
 1

ABSTRACT

An abstract of the thesis of Rashawn Lee Knapp for the Master of Science in

Computer Science presented June 15, 2006.

Title: Towards Environment-Aware Performance Analysis: Improving Parallel

Performance Diagnosis by Including Knowledge of the Runtime Environment

Tools used for conducting parallel performance analysis do not adequately convey

an understanding of an application’s performance in relation to the status and behavior

of the runtime environment in which an application executes. This limits the quality

of diagnosis that tools are able to offer regarding the causes of performance problems.

This work presents Environment-Aware Performance Analysis, a new approach

that targets improving the quality of diagnosis offered by performance analysis tools.

This thesis focuses on Environment-Aware Performance Analysis for parallel

applications.

Environment-Aware Performance Analysis includes analysis of an application’s

execution behavior and analysis of the environment in which an application executes.

 2

The performance diagnosis incorporates both sets of analyses, and it seeks to identify

root causes of performance behavior. Environment-Aware Performance Analysis

extends traditional methods of application performance analysis, and, by doing so, has

potential to improve the quality of performance diagnosis. In this work, we

investigate including analysis about the status and behavior of the runtime

environment.

A primary goal is to demonstrate a strong need for performance analysis tools to

utilize information about the runtime environment. Through simulated experiments

and by citing published and anecdotal scenarios, we describe situations in which

traditional performance analysis tools either provide misleading diagnostic

information or are unable to provide adequate guidance to analysts in determining the

causes of performance problems. With proof of concept demonstrations, we show the

potential for performance analysis tools to improve the quality of diagnosis by

incorporating analysis of the runtime environment with analysis of application

behavior. We present a layered view of the runtime environment and describe how

this view can be used to frame performance problems in terms of root causes and

potential optimizations. We discuss considerations relate development and design of

environment-aware tools. In our presentation of related work, we provide a historical

perspective and describe the state of the art for parallel performance analysis tools.

TOWARDS ENVIRONMENT-AWARE PERFORMANCE ANALYSIS:

IMPROVING PARALLEL PERFORMANCE DIAGNOSIS BY INCLUDING

KNOWLEDGE OF THE RUNTIME ENVIRONMENT

by

RASHAWN LEE KNAPP

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Portland State University
2006

 i

ACKNOWLEDGMENTS

I wish to thank my advisor Dr. Karen Karavanic who offered encouragement and

support through every step of this process; Dr. Douglas Pase who reviewed and

advised on the research from the beginning; Dr. Bryant York and Dr. Robert Bertini

who offered valuable advice as committee members; and Kathryn Mohror who shared

her performance analysis experiences with me.

 ii

TABLE OF CONTENTS

Acknowledgments ... i

List of Tables..vii

List of Figures..viii

CHAPTER 1 INTRODUCTION...1

1.1 Overview ..1

1.2 Background...2

CHAPTER 2 RELATED WORK ...15

2.1 Environment and System Analysis...15

2.1.1 System Administration Utilities ..15

2.1.2 System Monitoring ..18

2.1.3 Hardware Counters ..20

2.1.4 Discussion..21

2.2 Application Focused Performance Tools ...22

2.2.1 gprof ..22

2.2.2 AIMS ...23

2.2.3 MPP Apprentice ..25

2.2.4 The MPI Profiling Interface and MPI Profiling Tools27

2.2.5 Upshot, Nupshot, Jumpshot...28

2.2.6 Discussion..29

2.3 Integrated System and Application Level Performance Tools...........................29

 iii

2.3.1 IPS-2 ..30

2.3.2 Paradyn ..32

2.3.3 DPCL...33

2.3.4 DCPI ..33

2.3.5 VAMPIR..34

2.3.6 SvPablo..35

2.3.7 SCALEA and SCALEA-G ..36

2.3.8 PerfSuite ..38

2.3.9 Active Harmony ..38

2.3.10 TAU...39

2.3.11 PEM and CPO ...40

2.3.12 Discussion..41

2.4 Automated Performance Diagnosis ..42

2.4.1 ATExpert ...42

2.4.2 Paradyn ..43

2.4.3 KOJAK..45

2.4.4 ASL..45

2.4.5 AKSUM...46

2.4.6 Active Harmony ..47

2.4.7 Self-propelled Instrumentation..47

2.4.8 Discussion..48

2.5 Tools for Experiment Management..49

 iv

2.5.1 Early Work ..49

2.5.2 ZENTURIO ...50

2.5.3 PerfTrack ...51

2.6 Conclusion..52

CHAPTER 3 A FRAMEWORK FOR ENVIRONMENT-AWARE PERFORMANCE

ANALYSIS ..53

3.1 The Layers of an Application and its Environment..53

3.1.1 Application ..55

3.1.2 Library ...55

3.1.3 Operating System ..56

3.1.4 Physical..57

3.1.5 Specifying Root Causes and Potential Optimizations by Layers58

3.1.6 Application Execution and the Runtime Environment..............................59

3.1.7 Discussion..61

3.2 Important Issues for Environment-Aware Performance Tuning Approaches....62

3.2.1 Time...62

3.2.2 Application ..62

3.2.3 Runtime Environment ...63

3.2.4 Measurement ...63

3.2.5 Analysis ...64

3.2.6 Diagnosis ...64

3.3 Discussion...65

 v

CHAPTER 4 PERFORMANCE ANALYSIS CASE STUDIES................................66

4.1 OS and File System Upgrade ...67

4.2. Inconsistent I/O Rate Service Time...68

4.3 System Interference Related to Variability in Application Performance...........69

4.3.1 ASCI Q ..70

4.3.2 IBM SP Machines and AIX Trace...72

4.3.3 NAMD...74

4.4 Faulty Hardware ...75

4.5 Discussion...77

CHAPTER 5 A TEST SUITE FOR PERFORMANCE DIAGNOSIS79

5.1 Application Layer: Naive Broadcast ...80

5.2 Library Layer: MPI Library Bottleneck ..81

5.3 Operating System Layer: NFS Server Experiment ...81

5.4 Physical Layer: Memory Difference ...83

5.5 Physical Layer: Interconnect Test ...84

5.6 Discussion...85

CHAPTER 6 EXPERIMENTAL RESULTS..86

6.1 Available network bandwidth for Inter-node communication87

6.2 Gathering system info with MPI processes ..100

6.2.1 Overview ...100

6.2.2 Purpose ..101

6.2.3 Methods ...101

 vi

6.2.4 Results ...103

6.2.5 Discussion..107

CHAPTER 7 CONCLUSIONS AND FUTURE WORK ...108

References ..111

 vii

LIST OF TABLES

Table 1: Case Studies ...66

Table 2: Summary Statistics..93

Table 3: Summary Statistics..96

Table 4: Wall Clock Times..103

Table 5: Wall Clock Times..103

Table 6: Vmstat reported values. ..104

Table 7: Vmstat reported values. ...104

Table 8: Explanation of Vmstat measurements and units ...104

 viii

LIST OF FIGURES

Figure 1: Steps Involved in a Performance Tuning Cycle ..11

Figure 2: The Scope of Today’s Parallel Performance Tools12

Figure 3: The Scope of Environment-Aware Parallel Performance Tools..................13

Figure 4: The Four layers of the Runtime Environment ...54

Figure 5: Main Components of the Layers of the Runtime Environment56

Figure 6: Example of Runtime Environment Components Involved in MPI_Send

 on an Ethernet based Cluster ..61

Figure 7: Static structure of main loop in big-message...89

Figure 8: TCP Throughput and Latency in the Normal Environment........................92

Figure 9: TCP and MPI Throughput and Latency in the Normal Environment..........92

Figure 10: Tool Gear 1.30 screen shot of big-message in the normal environment ...93

Figure 11: Paradyn 4.2.2 screen shot of Search History Graph of big-message in the

 normal environment..94

Figure 12: Paradyn 4.2.2 screen shot Table Visualization of big-message in the

 normal environment..95

Figure 13: Tool Gear 1.30 screen shot of big-message in the sub-optimal

 environment..97

Figure 14: Screen shot of Search History Graph of big-message in the sub-optimal

 environment..97

 ix

Figure 15: Paradyn 4.2.2 screen shot Table Visualization of big-message in the sub-

 optimal environment...98

Figure 16: TCP throughput and latency in the normal and the sub-optimal

 environments ..100

Figure 17: Processes, Interrupts and Context Switches for paulus and andrea in the

 Normal and Sub-optimal Environments. ...106

 1

CHAPTER 1 INTRODUCTION

This work presents Environment-Aware Performance Analysis, a new approach

that targets improving the quality of diagnosis offered by application performance

analysis tools. The research presented in this thesis focuses on Environment-Aware

Performance Analysis for parallel applications.

