Figure 27 is from runs with LAM/MPI and MPICH.  The figure in

the back left is for MPICH, while the one for LAM/MPI is in the foreground.  Each

show that the time spent in synchronization is approximately equal across all the pro-

cesses in the MPI program. We exported the data that Paradyn collected and found that

for the LAM/MPI run, the average inclusive synchronization wait time was 61%, while

the same measurement for the MPICH run was 62%.
111



Figure 27: Paradyn Histograms Random-Barrier, Inclusive
Synchronization Time
These are histograms generated by Paradyn showing the sync_wait_inclusive metric for all six

processes in the programs for LAM/MPI and MPICH. The histogram for MPICH is in the back

left, while the one for LAM/MPI is in the foreground. They both show that the programs are

spending a significant portion of time in synchronization operations and that the time is spread

out over all processes in the programs. The average sync_wait_inclusive time over all processes

for LAM/MPI  is 61%, and 62% for MPICH.
112



We ran another test to verify the amount of synchronization time that was spent

in this program.  We used the MPE libraries to generate a log of the events that

occurred in the program.  Figure 28 shows the Statistical Preview window from Jump-

shot-3.  Because of file size limitations, we had to shorten the run time of the program

to be able to produce a usable log file.  For this run we used 80 iterations, TIMETO-

WASTE = 5, and four processes, two each on two nodes.  The figure shows that of the

four processes in the MPI program approximately three of them were executing in

MPI_Barrier at any given time.  This agrees with Paradyn’s findings and with the

program’s behavioral description.

Figure 28: Jumpshot-3 Statistical Preview for Random-Barrier with LAM/
MPI
This is a screen shot of the statistical preview window in Jumpshot-3 for random-barrier when

compiled with the MPE libraries. This figure shows that of the four processes in the MPI pro-

gram approximately three of them were executing in MPI_Barrier at any given time.
113



7.2.6  Intensive-Server

The next program we used for testing was intensive-server. The parameters we

used for the runs were: 10,000 iterations, TIMETOWASTE = 1, and 6 processes, two

each on three nodes.  Paradyn was able to find the bottleneck in this program.  Figure

29 shows the condensed form of the Performance Consultant’s findings for LAM/MPI

and MPICH.  We see that ExcessiveSyncWaitingTime is true and that the Perfor-

Figure 29: Paradyn PC Output for Intensive-Server
This shows the condensed form of the Performance Consultant’s output for the intensive-server

program run with LAM/MPI and MPICH. For both implementations, we see that the hypothe-

s is Excess iveSyncWai t ingTime is t rue and that the PC dri l led down through

Grecv_message to discover MPI_Recv as the bottleneck. It was also able to determine

the communicator for the bottleneck. For LAM/MPI, further refinement was possible and the

message tag on which the communication was taking place was found. For both, the Perfor-

mance Consultant showed that CPUBound was also true, but did not refine the hypothesis fur-

ther.
114



mance Consultant drilled down through Grecv_message to show MPI_Recv as the

bottleneck.  It was also able to determine the communicator upon which the excessive

communication was taking place.  For LAM/MPI, the Performance Consultant found

the message tag on which the communication occurred.  For both MPI implementa-

tions, the hypothesis CPUBound was also found to be true, although the root of the bot-

tleneck was not discovered.

Figure  30 shows histograms generated by Paradyn when measuring inclusive

synchronization waiting time for a run of intensive-server with LAM/MPI. The top left

diagram shows a client process using nearly all of its time in synchronization in the

function Grecv_message, which is represented by the red line in that diagram.  It

also shows that virtually none of its time is spent in synchronization in the function

Gsend_message, shown by the blue-green line in the diagram.  This is what we

expect, because the intensive-server program is set up to mimic clients waiting for

response from an overloaded server. The diagram in the bottom left is synchronization

time for the server process.  Here we see that the server process is not spending overly

much time in synchronization, which is what we would predict, given the program’s

behavioral description.
115



Figure 30: Paradyn Histograms Intensive-Server with LAM/MPI,
Inclusive Synchronization Time for a Client Process and Server Process
These are histograms generated by Paradyn showing the inclusive synchronization waiting time

for a client process and server process in the intensive-server program with LAM/MPI. The

top left diagram shows that the clients are spending nearly all of their t ime in

Grecv_message , r ep r e sen t ed by the r ed l i ne , and ha rd ly any t ime in

Gsend_message, shown in the blue-green line. Calculations on the data collected by

Paradyn tell that an average of 0.997976 of the CPU time for a client process was spent in

Grecv_message. In contrast, on average, only 0.000027 of a client’s CPU time was spent

in Gsend_message. The diagram in the bottom right shows the synchronization time for

the server process. We see that the server does not spend much time in Gsend_message or