1.1 Overview

Environment-Aware Performance Analysis includes both analysis of an

application’s execution behavior and analysis of the environment in which an

application executes. The performance diagnosis incorporates both sets of analyses,

and it seeks to identify root causes of performance behavior. Environment-Aware

Performance Analysis extends traditional methods of application performance

analysis, and, by doing so, has potential to improve the quality of performance

diagnosis. A broad definition of Environment-Aware Performance Analysis interprets

environment analysis to include the runtime environment and aspects about the build

and compile time environments. In this work, we investigate the runtime environment

portion of the environment analysis component.

A primary goal of this thesis is to demonstrate a strong need for performance

analysis tools to utilize information about the runtime environment in the phases of

performances analysis. Through simulated experiments and by citing published and

anecdotal scenarios, we describe situations in which traditional performance analysis

 2

tools either provide misleading diagnostic information or are unable to provide

adequate guidance to analysts in determining the causes of performance problems.

With proof of concept demonstrations, we show the potential for performance analysis

tools to improve the quality of diagnosis by incorporating analysis of the runtime

environment with analysis of application behavior. We present a layered view of the

runtime environment and describe how this view can be used to frame performance

problems in terms of root causes and potential optimizations. We discuss

considerations related to design and development of environment-aware tools. In our

presentation of related work, we describe other parallel performance analysis tools.

The contributions of this thesis are:

• A test suite for evaluating the ability of tools to accurately diagnose

performance problems;

• Experimental results showing the limitations of current tools;

• A set of case studies illustrating situations that might have benefited from

Environment-Aware Performance Analysis;

• A discussion of the challenges and concerns for development of environment-

aware tools; and

• A survey of the state of the art in parallel performance analysis tools.

1.2 Background

In this section we introduce the key concepts of parallel computing. We describe

some of the motivating factors driving the implementation of large-scale parallel

 3

computing systems. We introduce performance analysis concepts, and we discuss

challenges related to conducting performance analysis in large-scale environments.

We present key features in the cycle of performance tuning, and we describe how

Environment-Aware Performance Analysis extends the scope of traditional

performance analysis.

In parallel computing, multiple compute resources act simultaneously to solve

computational problems. Compared to serial or sequential processing, in which one

central processing unit (CPU) is employed, the advantage offered by parallel

computing is the ability to solve problems in less time. There are many computational

problems which cannot be solved on sequential machines simply because the time

required is too great. However, by combining computational resources, parallel

computing creates an environment in which it is possible to solve large and complex

problems in reasonable amounts of time. Parallel computing is often referred to as

high end or high performance computing.

High performance systems combine parallelism with advances in hardware design

to achieve faster computation. Parallelism has several basic forms, each with many

variations. One common form is shared memory parallelism, in which processors can

access memory as a global address space and processes view the shared memory as

local memory. Alternatively, in distributed memory parallel computing, memory is

not shared and communication networks are required for connecting cooperating

processes. Many of today’s high performance systems employ a combination of these

two basic forms, in which a single node comprises several shared memory compute

 4

resources and nodes are interconnected via a communication network. This is a

common configuration for cluster computing. The term massively parallel is used to

describe high end systems containing many processors. This notion of “many’ is

subjective and changes over time, as advances in the design of processors, memory,

and interconnect technology allow new systems to contain more processors than the

previous generation of high performance systems. In general, there is a positive

correlation between the number of processors and the computational power of a

system. The TOP500 project ranks the computational capacity of high end systems by

ordering the top 500 systems according to performance on a benchmark measuring the

number of floating point operations per second (Flop/s)[87]. With each successive

publication of the list, the current generation of massively parallel systems rises to the

upper ranks. In June of 2002, Earth-Simulator, a 5,120 processor high performance

system installed at the Earth Simulator Center in Japan, placed first in the TOP500

ranking [86]. With sustained performance at 35.86 Tera Flop/s (TFlop/s),

Earth-Simulator ranked first on the list for five consecutive publications and held the

seventh position in the most recent release, in November of 2005 [87]. BlueGene/L,

with 131,072 processors, earned first place. Installed at Lawrence Livermore National

Laboratory, in the United States, this machine’s sustained performance is rated at

280.6 TFlop/s [87]. Size and intricacy in hardware design lend to the overall

complexity of these systems. The welcome benefit of such complexity is that as more

combinations and variations of achieving computational power and parallelism are

 5

developed, computationally harder problems have the potential to be solved within

reasonable time frames.

A class of problems, referred to as “Grand Challenge Problems,” is a driving

motivation in the implementation and design of today’s high performance systems.

These problems are characterized as computational problems of significant social and

economic impact which cannot be solved in reasonable amounts of time using current

state of the art resources, but whose solutions would be advanced by the application of

high performance computing techniques and resources [83]. To promote active

research in the pursuit of solutions to Grand Challenges, the United States enacted the

High Performance Computing Act of 1991[24]. This legislation launched the

federally supported High Performance Computing and Communications (HPCC)

programs, providing significant support and attention to research and development in

many areas of high performance computing. One of the identified goals of the act was

to enable the research and development of software and hardware necessary to address

Grand Challenges. Many of the Grand Challenges originating from the legislation

required simulation, and as a result of the successes of these initiatives, simulations of

important physical phenomena are now possible. In many cases where true

experimentation is severely limited or impossible, simulation has provided the first

real understanding of certain phenomena. The successes of these research endeavors

are outlined in a 1996 HPCC report [36], and include aeropropulsion system

simulation, combustion modeling, atmospheric modeling, ocean modeling, modeling

of air pollution dynamics, global climate modeling, earthquake ground motion

 6

modeling, analysis of protein and nucleic acid sequences, and protein folding

prediction. An update to the 1991 Grand Challenges was recently published by the

National Coordination Office for Networking and Information Technology Research

and Development (NITRD) [20].

The critical nature of these Grand Challenge problems requires that the

applications and systems involved in these computations produce results that are both

timely and accurate. Time constraints are imposed upon applications in several ways.

Often, the data produced by a simulation is needed within some specific time frame.

For example, in predicting the location along a coast line and with how much force a

hurricane will hit, the prediction, in order to be useful, must be made well before the

actual event occurs. Other time constraints include job scheduling parameters and

system mean time to failure. There is a general desire to improve the performance of

these large-scale scientific applications by decreasing execution time. Additionally, if

the execution time, also known as wall-clock time, of a critical high performance

application exceeds an imposed time constraint or unexpectedly takes longer, a need to

gain understanding about the application’s behavior arises.

Performance analysis techniques are used to gain understanding about an

application’s execution behavior. Performance analysis involves measurement,

interpretation, and communication [43]. Measurement is both deciding what to

measure and how to obtain the measurement. Interpretation refers to understanding

the measured results and discerning their significance and validity. Communication is

the process of presenting the results. Even for a simple application, it would be

 7

extremely difficult to conduct a performance analysis study using only manual

methods. At most, one might be able to gather wall-clock timing information; and this

would be at the granularity of the stop watch used, a granularity much courser than

that of the computing system. Understanding application behavior, even for the

simplest of applications, requires a degree of automated performance analysis support.

Performance analysis support can be provided by hardware, by the operating

system, by library facilities, and by high level tools. Each mechanism offers varying

levels of assistance in conducting the three phases of performance analysis. The

measurement phase includes instrumentation and data collection. Instrumentation can

be accomplished by compiling explicit instrumentation points into the executable

code, by inserting the instrumentation into an already compiled application, known as

binary rewriting, and by inserting the instrumentation dynamically, as the application

executes.

The four basic approaches to data collection are timing, counting, profiling, and

tracing [74, 76]. Timing techniques measure execution time. A common timing

measurement is total execution time, also called wall-clock time. It is also common

to measure the time spent in certain activities: loops, function calls, time spent

waiting, etc. With a clock of adequate resolution, timing techniques provide sufficient

information regarding where time is spent. Timing, however, does not encapsulate

notions of when events occur, with what frequency events occur, or why events occur.

Counting captures the number of times an event occurs. Used by itself, counting does

not provide insight into the dynamic behavior of an application or a system. Profiling,

 8

also called sampling, is a way to approximate values that would be captured by strict

counting. Profiling measurements are obtained by periodically sampling some aspect

of the system state and incrementing a counter associated with the observed state. At

the completion of a profiling interval, the value of a counter is proportional to the total

time spent executing in the associated state. Profiling provides approximated

information about the number of times events occur. The primary limitation of

profiling is the potential for errors, which is inherent in sampling. For example,

profiled statistics would be skewed if the number of samples obtained is quite low and

the profiled application is a short-lived application. Tracing records the occurrences

of events and saves a descriptive record about each event. Trace records typically

contain an event identifier, indicating what event occurred; a timestamp, indicating

when the event occurred; and data regarding the node, process, and source code line

associated with the event. Tracing mechanisms provide detail about what events

occur, when events occur, and where events occur. Additionally, counting and timing

measurements can be computed from the trace data. Tracing has potential to be highly

invasive, depending on the number of events that are traced and the frequency of event

occurrences. This could lead to unacceptable perturbation in the application. Tracing

mechanisms also have potential to produce large volumes of data, leading to

challenges in data storage and data analysis.

Two existing approaches for facilitating data interpretation are post-mortem

analysis and runtime analysis. Two techniques for carrying out the communication

phase are visualization of results and automated diagnoses.

 9

Many facilities are available for conducting performance analysis in high end

computing. These include high level tools which assist with all three phases of

performance analysis; library interfaces which provide access to lower level facilities

like timers and hardware counters; and low-level methods for timing and counting.

We describe some of the performance tools used in high performance computing in

Chapter Two.

Even with performance analysis support, there are notable difficulties for

conducting performance analysis in high end computing. There are challenges

presented due to factors of scale, including system size, application size, and the

potential to produce large volumes of analysis data. There are also difficulties related

to the steps taken and tools used in the performance analysis process. Performance

analysis often involves the use of several tools and many manual steps, both of which

add delay to the performance analysis process. Examples include: associating an

application execution with the data produced by all of the tools used for analysis;

keeping track of analysis information for separate runs of an application; knowing

what varies from one run to the next; and deciding, based on the tool’s presentation of

results, what to target for optimization. The reason that applications often need to be

instrumented with more than one tool is that tools tend to be dependent upon the

underlying system configuration, the types of applications that will be analyzed, and

the types of parallelism involved.

The processes involved in performance analysis form a cycle of events that

compose a performance tuning cycle. The cycle displayed in Figure 1 shows a

 10

simplified view of the typical steps involved; in practice it is common to have

additional internal cycles. For example, given that several tools may be required to

collect the appropriate measurement data, a cycle may occur between the phases of

determining what the application does and determining why a performance behavior is

exhibited. In tuning an application, analysts first want to obtain a description about

the execution behavior of the application. This step asks “What does the application

do?” To create this description, an analyst can use the performance analysis

techniques described earlier to gather data which might be used to construct a timeline

of application events, report the percentage of time spent in functions, or report

function call counts. The information from this step is pulled forward to the diagnosis

step and is used to answer the question “Why is some behavior exhibited?” Once an

answer to this question is obtained, analysts can target something for optimization.

The optimization could involve an application level change, a change to a library, an

operating system change, or could involve changing some aspect of the hardware.

After implementing the optimization, the application’s execution is re-assessed. In

this step, analysts determine if the optimization improved performance.

Figure 1: Steps Involved in a Performance Tuning Cycle

 As shown in Figure 2, today’s performance tools cover part of the scope of

performance tuning. Today’s tools are capable of describing the execution behavior of

an application, but because they do not include analysis about the status and behavior

of the runtime environment, they are only able to report the causes of application

performance behavior in terms of the application.

 11

Figure 2: The Scope of Today’s Parallel Performance Tools

Environment aware performance analysis improves the quality of diagnosing why

a performance behavior is exhibited, and as such, extends the scope of traditional

performance analysis methods. This is done by collecting information about the status

and behavior of the runtime environment, and in particular asks an additional question

in the first phase of data collection: “What is the status and behavior of the runtime

environment?” The scope of environment-aware performance analysis tools is shown

in Figure 3.

 12

Figure 3: The Scope of Environment-Aware Parallel Performance Tools

There are many open challenges for high end performance analysis; this thesis

focuses on the difficulty in accurately diagnosing the underlying cause(s) of poor

performance. We propose a new approach that incorporates analysis of the runtime

system into traditional application performance analysis. Including both analysis of an

application’s execution behavior and analysis of the runtime environment in which an

application executes, allows for understanding of an application’s behavior in context

of its runtime environment. Furthermore, the use of both analysis sets in the

construction of a performance diagnosis has potential to identify root causes of

performance behavior; and by doing this, the quality of diagnosis offered by

environment-aware techniques is improved. The available set of performance analysis

tools used in today’s high end computing environments do not convey adequate
 13

 14

understanding of an application’s actual performance in relation to the runtime

environment in which an application executes.

In this chapter, we presented an introduction to Environment-Aware Performance

Analysis, a new technique for enhancing the quality of diagnosis offered by

application performance analysis tools. We defined this term and stated the scope of

the research in this area for this thesis. We presented the goals of this research and

enumerated the contributions of this thesis. Additionally, we introduced the key

concepts of high performance computing and performance analysis within this

environment. We described motivation for the implementation of large-scale parallel

systems, and we discussed some of the performance analysis challenges that exist in

these large-scale environments.

In the next chapter we present related work. In Chapter 3, we present a view of the

runtime environment and discuss issues related to development of environment-aware

performance analysis tools. Case studies which illustrate candidate situations for

environment-aware performance analysis are presented in Chapter 4. This is followed,

in Chapter 5, by a description of a proposed test suite for evaluating the ability of

performance analysis tools to accurately diagnose performance problems. Our

experiments and results are presented in Chapter 6. We present our conclusions and

identify areas of future work in Chapter 7.

 15

CHAPTER 2 RELATED WORK

This chapter presents research related to our goals and contributions. An

environment-aware tool conducts both application level analysis and analysis of the

environment in which the application executes and can correlate the analysis of the

runtime environment to the analysis of the application. Related work falls into three

categories: tools that measure the environment, tools that measure applications, and

tools that include some combination of both. We also identify tools which conduct

automated diagnosis techniques and tools which provide facilities for experiment

management. This chapter not only presents related work, but also depicts the current

state of the art for parallel performance tools.

2.1 Environment and System Analysis

Tools for environment and system analysis fall into three categories: system

administration utilities, system monitoring packages, and hardware counters.