Grecv_message. The average inclusive synchronization waiting times were 0.000249 and

0.000181 for Grecv_message and Gsend_message, respectively.Note: The colors in

this screenshot were altered for printing purposes.
116



Figures 31 and 32 further uphold Paradyn’s findings. They are Jumpshot-3 out-

put for intensive-server run with LAM/MPI and linked with the MPE libraries.  We

shortened these runs to avoid any log file size problems.  The parameters were: 10 iter-

ations, TIMETOWASTE = 1, and three processes, one each on three nodes.  Figure 31

shows the Statistical Preview window for this program run. From it, we can see that of

the three processes in the program, at any given time, approximately two of them are in

MPI_Recv.

Figure 31: Jumpshot-3 Statistical Preview for Intensive-Server with LAM/
MPI
This is a screenshot of the Statistical Preview window generated by Jumpshot-3 for the inten-

sive-server program run with LAM/MPI and linked with the MPE libraries. From it, we can see

that of the three processes in the MPI program, at any given time, approximately two of them

were executing in MPI_Recv.
117



Figure 32 is a small portion of Jumpshot-3’s Time Lines Window that illustrates

that the server process, process 0, is not spending much time in communication opera-

tions, but that the clients, processes 1 and 2, are spending a large portion of their time in

MPI_Recv and hardly any in MPI_Send.

Figure 32: Jumpshot-3 Time Lines Window for Intensive-Server with
LAM/MPI
This figure is the Time Lines Window from Jumpshot-3 for the intensive-server program run

with LAM/MPI and linked with the MPE libraries. It gives further evidence of the behavior of

this program. We have used the zoom feature of the program to make details of the communi-

cation in the program visible. It shows that the server process, Process 0, spends hardly any

time in synchronization operations, while the client processes, processes 1 and 2, are spending

most of their time in MPI_Recv.

7.2.7  Diffuse-Procedure

The next program studied was diffuse-procedure.  The parameters we used for

this run were: 2000 iterations and 4 processes, two each on two nodes.  Figure 33

shows the condensed form of the Performance Consultant’s analysis of the program run
118



with LAM/MPI and MPICH.  For both implementations, the Performance Consultant

found the hypothesis ExcessiveSyncWaitingTime to be true and drilled down to find

MPI_Barrier as the bottleneck. With the threshold for CPU usage set to 0.2, it found

that the program was CPU bound, and found the bottleneck to be in the function bot-

tleneckProcedure.   For MPICH, the Performance Consultant showed that

MPI_Barrier is implemented as a collective communication, with PMPI_Sendrecv.

Figure 33: Paradyn PC Output for Diffuse-Procedure
This figure shows the condensed form of the Performance Consultant’s findings for the diffuse-

procedure program run with LAM/MPI and MPICH. For both, we see that ExcessiveSyncWait-

ingTime is true and that the bottleneck is MPI_Barrier. It also shows that the program is

CPU bound in the function bottleneckProcedure.

We set the threshold for CPU usage to 0.2 because if we did not, the Perfor-

mance Consultant did not find a computational bottleneck.  Figure 34 shows a histo-
119



gram of the CPU inclusive time for three procedures across the whole application. The

three procedures are bottleneckProcedure, irrelevantProcedure0, and

irrelevantProcedure1.  The histogram shows that approximately 1 CPU’s worth

Figure 34: Paradyn Histogram Diffuse-Procedure with LAM/MPI, CPU
Inclusive for Three Procedures
This is a Paradyn generated histogram showing CPU inclusive time for three procedures across

the whole MPI program. From it we can see that the program is spending more of its time in the

bottleneckProcedure and hardly any time in the irrelevantProcedures.

of the program’s time is spent in bottleneckProcedure. If we divide 1 by the num-

ber of processes in the application, 4, we get 0.25.  This means that only about 25% of

a process’s time is spent in this function.  That is why the Performance Consultant did

not consider it to be a computational bottleneck until we set the threshold to be 0.2.
120



The creators of the Grindstone Test Suite described the program by saying that the

bottleneckProcedure used 50% of the program’s time when using four processes.

We found that if we ran the program with only two processes that the Performance

Consultant found the bottleneckProcedure to be CPU bound without changing the

CPU usage threshold.  In this case, the procedure was using ~50% of the program’s

time.

Figure 35: Jumpshot-3 Time Lines Window for Diffuse-Procedure with
LAM/MPI
This is a screenshot of the Time Lines Window generated by Jumpshot-3 for the diffuse-proce-

dure program run with LAM/MPI and linked with the MPE libraries. This shows that overall,

each of the processes in the application are spending approximately the same amount of time in

MPI_Barrier, even though at a specific point in the program the distribution might not be bal-

anced.

The last test for this program, in Figure 35, shows the Time Line window from

Jumpshot-3 for a 10 iteration 3 process run of diffuse-procedure. We had to change the
121



parameters for this run because the trace files got too large.  Here Paradyn’s synchroni-

zation findings are confirmed.  The program is indeed spending much time in

MPI_Barrier.

7.2.8  System-Time

The next program used for testing was system-time.  The parameters used for

the program run was: 10,000 iterations and four processes, two each on two nodes.

Paradyn did not pass this test, because Paradyn does not have metrics for measuring the

system time of a program.  The Performance Consultant found that all top-level

hypothesis tested false.  The findings for system-time with MPICH are exactly the

same as those for LAM/MPI.

7.2.9  Hot-Procedure

The last program in the Grindstone Test Suite we used was hot-procedure. The

parameters we used for this program were: 1,000,000 iterations and four processes, two

each on two nodes.  Figure 36 shows the condensed form of the Performance Consult-

ant’s findings for this program for LAM/MPI and MPICH.  Both were found to have

excessive CPU usage in the function bottleneckProcedure.
122



Figure 36: Paradyn PC Output for Hot-Procedure
This is the condensed Performance Consultant output for the hot-procedure program with

LAM/MPI and MPICH. For both, the hypothesis CPUBound tested true and the Performance

Consultant drilled down to find the source of the bottleneck, bottleneckProcedure.

As proof that Paradyn is correctly measuring the CPU time for the functions in

this program, Figure 37 shows a portion of the output from gprof generated by a non-

MPI version of the hot-procedure program on Linux:  It shows that all of the irrele-

vantProcedures indeed take up none of the program’s time and that the computa-

tional bottleneck is in bottleneckProcedure.

time   seconds   seconds    calls  us/call  us/call  name
100.00     46.19    46.19     1000 46190.00 46190.00  bottleneckProcedure
0.00     46.19     0.00     1000     0.00     0.00  irrelevantProcedure0
0.00     46.19     0.00     1000     0.00     0.00  irrelevantProcedure1
0.00     46.19     0.00     1000     0.00     0.00  irrelevantProcedure10
0.00     46.19     0.00     1000     0.00     0.00  irrelevantProcedure11
0.00     46.19     0.00     1000     0.00     0.00  irrelevantProcedure12

Figure 37:  Gprof Analysis of Hot-Procedure
This is gprof output for the hot-procedure program. It shows that the bottleneckProce-
dure is indeed a computational bottleneck.
123



7.3  A Toy Program Test: ssTwod

For our final test of Paradyn we use a toy program developed in Using MPI:

Portable Parallel Programming with the Message-Passing Interface [GLS99]. The book

discusses the program as an example for performance tuning message-passing.  It is

known to have a communication bottleneck in the function exchng2, as that function

is the focus of the optimization lesson in the book.  In Figure 38, we show the con-

Figure 38: Paradyn PC Output for ssTwod with LAM/MPI
This figure shows the Performance Consultant’s findings for the ssTwod program. It found that

ExcessiveSyncWaitingTime is true and drilled down to find MPI_Sendrecv and

MPI_Allreduce to be bottlenecks.

densed Performance Consultant’s findings for this program. Paradyn is able to find the

bottlenecks in this program. It found ExcessiveSyncWaitingTime to be true and drilled
124



down through the function exchng2 to find MPI_Sendrecv to be a bottleneck. It also

found a synchronization bottleneck in MPI_Allreduce.

7.4  Conclusions

Our testing shows that Paradyn correctly instruments and measures the perfor-

mance of the MPI-1 features of LAM/MPI for the majority of programs.   We verified

Paradyn’s results for LAM/MPI applications by using test programs with known

behavior. We compared what we expected to see, given the program’s description, with

what Paradyn generated.  We also compared the results that Paradyn generated for

MPICH programs against what was generated for LAM/MPI programs. Last, we used

other performance tools and compared their results with those that Paradyn gave.

We showed that Paradyn found all synchronization bottlenecks.  This result is

important because synchronization time is a primary concern in message-passing pro-

gramming.  Paradyn also found the computational bottlenecks.  The exception was the

program system-time.  Paradyn does not have metrics for system time measurement,

and thus did not find bottlenecks in the program.  Discussion of this is outside of the

scope of this work.
125



8  Conclusions and Future Work

 The goal of this work was to increase the level of parallel performance tool

support for MPI programmers on Linux clusters.  We achieved this by implementing

support for LAM/MPI into the Paradyn Parallel Performance Tool.  In addition, we

made alterations to Paradyn to support clusters of workstations with non-shared filesys-

tems.  We also verified that Paradyn correctly measures the performance of LAM/MPI

programs on Linux clusters.  Another contribution of this work was that we outlined

and investigated items of interest in MPI-2 for parallel performance tool developers.