2.1.1 System Administration Utilities

It is common for operating systems to provide a wide range of system

administration utilities [27]. These types of utilities report on the active environment,

including process, memory, I/O, and network activity, as well as on machine, device,

and operating system configuration details. Although generally categorized as

 16

administrative tools, application performance analysts use many of these facilities in

the process of gaining understanding about the environments in which their

applications execute. Examples of utilities available on Unix and Linux operating

systems that measure operating system performance include proc, sar, top, ps, vmstat,

and iostat. The proc file system is a highly informative tool. This virtual file system

resides in the kernel memory and provides comprehensive reports on a full range of

configuration details and process activities. The sar utility samples selected operating

system counters at regular intervals. By default, sar reports CPU utilization as

percentages of time for specific intervals for user level utilization, kernel level

utilization, idle time during which the system had an outstanding disk I/O request, and

idle time in which the system did not have an outstanding disk I/O request. The top

utility is another tool used by performance analysts. This utility, which updates values

while it is running, provides a view of the process table which can be ordered by CPU

usage, memory usage, or by user. The continually refreshed header is useful for

capturing a summary of system load, user and system utilization of the CPUs, and

memory activity. The ps utility, available on Unix and Linux systems, presents a

snapshot of current processes. Other Linux and Unix system utilities commonly used

by performance analysts and application developers include vmstat to report virtual

memory statistics and iostat to report on CPU and device utilization.

Most platforms provide tracing utilities, allowing users and administrators to gain

insight about the behavior of certain events. For example, Linux offers strace to trace

system calls made by a process and ltrace to trace the dynamic library calls made by a

 17

process. AIX has trace which traces user-specified events like function entry and exit,

kernel routines, and interrupt handlers. The Solaris operating system provides truss

for tracing system calls invoked by a process and sotruss for tracing library calls made

by a process. Newer versions of Solaris also incorporate a utility called DTrace for

dynamic tracing of user level, operating system, and kernel events.

It is typical for operating systems to provide administration utilities for monitoring

and measuring network activity. Utilities commonly used for these tasks include

tcpdump, netstat, ping, and traceroute. The tcpdump utility prints the header

information of packet traffic on a network interface. The utility allows network

administrators to inspect the frequency and kind of traffic occurring on a network. To

obtain status information about an entire network, the netstat utility can be used.

Information can be obtained regarding the status of active sockets, network interfaces,

internal data structures, routing tables, and multicast memberships. Another useful

utility is ping, which can be used to determine if a host is in operation and what the

round trip time is for sending to and receiving packets from the host. The network

administration utility traceroute is used to determine a possible path a packet may take

to reach a destination.

In general, system administration utilities, most of which operate with a text

interface, are very good at reporting raw data and leave the task of interpretation to

higher level functions. They report some of the kinds of information about the

runtime environment that environment-aware performance analysis tools need in order

to correlate the runtime environment to application performance. However, these

 18

utilities do not provide mechanisms for coordinated analysis across runtime layers, nor

are there provisions for relating the measurements to the performance of an

application.

2.1.2 System Monitoring

System monitoring packages generally facilitate gathering several system level

measurements and reporting statistics about where time is spent.

OProfile, bundled with the Linux kernel, is a system-wide profiler, capable of

profiling all running programs and kernel activity [38, 60]. OProfile produces post-

mortem reports of profiled activities, and it provides an option to output annotated

source, showing profile statistics next to lines of source code. OProfile does not

attempt to determine the causes of what it terms “hot spots.” OProfile supports single

and multi processor systems, but does not support distributed memory or message

passing systems. OProfile contains several elements which would be desirable in a

high performance environment-aware tool: It captures measurement information

across several layers for an entire system; it does not have to be invoked for or by a

specific application; and it has the ability to collect statistics continually. However, it

does not include the ability to coordinate measurements across processes in a

distributed memory environment.

The Network Weather Service (NWS) is a research project focused on producing

accurate short-term performance forecasts for distributed systems [95, 94]. The goal

 19

is to characterize and forecast the performance that an application can expect to

achieve from a set of distributed computational and network resources. This requires

a perspective of the entire runtime environment in which the application executes; in

particular knowledge of the capacity and availability of resources and how these

restrictions change over time. The NWS research is applicable to Grid computing, and

the design of the NWS architecture is composed of services and sensors. NWS does

not provide application level instrumentation or analysis, but rather predicts the

availability of resources that an application can expect to leverage in the short term.

CODE is a software framework for Control and Observation in Distributed

Environments, supporting Globus-based grids [79]. This framework is a toolkit,

enabling performance monitoring and management of resources. The design targets

system administrators, providing an interactive GUI that allows for resources to be

clicked on and current status reports to be viewed. Through the GUI, the current

status of the grid, as perceived by the set of monitors deployed, can be viewed;

notification messages about problems are logged; and historical grid performance can

be viewed. CODE targets resource utilization, and does not relate this analysis to

applications executing in the grid environment.

NWPerf, developed at Pacific Northwest National Laboratory, is a system wide

performance monitoring tool for Linux clusters [53]. NWPerf seeks to address the

problem of gathering fine-granularity system performance metrics while sustaining

low and acceptable levels of interference to user applications. Similar to OProfile,

NWPerf is not invoked for a specific application, but rather monitors all applications

 20

running on a Linux cluster, providing course-grained profiling information about

individual application performance. One of the research goals is to be able to

determine how well a system is utilized by the jobs that run on it. The prototype

implementation collected two kinds of metrics: CPU performance counter

information, like percent of peak flops and memory bytes per cycle; and information

analogous to that reported by vmstat. Similar to the other monitoring facilities

discussed, NWPerf does not relate the behavior of the monitored system to events and

behaviors within an application’s execution.

2.1.3 Hardware Counters

Hardware counters provide another means by which to obtain data about the

runtime environment. Many of the high performance tools discussed in this chapter

provide support for hardware counter data collection. Low level measurements can be

obtained by the hardware counters provided by individual system architectures. On

any given platform, hardware counters exist as a limited number of registers which

count events affecting processor functionality. Examples of events that hardware

counters can capture include cache hits and cache misses for each cache level; counts

for completed integer, floating point, load, and store instructions; and instruction

stalls. The number of counters available and the types of events that can be counted

are architecture dependent. Since there is great variability among platforms, interfaces

for accessing hardware counters have been developed. This enables application level

 21

code to access a single interface to obtain hardware counter data, and, as a result

increases portability across architectures.

The Portable Interface to Hardware Performance Counters (PAPI) [61, 4] and the

Performance Counter Library (PCL) [65, 3, 2] are hardware counter interfaces

specifically targeted to performance analysis in high end computing. They share the

same goal of easing the task of incorporating hardware counter information into high

end performance analysis tools. Both PCL and PAPI provide access to raw hardware

counter data. Additionally, they also provide a number of derived metrics, rates, and

ratios which are compositions of the raw metrics. Although providing hardware

counter access for a wide range of platforms, PCL does not easily support newer

architectures, as it has not been upgraded for several years. PCL is supported in the

Tuning and Analysis Utilities (TAU) suite of parallel performance tools [78]. PAPI

support is enabled in a handful of parallel computing performance analysis tools,

including KOJAK and TAU [93, 78, 61].

2.1.4 Discussion

In this section, we have discussed three typical mechanisms by which information

about the runtime system can be obtained. With operating system provided utilities, a

wide variety of data can be captured regarding processor, memory, I/O, and network

usage. There are also a number of tracing facilities for tracing system calls and library

calls. System utilities generally report raw data and provide very little data analysis.

System monitoring packages facilitate simultaneous collection of much of the same

 22

information that can be obtained using system utilities. Monitoring packages usually

include analysis facilities for providing summary information. Application developers

can use hardware counters and higher level interfaces to access the counters to obtain

system event count data. With these mechanisms it is possible to understand the

behavior of computing systems. However, these mechanisms do not include facilities

for correlating system events and application events.

2.2 Application Focused Performance Tools

Many of the performance analysis tools developed for high end computing focus

primarily on application level performance. In this section we present several tools

which represented early advances in parallel performance research; we provide an

overview of the MPI profiling interface and present several of the commonly used

MPI profiling libraries; and we present some of the application focused parallel

performance tools used in today’s high performance environments.