Furthermore, we designed hypotheses and metrics for MPI-2 features for Paradyn.

Then, we explored ways in which changes to the presentation of MPI performance data

in Paradyn could expedite the programmer’s analysis of the data. We are working with

the Paradyn group to incorporate the changes made in this project into the next release

of Paradyn.

Our work exposes several key avenues for future work.  One of these is to

implement support for the MPI-2 features into Paradyn.  Another is to implement sup-

port for multiple binaries into Paradyn so users could measure the performance of

MPMD MPI programs. An additional improvement to Paradyn would be to implement

support for running programs on heterogeneous systems with LAM/MPI.  Yet another

project is to change Paradyn so that only one paradynd daemon needs to run on a node.

Currently, one Paradyn daemon runs for each MPI process with LAM/MPI and MPICH

ch_p4mpd.  This is not strictly necessary and adds to the overhead of the performance

tool.  It also adds to the perturbation of the studied program as these additional dae-
126



mons compete with it for resources. Another project of interest is to design a test suite,

similar in nature to the Grindstone Test Suite, for testing the performance analysis of

MPI-2 functionality by parallel tools.
127



References

[ANL03] Argonne National Laboratory MPI Home Page. Available from: http://www-

unix.mcs.anl.gov/mpi/.  December 2003.

[ASQ99] Brandon Allgood, Joachim Stadel, and Tom Quinn. “MPICH and LAM Per-

formance on Astrolab.”  Available from: http://www-hpcc.astro.washing-

ton.edu/faculty/trq/brandon/perform.html. 1999.

[BDV94] Gregory Burns, Raja Daoud, and James Vaigl. “LAM: An open cluster envi-

ronment for MPI.”  Proceedings of Supercomputing Symposium '94. John W.

Ross, editor. University of Toronto.  pp 379-386. 1994.

[BF00] Scott Baden and Stephen Fink.  “A Programming Methodology for Dual-tier

Multicomputers.”  IEEE Transactions on Software Engineering 26(3):212-26.

March 2000.

[BG02] Gordon Bell and Jim Gray. “What’s Next in High-Performance Computing?”

Communications of the ACM. 45(2):91-95.  February 2002.

[BGG03] Ryan Braby, Jim Garlick, and Robin Goldstone.  “Achieving Order through

CHAOS: the LLNL HPC Linux Cluster Experience.” Cluster World. San Jose,

CA. June 23-26, 2003. Available at: http://www.llnl.gov/linux/ucrl-jc-

153559.pdf.

[BKS+00] Milind Bhandarkar, L.V. Kal, Eric de  Sturler, and Jay Hoeflinger. “Object-

Based Adaptive Load Balancing for MPI Programs.”  PPL Technical report 00-

03. University of Illinois at Urbana-Champaign. September 2000.

[BL94] Ralph Butler and Ewing Lusk. “User's guide to the p4 parallel programming

system.” Technical Report ANL92 /17. Argonne National Laboratory. Mathe-

matics and Computer Science Division. October 1992. Available at: http://

www-fp.mcs.anl.gov/~lusk/p4/p4-paper/paper.html. .

[Burn99] Gregory Burns.  “Trollius: Early American Transputer Software.”  Parallelo-

gram. Issue 13. 1999.

[CHH+94] Robin Calkin, Rolf Hempel, Hans-Christian Hoppe, and Peter Wypior.

“Portable programming with the PARMACS message passing library.” Parallel

Computing. 20(4):615-632. 1994.

[CLMR99] Phillip Carns, Walter Ligon III, Scott McMillan, and Robert Ross. “An

Evaluation of Message Passing Implementations on Beowulf Workstations.”

Proceedings of the 1999 Extreme Linux Workshop.  June 1999.
128



[Dann02] Jim Danneskiold.  “Linux Networx to build Linux supercomputer for Los

Alamos.” News and Public Affairs. News Release. Los Alamos National Lab-

oratory.  Available at: http://www.lanl.gov/worldview/news/releases/archive/

02-106.shtml.  September 23, 2002.

[EM98] Antonio Espinosa and Toms Margalef. “Automatic Performance Evaluation of

Parallel Programs.” IEEE Proc. of the 6th Euromicro Workshop on Parallel and

Distributed Processing. IEEE Computer Society Press. January 1998.

[ELLC03] Etnus LLC.  “TotalView User’s Guide.”  Document version 6.2. Available

on the web at http://www.etnus.com. June 2003.