2.2.1 gprof

Although not a parallel performance tool, gprof [18, 19] deserves mention for

several reasons. It is widely used in performance tuning of sequential codes; it is

supported on Unix and Linux platforms; it has been a viable tool for over twenty

years; and it is used by parallel performance analysts, even though it does not support

parallel codes. gprof is a simple to use tool which conducts profiling, by sampling the

program counter at regular intervals. It records the measured data in text files. gprof

 23

extends the Unix prof utility. This utility is capable of providing a listing of each

function, the number of times each function is called, the time spent in each call, and

the average time per function call. However, it is not possible, with prof data, to

determine the callers or callees of functions. This knowledge can be somewhat

ascertained by knowing the call structure of the source code. However, this view does

not predict the exact nature of the runtime behavior of function caller and callee

relationships. To provide this knowledge, gprof maintains caller information and

reports call graph detail, showing caller and callee relationships. Providing call graph

information and the tool’s ease of use enabled gprof to become a widely used tool.

2.2.2 AIMS

One of the early tools developed for distributed memory parallel performance

analysis was AIMS, an acronym for Automated Instrumentation and Monitoring

System [96]. AIMS was developed by NASA Ames Research Center and supported

parallel programs written in C and FORTRAN which used message passing

implementations that pre-dated the MPI standard. AIMS used trace based

instrumentation so that events of an application’s execution could be reconstructed

during post-mortem visualization. The instrumentation points were automatically

inserted into source code before compilation. After applying the instrumentation,

applications were compiled and linked with the AIMS run-time performance

monitoring library. This library facilitated data collection across the participating

nodes of an application’s execution, and managed the process of writing collected

 24

events to a single trace file. Events that could be traced included entry and exit points

for subroutines, loops, and user-defined code segments; time spent in communication

routines; time spent in file read and write operations; and time spent in barrier

operations. Post-mortem visualization of traced events was enabled by the built-in

visualization tool kit. The vk feature of the tool kit provided several views for

understanding an application’s behavior over time. These included an animation

facility, in which the events could be viewed at several speeds; and a source code

mapping facility, in which trace events were associated with exact points in

application source code. The visualization tool kit also provided a mechanism to

generate lists of resource utilization statistics for nodes and routines, with the intention

that the data provided in these lists could be used as input to statistical graphing

packages.

For the most part, AIMS focused entirely on application behavior. It did not

collect any information about the runtime environment in which an application

executed. However, the final version of AIMS [97] included a utility called sysconfig

which enabled a static view of the likely routes for packets to take for communications

between nodes. sysconfig examined either a host file or an AIMS trace file to extract

host machine names and then used traceroute to determine packet routes for every

machine pair. The data were saved in a file and could be viewed in conjunction with

execution trace records.

 25

2.2.3 MPP Apprentice

The original MPP Apprentice [91] was designed for application tuning on the Cray

T3D. Data collection was accomplished via a “stop-watch” technique, which is the

combination of timing and counting instrumentation methods. As such, performance

information was presented from the perspective of the source code, rather than from

the perspective of time. The MPP Apprentice collected stop-watch data for code

sections, including the whole program, sub routines, and code blocks. The

instrumentation methods were built into the compiler, and instrumentation was turned

on by a compile time flag. During execution of an instrumented application, collected

data were aggregated within each processor and maintained locally in each processor’s

memory. Either by user request or at the end of execution, the per-processor data were

aggregated across all processors and stored in a file, which was used as input to the

post-mortem visualization component. The visualization component provided a

summary report and graphical display of count and timing statistics for the entire

execution and all subroutines, ordering “critical” subroutines at the top of the list.

Long running subroutines were categorized as “critical,” and users could tune this

value to suite an expectation about application runtime performance. Additionally, for

the instrumented subroutines, summary information for time spent in overhead,

parallel work, I/O, and called routines was presented. Instrumented subroutines could

be expanded to view details about nested code sections, like loops and “if” clauses.

Upon user request, the MPP Apprentice displayed the source code associated with any

 26

viewable construct. Another possible display with the MPP Apprentice was the call

sites view which showed all the call sites for a selected subroutine and all the calls

made by the selected subroutine. The MPP Apprentice included a knowledge base

which served two primary purposes. First, derived metrics from the base statistics

collected could be calculated and reported in the visualization session. For example

Flop/s and cache usage metrics could be computed and displayed. Second, the MPP

Apprentice knowledge base offered tips and suggestions to users. The tool could

inform the user about properties of the architecture design that could affect

performance. For certain observed performance problems, the MPP Apprentice

provided suggestions on how to pursue performance problem resolutions.

Cray has continued to provide performance tools as part of a Cray system. In

newer architectures, the instrumentation, data collection, and file generation

components are done by the Cray PAT tools, while the Apprentice2 acts as a

visualization GUI [12].

The MPP Apprentice provided summary information about event counts and

execution times, but did not have the ability to reconstruct the events of an application

execution according to time. However, its visual displays, acute knowledge of the

system architecture, and ability to provide tips and suggestions regarding critical

performance areas assisted users in performance problem detection and resolution.

 27

2.2.4 The MPI Profiling Interface and MPI Profiling Tools

The MPI standard [81, 21] specifies a profiling interface for MPI implementations

where all MPI functions have a second name identical to the normal name, but

preceded with a ”P”. Within an MPI implementation these “P” functions are wrapper

functions which simply call the normal named MPI function. MPI profiling libraries

contain functions that are named the same as the normal named MPI functions. The

functions are implemented so that they call the “P” named functions that exist in the

MPI implementation. Besides being simple wrappers to the “P” functions, typical

implementations conduct profiling activities, maintaining event counts and execution

times. The library functions call the MPI implementation’s “P” named functions.

This makes it fairly easy to develop profiling libraries separate from an MPI

implementation, and it enables MPI applications to be developed without needing to

know specific details about the kinds or types of instrumentation that might be

conducted via the profiling interface.

The MPI Parallel Environment (MPE) package is a tool kit for MPI applications

[54]. The profiling component of MPE is an example of a library that takes advantage

of the profiling interface provided by MPI implementations. MPE collects and logs

statistics related to message passing activities during a program’s execution. MPE

includes the Upshot, Nupshot, and Jumpshot [67, 23, 35, 98, 99] viewers for post-

mortem visualization of the profiled data. MPE is part of the MPICH distributions,

 28

but can be downloaded separately and works with most MPI implementations,

including Lam/MPI [41] and OpenMPI [59].

Another MPI profiling library is mpiP [55]. Developed at Lawrence Livermore

National Laboratory (LLNL), this profiler collects statistical information about MPI

function calls and presents the summary data to the user in tabular format after

execution of a profiled application. mpiP can relate function call statistics to source

code line numbers. Tool Gear, also developed at LLNL, is a graphical viewer for

mpiP output [85]. Tool Gear uses the mpiP data regarding source code line numbers

to display the specific source code involved with a call site statistic reported by mpiP.

2.2.5 Upshot, Nupshot, Jumpshot

Argonne National Laboratory (ANL), promotes a research program called

Performance Visualization for Parallel Programs [66]. This research focuses on post-

mortem visualization of parallel application performance. Over the course of several

years, Upshot [23], Nupshot [35], and Jumpshot [98, 99] have been developed and

implemented for this purpose. Chronologically, Upshot was developed first and is

written in Tcl/TK. Nupshot was developed as an improved version of Upshot, in

which part of the Tcl code was re-written in C to improve graphic performance.

Jumpshot, a Java-based tool, is the most recent viewer in the series and expands the

capabilities of both its predecessors. Currently, all three tools are part of the MPE

suite of performance tools [54]. These tools focus entirely on post-mortem

 29

visualization of trace records. They do not provide facilities for instrumentation, data

collection, or trace generation. The tools support several trace file formats and present

visual representations of the events contained in a trace file. The primary visualization

feature is the zoomable timeline which shows the interaction of events among

participating processes and nodes.

2.2.6 Discussion

In this section we presented application focused parallel performance tools. The

tools in this section only collect application related measurement data. Since these

tools do not have knowledge about the runtime environment in which applications

execute, they are only able to present performance behavior in terms of the

application. In the following section, we will identify parallel performance tools

which collect varying degrees of information about the runtime environment.

2.3 Integrated System and Application Level Performance Tools

In this section we present systems and tools which support collecting

measurement data related to application performance and system related metrics.