[FK94] Jon Flower and Adam Kolawa. “Express is not just a message passing system:

Current and future directions in Express.”  Parallel Computing. 20(4):597-614.

1994.

[FKN+02] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. “The

Physiology of the Grid --- An Open Grid Services Architecture for Distributed

Systems Integration.”  Technical report. Argonne National Laboratory. 2002.

[GBD+94] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert

Mancheck, and Vaidy Sunderam. PVM: Parallel Virtual Machine  A Users’

Guide and Tutorial for Networked Parallel Computing.  MIT Press. 1994.

[GD02] Jim Garlick and Chris Dunlap. “Linux Project Report.”  UCRL-ID-150021.

Lawrence Livermore National Laboratory. Available at: http://www.llnl.gov/

linux/ucrl-id-150021.pdf. August 18, 2002.

[GHD00] William George, John Hagedorn, and Judith Devaney. “IMPI: Making MPI

Interoperable.” with appendix I by IMPI Steering Committee.  “IMPI: Interop-

erable MessagePassing Interface.”  Protocol Version 0.0. January, 2000. http://

impi.nist.gov/IMPI/. Journal of Research of the National Institute of Standards

and Technology. MayJune 2000.

[GHL+98] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk,

Bill Nitzberg, William Saphir, and Marc Snir. MPI- The Complete Reference:

Volume 2, The MPI Extensions.  MIT Press. 1998.

[GLD+96] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum.  “A

High-Performance, Portable Implementation of the MPI Message Passing Inter-

face Standard.”  Parallel Computing. North-Holland. vol. 22. pp. 789-828.

1996.
129



[GLS99] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable

Parallel Programming with the Message-Passing Interface.  Second Edition.

MIT Press. 1999.

[GLT99] William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced

Features of the Message-Passing Interface.  MIT Press.  1999.

[GS93] William Gropp and Barry Smith.  “Users Manual for the Chameleon Parallel

Programming Tools.” Technical Report ANL93 /23. Argonne National Labora-

tory. 1993.

[HF93] Michael T. Heath and Jennifer E. Finger.  “ParaGraph: A Tool for Visualizing

Performance of Parallel Programs.” Technical Report Oak Ridge National Lab.

1993.

[Kear03] Brian Kearns.  “A Performance Study of LAM and MPICH on an SMP Clus-

ter.”  Master’s Thesis in Computer Science.  Portland State University.  2003.

[HS96] Jeffrey Hollingsworth and Michael Steel.  “Grindstone: A Test Suite for Paral-

lel Performance Tools.”  University of Maryland Computer Science Technical

Report. CS-TR-3703.  October, 1996.

[HX98] Kai Hwang and Zhiwei Xu. Scalable Parallel Computing.  McGraw-Hill.

1998.

[LANL02] Los Alamos National Laboratory Public Affairs Office. “High Performance

Computing For National Security.”  News and Public Affairs.  Los Alamos

National Laboratory.  Available at: http://www.lanl.gov/worldview/news/pdf/

HighPerf_Computing.pdf. May 2002.

[LLNL02] “Meeting Enduring National Needs.  Livermore's New Unclassified Super-

computer in Top Five.” Lawrence Livermore National Laboratory 2002 Annual

Report.  Lawrence Livermore National Laboratory.  Available at: http://

www.llnl.gov/annual02/pdfs/national.pdf.  2002.

[LT00] LAM Team.  “Porting the LAM-MPI 6.3 Communication Layer.”  Available

from: http://www.lam-mpi.org/download/. Filename: lam_rip.ps.  March 8,

2000.

[LTJ03] Lam Team. “LAM / MPI Parallel Computing: XMPI - A Run/Debug GUI for

MPI.”  Available on the web at http://www.lam-mpi.org/software/xmpi. June

2003.
130



[LTA03] LAM Team.  “The History of LAM/MPI.”  http://www.lam-mpi.org/about/

overview/history.php. August 2003.

[Malo02] Staci Maloof.  “World’s Most Powerful Linux-based Supercomputer.”  DOE

Science News.  Office of Science.  U.S. Department of Energy.  Available at:

http://www.science.doe.gov/Science_News/feature_articles_2002/April/

PNNL_supercomputer/PNNL-Supercomputer.htm. April 22, 2002.

[May01] John May. Parallel I/O for High Performance Computing.  Academic Press.

2001.

[MB93] John May and Francine Berman.  “Panorama: A Portable, Extensible Parallel

Debugger.”  ACM/ONR Workshop on Parallel and Distributed Debugging.

ACM SIGPLAN 28(12):96-106. December 1993.