Most tools in this section collect runtime metrics via hardware counter support. Even

though these tools integrate system level metrics into data collection techniques, they

do not, for the most part, provide performance diagnoses which consider both the

 30

application and the runtime environment. It is most often the case that the analysis

results are displayed and diagnosis of application performance behavior is conducted

by the user of the tool.

2.3.1 IPS-2

IPS-2 was an early research tool developed at the University of Wisconsin for

parallel application performance analysis [47]. IPS-2 used tracing as the mechanism

for collecting performance data. Events, such as synchronization operations and

procedure entries and exits, were logged to trace files. Instead of modifying

applications to insert instrumentation manually, users only had to specify a compiler

option and IPS-2 applied the instrumentation automatically. The interactive user

interface allowed the user to specify what aspects of the program should be measured

and displayed performance analysis results after the program’s execution. Results

could be viewed in tabular form or as a time histogram.

Critical path analysis and phase behavior analysis were two automated techniques,

offered by the interactive interface, which guided users toward deciding how best to

improve an application’s performance. In an execution, the critical path is the

execution path that consumes the most time. From an execution’s trace history, IPS-2

identified this path and identified the execution times for components along the path.

Since decreasing the execution time of the critical path causes a decrease in an

application’s total execution time, users could use the critical path analysis to decide

 31

which component along the critical path should be targeted for optimization. Phase

behavior analysis, a second automated guidance technique introduced in IPS-2,

identified the phases of a program’s execution. With this technique, each phase could

be evaluated as a smaller sub-problem of the entire execution. For example, critical

path analysis could be applied to a phase.

IPS-2 was later extended to support external metrics, a feature which allowed users

to define metrics not provided in the default set of metrics [26]. In the original

implementation, only events at the application level were measured. With this added

support, it was possible to define metrics at other levels of the runtime environment,

including the operating system, the hardware, and the network level. One such

external metric, described in [26] used filtered data from the vmstat system call.

The user interface allowed for transparent viewing of the performance results of both

the application level and the external metrics.

IPS-2 provided graphical displays for all metric values, which was useful for

viewing aspects of program behavior along side aspects of system behavior. This

feature combined with the critical path and phase behavior analysis techniques

improved the degree of assistance offered to the user in deciding how an application

could be modified.

 32

2.3.2 Paradyn

The Paradyn parallel performance measurement tool [46], developed at the

University of Wisconsin, finds it roots in IPS-2, but is quite different in the way it

provides instrumentation and analysis. Paradyn uses an instrumentation technique

called dynamic instrumentation, in which instrumentation is inserted into a running

executable. Additionally, Paradyn presents the results of performance analysis in an

online fashion, while the application executes. User specified metrics can be viewed,

online, via bar charts, tables, and histograms. Additionally, the Paradyn Performance

Consultant conducts automated bottleneck search and detection; and presents the

results online. We discuss the Performance Consultant in greater detail in section

2.4.2. Paradyn can be used to analyze MPI and sequential applications; and it supports

a range of Solaris, Linux, Windows, and AIX platforms [62].

By default, Paradyn does not provide metrics for measurements external to the

application. However, Paradyn allows users to create new metrics using the Metric

Definition Language (MDL). With this mechanism, it is possible to collect

measurements about aspects of the runtime environment. All metrics can be viewed

with the Paradyn visualizations.

Although system level metrics can be collected and visualized, two important

features of environment-aware performance analysis are missing: Paradyn does not

provide system level integration by default, and Paradyn does not utilize the data

associated with external metrics in its automated diagnosis techniques.

 33

2.3.3 DPCL

The Dynamic Probe Class Library (DPCL) is a dynamic instrumentation

infrastructure for performance tools [11]. At the time of DPCL’s development, the

Dyninst Application Program Interface (API) [6] could be used to provide dynamic

instrumentation. Dyninst facilitates dynamic instrumentation of code that executes on

a single machine. However it does not provide a means for managing dynamic

instrumentation of executing code that spans multiple nodes. Prior to DPCL, parallel

tools which conducted dynamic instrumentation had to provide the necessary support

for managing dynamic instrumentation across multiple nodes. DPCL utilizes Dyninst,

but eases the task of supporting dynamic instrumentation in parallel tools by providing

the necessary infrastructure to manage dynamic instrumentation across multiple nodes

of an executing application. Originally implemented by IBM and distributed as an

IBM licensed product, DPCL was later made available under an open source license.

2.3.4 DCPI

The Digital Continuous Profiling Infrastructure (DCPI) was designed to run

continuously on multi-processor systems, conducting sample-based profiling of entire

system activity, including user programs, shared libraries, and operating system

kernels [1]. DCPI was designed for Digital Alpha processors and was supported on

 34

the Digital Unix platform. The data collection component sampled program counters

with high frequency and stored the profiled data to disk. DCPI also supported

hardware counter sampling. DCPI provided several utilities for post-mortem analysis

of the stored data. These tools displayed the number of samples per procedure;

calculated cycles per instruction; identified instruction stalls and provided possible

causes for stalls; and analyzed profile data across multiple sessions.

Although DCPI supported a narrow range of processors and operating systems,

DCPI showed that it is possible to conduct fine-grained sampling for long periods of

time with minimal overhead. This is an important consideration for environment-

aware performance tool development.

2.3.5 VAMPIR

VAMPIR (Visualization and Analysis of MPI Resources) is a trace-based tool for

post-mortem visualization of MPI programs [57]. Originally developed and

maintained as a commercial product by Pallas GmbH, VAMPIR is now an Intel

product and is distributed as part of the commercial Intel Trace Analyzer and Collector

[28]. In this form, only Intel based architectures are supported. VAMPIR supports a

variety of platforms and implementations of MPI, and tracing is not limited to just

MPI routines. Trace data can be viewed in several ways, offering generalized

summaries of events on each node and time-line displays which show activities for all

nodes over the execution interval. The time-line displays incorporate a zoom feature,

 35

allowing users to zoom in and out on program details. VAMPIR can collect and

display counter data, and it supports the PAPI hardware counter interface. In the time-

line display, counter data is displayed in the same view as application events. Since

its initial development, a next generation version of the tool, VAMPIR NG (VNG),

has been released [5]. Accomplishing much of what VAMPIR did, VNG operates as a

distributed and parallel application. With VAMPIR and its successors, visualization

of program activity is the primary goal. The post-mortem visualization sessions allow

users to analyze the behavior of application executions. Although it has the ability to

present system level information, through its display of counter data, and application

event data, VAMPIR does not interpret the data or detect performance problems. The

user is responsible for this type of analysis.

2.3.6 SvPablo

Source View Pablo (SvPablo), developed at the University of Illinois, is a

graphical environment for instrumenting application source code and viewing

performance data for sequential and parallel applications[10]. SvPablo incorporates

components of the Pablo Performance Analysis Environment, also developed at the

University of Illinois [75].

Data collection in SvPablo is similar to profiling, capturing only statistical

information rather than detailed event traces. Additionally, SvPablo supports

hardware counter data collection. Instrumentation is inserted into source code, prior to

 36

compilation, and can be done either automatically or interactively. After execution,

the application level data and hardware counter data collected from each processor are

merged and additional metrics are computed. These results are correlated to

application source code and are viewable via the tool’s browser facility.

The visualization interface displays application summary statistics and hardware

performance data. The interface also supports multi-execution displays, so that users

can compare analysis data for multiple executions. To display source code associated

with a function, users click on the function name.

2.3.7 SCALEA and SCALEA-G

ASKALON is a research project aimed at developing a programming environment

and tool set for cluster and grid computing [16]. The vision for the framework

contains five components: AKSUM, an automatic performance bottleneck analysis

tool; Performance PROPHET, a performance modeling and prediction system;

SCALEA, a performance instrumentation, measurement, and analysis tool;

ZENTURIO, an automatic performance experiment management system; and an

integrated graphical user interface for the tool set.

The performance analysis tool SCALEA [88] supports OpenMP, MPI, HPF, and

mixed parallel/distributed programs. Performance analysis is done in a post-mortem

fashion, and visualizations are generated from trace files. Instrumentation can be

inserted automatically for pre-defined code regions and it can be inserted manually,

 37

using SCALEA directives. SCALEA also supports hardware counter profiling.