[MBM94] Bernd Mohr, Darryl Brown, and Allen D. Malony.  “TAU: A portable paral-

lel program analysis environment for pC++.” In Proceedings of CONPAR 94 -

VAPP VI. University of Linz, Austria. September 1994.

[MCC+95] Barton Miller, Mark Callaghan, Jonathan Cargille, Jeffrey Hollingsworth,

Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam and Tia Newhall.

“The Paradyn Performance Tools.” IEEE Computer 28(11):37-46. November

1995.

[MPI03] Message Passing Interface Forum. http://www.mpi-forum.org/. September

2003.

[MPIC03] MPICH - A Portable MPI Implementation.  http://www-unix.mcs.anl.gov/

mpi/mpich/. October 2003.

[MT02] Bernd Mohr and Jesper Traff.  “Intitial Design of a Test Suite for Autmatic

Performance Analysis Tools.”  APART Technical Report. FZJ-ZAM-IB-2002-

13.  October 2002. Available at: http://www.fz-juelich.de/apart.

[NAW+96] Wolfgang E. Nagel, Alfred Arnold, Michael Weber, Hans-Christian Hoppe,

and Karl Solchenbach. “VAMPIR: Visualization and analysis of MPI

resources.”  Supercomputer, 12(1):69-80. January 1996.

[Nevi96] Nick Nevin.  “The Performance of LAM 6.0 and MPICH 1.0.12 on  a Work-

station Cluster.”  Ohio Supercomputing Center. Technical Report OSC-TR-

1196-4. Columbus, OH. 1996.
131



[NSB03] National Science Board. “Science and Engineering Infrastructure for the 21st

Century: The Role of the National Science Foundation.”  NSF Report NSB-02-

190.  February 2003.

[OF00] Hong Ong and Paul Farrell. “Performance Comparison of LAM/MPI, MPICH,

and MVICH on a Linux Cluster connected by a Gigabit Ethernet Network.”

Proceedings of the 4th Annual Linux Showcase & Conference. Atlanta, GA.

October 10-14, 2000.

[PCL+02] William Putman, Jiundar Chern, Shian-Jiann Lin, William Sawyer, and Bo-

Wen Shen. “Modeling the Earth’s Atmosphere.” Presented at SC2002. NASA

Goddard Space Flight Center.  November 18-21, 2002.

[PG03] The Paradyn Group.  “Paradyn Parallel Performance Tools User’s Guide:

Release 4.0.”  Available at http://www.cs.wisc.edu/paradyn/manuals.html.

October 2003.

[PTC03] The Parallel Tools Consortium. PTools MQM working group home page.

Available on the web at http://www.ptools.org/projects/mqm/.  June 2003.

[RAD+98] Daniel Reed, Ruth Aydt, Luiz DeRose, Celso Mendes, Randy Ribler, Eric

Shaffer, Huseyin Simitci, Jeffrey Vetter, Daniel Wells, Shannon Whitmore, and

Ying Zhang. “Performance Analysis of Parallel Systems: Approaches and Open

Problems.” Proceedings of the Joint Symposium on Parallel Processing (JSPP),

pp. 239-256. June 1998.

[RAN+93] Daniel Reed, Ruth Aydt, Roger Noe, Philip Roth, Keith Shields, Bradley

Schwartz, and Luis Tavera. “Scalable performance analysis: The Pablo perfor-

mance analysis environment.” In Proceedings of the Scalable Parallel Libraries

Conference, A. Skjellum, Ed. IEEE Computer Society.  pp. 104-113. 1993.

[Saph97] William Saphir.  “A Survey of MPI IMplementations.”  Lawrence Berkeley

National Laboratory. University of California. Berkeley, CA. Nov. 6, 1997.
Available from: http://www-library.lbl.gov/docs/LBNL/410/25/PDF/LBNL-

41025.pdf.

[Schw01] David Schwoegler.  “Fact Sheet: ASCI White Dedication.”  News Release.

Lawrence Livermore National Laboratory.  Available at: http://www.llnl.gov/

llnl/06news/NewsReleases/2001/NR-01-08-03b.html.  August 15, 2001.

[Seit01] Charles Seitz.  “Recent Advances in Cluster Networks.”  Keynote address pre-

sented at IEEE Cluster 2001 Conference.  Newport Beach, CA.  October 8-11,

2001.
132



[SLG+00] Jeffrey Squyers, Andrew Lumsdaine, William George, John Hagedorn, and

Judith Devaney.  “The Interoperable Message Passing Interface (IMPI) Exten-

sions to LAM/MPI.”  In Proceedings, MPI Developer's Conference. Cornell,

NY. 2000.

[SOH+99] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack

Dongarra. MPI - The Complete Reference. Volume 1, The MPI Core. 2nd Ed.

MIT Press. 1999.

[SSD+94] Anthony Skjellum, Steven Smith, Nathan Doss, Alvin Leung, and Manfred

Morari. The Design and Evolution of Zipcode. Parallel Computing 20(4):565-

596. 1994.

[SSB+99] Thomas Sterling, John Salmon, Donald Becker, and Daniel Savarese. How

to Build a Beowulf: A Guide to the Implementation and Application of PC

Clusters.  MIT Press. 1999.

[TWS03] Valerie Taylor, Xingfu Wu, and Rick Stevens.  “Prophesy: An Infrastructure

for Performance Analysis and Modeling of Parallel and Grid Applications.”

ACM SIGMETRICS Performance Evaluation Review 30(4):13-18. March

2003.

[Thak00] Rajeev Thakur. “MPICH on Clusters: Future Directions.” Technical Paper

presented at Linux Supercluster Users Conference.  September 11-15, 2000.

Argonne National Laboratory. Available at www.linuxclustersinstitute.org/

Linux-HPC-Revolution/ Archive/PDF00/Thakur.pdf.

[Top503] Top 500 Supercomputer Sites. Available at: http://www.top500.org. Septem-

ber 1, 2003.

[Vett02] Jeffrey Vetter. “Dynamical Statistical Profiling of Communication Activity in

Distributed Applications.”  ACM SIGMETRICS 2002.  June 15-19, 2002.

Marina Del Rey, CA. Performance Evaluation Review 30(1):240-249.  June

2002.

[VM01] Jeffrey Vetter and Michael McCracken.  "Statistical Scalability Analysis of

Communication Operations in Distributed Applications."  Proc. ACM SIG-

PLAN Symp. on Principles and Practice of Parallel Programming (PPOPP).

2001.

[VM02] Jeffrey Vetter and Frank Mueller.  “Communication Characteristics of Large-

Scale Scientific Applications for Contemporary Cluster Architectures.”  Pro-
133



ceedings of the International Parallel and Distributed Processing Symposium.

2002.

[WM00] Felix Wolf and Bernd Mohr.  “Automatic Performance Analysis of MPI

Applications Based on Event Traces.” Proceedings of European Conference on

Parallel Computing (Euro-Par). Munich, Germany.  August 2000.

[WM01] Felix Wolf and Bernd Mohr. “Automatic Performance Analysis of SMP Clus-

ter Applications.”  Forschungszentrum Jülich, ZAM. Technical Report IB-

2001-05. 2001.

[Yan94] Jerry C. Yan. “Performance Tuning with AIMS -- An Automated Instrumenta-

tion and Monitoring System for Multicomputers.”  Proceedings of the 27th

Hawaii International Conference on System Sciences. Hawaii. January 1994.

[ZG03] Mary Zosel and John Gyllenhaal.  Private communication.  Lawrence Liver-

more National Laboratory.  October 2003.

[ZLGW99] Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider.  “Toward

scalable performance visualization with Jumpshot.”  High Performance Com-

puting Applications. 13(2):277-288. Fall 1999.
134


	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	2.1 Clusters of Workstations 11
	2.2 Message-Passing and the Message Passing Interface (MPI) 14
	2.3 MPI-2 18
	2.3.1 Process Management 19
	2.3.2 MPI-I/O 21
	2.3.3 Remote Memory Access 24

	2.4 MPICH 27
	2.4.1 Overview of MPICH 27
	2.4.2 The MPICH ch_p4 Device 29
	2.4.3 The MPICH ch_p4mpd Device 30

	2.5 LAM/MPI 32
	2.5.1 Overview of LAM/MPI 33
	2.5.2 LAM/MPI Architecture 36
	2.5.3 LAM/MPI Runtime Description 37

	3.1 Background 41
	3.2 Existing Paradyn Support for MPI on Clusters of Workstations 45
	3.2.1 Paradyn and the MPICH ch_p4 Device 46
	3.2.2 Paradyn and the MPICH ch_p4mpd Device 51
	3.2.3 Paradyn and LAM/MPI 56

	5.1 Alterations Common to Both MPI Implementations 65
	5.2 Addition of Support for MPICH 66
	5.3 Considerations for LAM/MPI 68
	6.1 Discussion of MPI-2 Features Important for Performance Tool Developers 72
	6.2 Design for MPI-2 Feature Performance Measurement in Paradyn 74
	6.2.1 Metric Changes 74
	6.2.2 Hypothesis Hierarchy Changes 90
	6.2.3 Where Axis Changes 92