Post-mortem analysis relates results to source code lines. This appears seamless to the

user as all collected profiling and trace data are correlated with the corresponding code

regions.

SCALEA-G is a system monitoring and performance analysis package designed to

encompass Grid computing [89, 90]. In Grid computing, system monitoring and

application performance analysis techniques have developed separately, although both

are viewed as crucial to Grid performance. SCALEA-G is a first attempt at integrating

both system monitoring and performance analysis into a unified tool for Grid

computing. System monitoring is accomplished through a network of services and

sensors; and instrumentation can be inserted into original source code, requiring

recompilation, or it can occur dynamically, while an application executes. The

interactive GUI allows users to create and add monitoring sensors to running systems,

and it provides online application analysis and system monitoring. Application

performance and the Grid system as a whole can be monitored via the same interactive

session.

Both SCALEA and SCALEA-G include aspects of environment-aware

performance analysis. SCALEA incorporates hardware counter profiling and

SCALEA-G packages system monitoring and application performance analysis for

grids into one tool. Both tools provide integrated visualizations of application and

system level analysis results.

 38

2.3.8 PerfSuite

PerfSuite is tool kit for Linux desktop and cluster applications [40, 39]. It is in

active development at the National Center for Supercomputing Applications (NCSA).

PerfSuite conducts hardware performance event counting and profiling of

applications. It supports MPI, single-threaded, and POSIX multi-threaded

applications. Raw performance data are written to XML files, and the analysis of the

data is done by a post-mortem process which calculates summary and derived results;

maps event data to source code lines; and combines multi-file collected data that may

span processes and machines to calculate summary data for the whole set. PerfSuite

provides summary results of counts and profile statistics in text format, but supports

the export of data to other formats. In 2005, NCSA moved PerfSuite into full scale

production, automatically measuring all applications that use the NCSA SGI Altix

system, including parallel shared and distributed memory applications [68].

PerfSuite provides hardware counter support and application profiling; and it

presents summary results of hardware counter performance and application profiled

statistics.

2.3.9 Active Harmony

Active Harmony is a research project that focuses on online and automatic

adaptation of applications and work loads to changing conditions in parallel and

distributed computing environments [25]. We discuss the techniques for conducting

automated adaptation in Section 2.4.6. Active Harmony considers the application and

 39

the resources utilized by the application as tunable parameters of the execution

environment.

In order to facilitate online adaptation of applications and resources, Active

Harmony requires a perspective of the interactions and relations of the application and

the runtime environment. This includes ideas of environment-aware performance

analysis. The goals of Active Harmony, however, differ from the goals presented in

this thesis. Active Harmony focuses on efficient resource utilization for a whole

system, while our goals target parallel performance improvement.

2.3.10 TAU

Tuning and Analysis Utilities (TAU) is a research tool for parallel and distributed

performance analysis [78]. TAU can be configured to run on many platforms, and it

supports MPI and shared memory parallel applications.

TAU supports profiling and trace-based data collection. It offers many methods

for applying instrumentation, including source-based, allowing users to manually

annotate source code following a TAU specification; preprocessor-based, where a user

selects the kinds of instrumentation to apply, but the source code is instrumented

automatically before compilation; compiler-based, where the compiler inserts

instrumentation into the object code that it generates; wrapper library-based, where

standard library routines are substituted with wrapper routines that include

instrumentation and call the original routine; and dynamic instrumentation. TAU

 40

includes hardware counter support and provides interfaces to PAPI and PCL hardware

counter libraries.

Performance analysis and visualization is done post-mortem. TAU includes

profiling data support with ParaProf and PerfDMF. ParaProf supports single

experiment visualization, and multi-experiment visualization can be conducted with

PerfDMF. TAU does not implement its own support for trace analysis and

visualization, but supports export of trace collected data to other analysis and

visualization tools, including Vampir, Jumpshot, Paraver, and EPILOG.

In TAU’s profiling analysis and visualization tools, TAU reports and shows

summary information about function calls and hardware events. Similar to other

visualization based analysis tools, TAU does not identify causes of performance

problems, and interpretation of analysis is largely the responsibility of the user.

2.3.11 PEM and CPO

A collaborative research project between IBM and the University of Colorado has

resulted in several key ideas related to the integration of environment and application

performance analysis, with the goal being automated and online optimization of a

whole system [92, 8]. The paradigm presented by this work is referred to as

Continuous Program Optimization (CPO), which involves cyclic phases of monitoring

and optimization. In the monitoring phase, information across system layers is

obtained and analyzed; and in the optimization phase, this information is used in a

 41

continual process of feed-back directed adaptation where applications adapt to the

execution environment and the execution environment can change to improve

application performance. The monitoring facility of the architecture is termed PEM,

an acronym for Performance and Environment Monitoring. This component is

responsible for capturing the behavior of the runtime system. PEM is presented as a

vertical set of layers in which the interactions among hardware and software are

understood and optimizations are relevant based on the analysis of the interactions.

The presentation of the runtime environment as a set of layers is similar to the notion

presented in this thesis work for environment-aware diagnosis. The framework

presented in the CPO and PEM work does not include explicit instrumentation

techniques for capturing application level performance data. The experimental work

presented to date does not include deployment on cluster or distributed systems, but

only single machines. Nor have thoughts been presented about how this framework

will scale to large cluster and distributed parallel systems.

2.3.12 Discussion

In this section we presented tools, infrastructure systems, and research ideas that

support data collection of system level metrics and application level metrics. Most of

these systems present the analysis data for both sets of metrics in single visualization

sessions, but largely rely on users to infer diagnoses.

 42

2.4 Automated Performance Diagnosis

In this section we present tools which conduct automated performance diagnosis.

This means that the tool uses some form of automated analysis to determine where

performance problems exist, when they occur, and why they occur. This strategy is

called the W3 approach [46]. It has generally been implemented with respect to the

application that a performance tool analyzes. Most of the tools presented in this

section automatically determine where, in the application source code, performance

problems exist; when, during an execution, performance problems occur; and why is

generally answered by determining the state of the executing application at the point

of the performance problem. We believe that this approach is a necessary component

of environment-aware diagnosis, but that the strategy must be expanded along each

dimension to incorporate the status of the runtime environment and its impact on

application level performance.

2.4.1 ATExpert

Designed for Cray platforms, the goal of the ATExpert was to assist users in

application tuning so that the best possible speedup could be achieved [37]. The tool

worked in conjunction with the Autotasking compiler which automatically

instrumented applications if a specific compiler option was used. ATExpert post-

processed Autotasking’s runtime trace files and graphically displayed the performance

 43

of parallel programs and predictions for speedup. The key features of ATExpert were

its ability to relate performance characteristics back to source code, its ability to

simulate what Autotasking’s measured results would have been if all possible numbers

of processors were available for the application execution, its graphical displays of

performance and predicted speedup, and its ability to associate suggestions for

improving performance with specific performance observations. For the most part,

ATExpert focused on application performance and did not consider how and to what

extent the runtime environment affected application performance. However, the rules-

based mechanisms employed for relating specific actions to take for improving

application performance to specific performance behaviors demonstrated by the

application is an idea that can be carried forward into the design of environment-aware

performance analysis tools.

2.4.2 Paradyn

Key to Paradyn, is the Performance Consultant (PC) [46, 62], a module which

automates the process of discovering performance problems. Paradyn introduced the

W3 method for bottleneck search and detection. This method searches for bottlenecks

along three dimensions: the “why” axis, the “where” axis, and the “when” axis. The

results of the PC search are graphically displayed to the user, as the application

executes, by the Search History Graph.