	7.1 Discussion of Testing Design 95
	7.2 Grindstone Test Suite Discussion and Results 97
	7.2.1 Explanation of Diagrams and Symbols 101
	7.2.2 Small-Messages 102
	7.2.3 Big-Message 105
	7.2.4 Wrong-Way 107
	7.2.5 Random-Barrier 110
	7.2.6 Intensive-Server 114
	7.2.7 Diffuse-Procedure 118
	7.2.8 System-Time 122
	7.2.9 Hot-Procedure 122

	7.3 A Toy Program Test: ssTwod 124
	7.4 Conclusions 125
	1 MPI-I/O Individual and Collective File Access Operations 23
	2 MPI-I/O Split Collective File Access Operations 24
	3 Dynamic Process Creation Metrics 75
	4 RMA Metrics for Operation Counts 76
	5 RMA Metrics for Bytes Transferred 77
	6 RMA Metrics for Active Target Synchronization 79
	7 RMA Metrics for Passive Target Synchronization 79
	8 RMA Metrics for Overall Synchronization 81
	9 MPI-I/O Metrics for Operation Counts 82
	10 MPI-I/O Metrics for Bytes Transferred 83
	11 MPI-I/O Metrics for Collective Operations Synchronization 84
	12 MPI-I/O Metrics for Non-Collective Operations Synchronization 86
	13 MPI-I/O Metrics for Overall Synchronization 89
	14 The Grindstone Communication Bottleneck Program Characteristics 98
	15 The Grindstone Computational Bottleneck Program Characteristics 99
	16 Grindstone Test Suite Results 100

	1 MPICH ch_p4 Process Startup 30
	2 MPICH ch_p4mpd Process Startup 31
	3 MPICH ch_p4mpd Computation Begins 32
	4 LAM/MPI Starting the LAM Daemons 37
	5 LAM/MPI Starting the MPI Processes 38
	6 LAM/MPI MPI Computation Begins 39
	7 The Paradyn Performance Consultant at Program Start 43
	8 The Paradyn Performance Consultant at Program End 44
	9 Paradyn/MPICH ch_p4 Initial Startup 47
	10 Paradyn/MPICH ch_p4 Starting Remote Paradyn Daemons and MPI Processes 48
	11 Paradyn/MPICH ch_p4 Starting the MPICH Application 50
	12 Paradyn/MPICH ch_p4mpd Initial Startup 52
	13 Paradyn/MPICH ch_p4mpd Starting the MPICH Processes 53
	14 Paradyn/MPICH ch_p4mpd Initializing Paradyn Runtime 55
	15 Paradyn/LAM/MPI Starting the MPI Processes 57
	16 Paradyn/LAM/MPI Intitialization Complete 58
	17 Current Paradyn Hypothesis Hierarchy 91
	18 Changes to Paradyn’s Hypothesis Hierarchy for MPI-2 Support 92
	19 Changes to Paradyn Resource Hierarchy for MPI-2 94
	20 Paradyn PC Output for Small-Messages 103
	21 Paradyn Histogram Small-Message with LAM/MPI, Server Process Message Bytes Sent and Received 104
	22 Paradyn PC Output for Big-Messages 106
	23 Paradyn Histogram Big-Message with LAM/MPI, Message Bytes Sent and Received 107
	24 Paradyn PC Output for Wrong-Way 108
	25 Paradyn Histogram Wrong-Way with LAM/MPI, Message Bytes Sent and Received 109
	26 Paradyn PC Output for Random-Barrier 110
	27 Paradyn Histograms Random-Barrier, Inclusive Synchronization Time 112
	28 Jumpshot-3 Statistical Preview for Random-Barrier with LAM/MPI 113
	29 Paradyn PC Output for Intensive-Server 114
	30 Paradyn Histograms Intensive-Server with LAM/MPI, Inclusive Synchronization Time for a Client ...
	31 Jumpshot-3 Statistical Preview for Intensive-Server with LAM/MPI 117
	32 Jumpshot-3 Time Lines Window for Intensive-Server with LAM/MPI 118
	33 Paradyn PC Output for Diffuse-Procedure 119
	34 Paradyn Histogram Diffuse-Procedure with LAM/MPI, CPU Inclusive for Three Procedures 120
	35 Jumpshot-3 Time Lines Window for Diffuse-Procedure with LAM/MPI 121
	36 Paradyn PC Output for Hot-Procedure 123
	37 Gprof Analysis of Hot-Procedure 123
	38 Paradyn PC Output for ssTwod with LAM/MPI 124
	LIST OF ACRONYMS

	1 Introduction
	2 Background
	3 Paradyn
	4 Related Work
	5 Alterations Made to Paradyn For MPI-1
	6 Additions to Paradyn for Support of MPI-2 Features
	7 Results and Discussion
	8 Conclusions and Future Work
	References