 44

The PC operates on a set of hypotheses which are predefined performance

problems and are evaluated for values of true or false. The hypothesis set composes

the “why” axis and refers to the types of performance problems that Paradyn can

identify. The current hypotheses include evaluations for comparing CPU time, total

synchronization waiting time, total I/O waiting time, and average number of bytes per

I/O operation to threshold values. The “where” axis contains the program resources

which can be considered for evaluation. Paradyn’s default setting is to start automated

searches by considering the whole program. The “when” contains the phases of a

program. Detected performance problems are associated with specific phases of an

application’s total execution. Each phase can be inspected by a different PC. The

phase associated with the entire execution is called the global phase.

The PC begins its search along the “why” and “where” axes, by evaluating the top

level hypotheses for the whole program. If any one of the hypotheses evaluates to

true, further refinement along that hypothesis and associated resource hierarchy is

conducted. It is possible to have more than one true hypothesis. If a performance

bottleneck is detected, the Search History Graph displays the component of the

resource hierarchy where the bottleneck occurs, identifies the hypothesis that evaluates

to true for the bottleneck, and indicates the phase in which the problem occurs.

In Paradyn, the “why” axis contains the types of performance problems included in

the PC’s search, and the “where” axis includes the components of the application

which are instrumented and subsequently evaluated for performance problems. In its

current form, the Performance Consultant does not include performance problem

 45

hypotheses which test aspects of the runtime environment. This limits its ability to

provide quality diagnosis about the true causes of performance problems; especially if

the causes are rooted in layers of the runtime environment external to the application.

2.4.3 KOJAK

 KOJAK (Kit for Objective Judgment and Automatic Knowledge-based

detection of bottlenecks) is a generic environment for automatic performance analysis

of parallel programs [17, 51, 93]. The goal of KOJAK is to automatically identify

bottlenecks which fall into the dual categories of well-defined and typical. This goal

is motivated by the fact that most parallel performance tools at the time of KOJAK’s

initial development did not apply automated techniques to identifying common case

bottlenecks, such as those due to load balancing problems or message passing

overhead.

2.4.4 ASL

The working group on Automatic Performance Analysis: Resources and Tools

(APART), introduced a specification in 1999 for automatic performance analysis. The

specification is called the APART Specification Language (ASL) [15]. The

specification is a formalization of performance bottlenecks and the data required to

detect them. Although the specification acknowledges that performance data

encompasses metrics about applications and the runtime environment, it does not

 46

address the issue of diagnosing the cause of bottlenecks. The goal is to formalize what

a bottleneck is so that automated bottleneck detection is easier to build into a tool.

2.4.5 AKSUM

AKSUM [14], a component of the ASKALON project [16] , is a performance

analysis tool for parallel applications which conducts automatic searches for

bottlenecks over multiple experiments. In its current implementation, automatic

instrumentation is facilitated by ASKALON’s SCALEA [88], a single experiment

performance analysis tool. AKSUM assumes the existence of an experiment

management system and works with ZENTURIO [73], the experiment management

component of ASKALON.

To guide the automated search for performance bottlenecks, AKSUM uses

performance property specifications. A performance property is a predefined

description of a specific negative performance behavior that could occur in an

application execution. In an execution a performance property is “true” if the

behavior specified occurs. Additionally with each performance property instance,

AKSUM assigns severity and confidence values, indicating how severe the problem is

and the degree of confidence in the indication that the problem exists. AKSUM

defines several default properties and allows users to custom define new properties.

Users are also able to specify what performance properties should be searched for in

an analysis session. Once instrumentation is complete, the application is compiled and

executed by the experiment engine, which interfaces with the experiment management

 47

system. For every normally terminating execution, the performance data is stored in

the experiment management system. This multi-experiment data is available to

ASKUM’s performance property search mechanism.

2.4.6 Active Harmony

From an application perspective Active Harmony [25] provides automated

diagnosis through an exported metric interface which allows applications to access

metrics about processors, network activity, and operating system activities.

Applications are able to export tuning options to the execution environment,

specifying expected consumption of system resources. Then the system adapts

applications to changes in the environment. Making the decision about how to adapt

an application requires a prediction of the effectss of a proposed adaptation. Active

Harmony provides metrics to facilitate this decision making. In the prototype

implementation Active Harmony had developed a Load Balancing Factor (LBF)

metric. One of the variations of the LBF computes the impact of reconfiguring the

assignment of processes to processors. This impact is presented as the potential

improvement in execution time of each proposed change in configuration.

2.4.7 Self-propelled Instrumentation

The goal of self-propelled instrumentation [49] is to automate anomaly detection

and root cause identification of anomalies. This is an aspect of automated diagnosis

 48

which is being researched at the University of Wisconsin. Self propelled

instrumentation is a form of dynamic instrumentation, in which an autonomous agent

follows the program’s flow of control instrumenting to a fine level of granularity.

Data collection is similar to tracing, where each instrumented event is recorded. Trace

data are analyzed to look for differences among processes, for example one process

stops earlier or later than others. Two techniques have been developed for automating

the process of determining the root cause of a failure, and both show promise in

identifying root causes in the application level.

2.4.8 Discussion

In this section we presented tools which conduct automated performance

diagnosis. The parallel performance tools discussed in this section automatically

determine where, in the application source code, performance problems exist; when,

during an execution, performance problems occur; and provide diagnoses as to why

performance problems exist. The diagnoses, however, lack specificity if the root

cause of a performance problem is external to the application. Environment aware

performance analysis seeks to identify root causes regardless of where they exist in the

runtime environment.

 49

2.5 Tools for Experiment Management

An important aspect of performance analysis is the ability to compare different

executions. In high performance computing, multi-execution comparison is

cumbersome and error prone in the absence of automated experiment management. In

this section, we discuss how experiment management applies to parallel performance

analysis and we present two experiment management systems.

2.5.1 Early Work

Early work in experiment management involved laying out a comprehensive

framework for comparing executions of an application and determining differences in

performance between executions [32]. The initial work in this area proposed the idea

that every run, simulated result, and model are experiments and can be organized and

compared via an experiment management system. Three key ideas were proposed and

demonstrated by Karavanic and Miller [32, 33]. First, an experiment management

system must be able to map the full space of an application, spanning all of its

experiments which differ by both execution environment and code structure. Second,

the experiment management system should automate the task of comparing two or

more experiments. Third, the experiment management system should provide a

mechanism for making its stored data available to performance analysis tools to use in

enhancing performance diagnosis.

 50

As high performance systems continue to get larger and more complex, automated

experiment management becomes more and more necessary in large-scale

performance analysis endeavors. Experiment management, however, is still largely an

area of research. Recent work in the capabilities and extensions of automated

experiment management include ZENTURIO [73] and PerfTrack [34].

2.5.2 ZENTURIO

ZENTURIO is an automatic experiment management system designed with the

goals of cluster and grid computing in mind [73]. It is one of the components of the

ASKALON infrastructure [16]. ZENTURIO is designed as three grid services: a

registry service, an experiment generator, and an experiment executer. The client

entry point into the system is through a graphical interface that facilitates experiment

preparation, monitoring, and visualization. Using a directive language, users specify

what aspects of an experiment event should be analyzed and maintained in the

experiment management system. These aspects include things like execution

parameters and performance metrics. Once this specification is defined, the generator

and executer services carry out automatically building and launching all executions

pertaining to the application. After execution, the collected performance data are

analyzed, further computed, and stored using a component of SCALEA [88]. With

post-mortem visualization, the performance results and output data of the most recent

experiment and a subset of the full experiment set can be viewed. In the graphical

 51

session, the user can visualize a single experiment or compare multiple experiments by

specifying the metrics of interest for the comparison.

2.5.3 PerfTrack

 PerfTrack is a data store and interface for managing performance data and

associated data related to the environment for large-scale parallel applications [34].

As an experiment management system, PerfTrack enables comparative analysis of

performance results of multiple experiments. The PerfTrack model for cataloging

resources and associating resources to performance results is generic and easily

extendable. PerfTrack is not a performance analysis tool in the traditional sense, as it

does not provide facilities for application instrumentation or measurement. PerfTrack

is a means for storing data and maintaining relationships that exist between collected

data and associated environment information, so that performance results can be

considered in the context of the environment in which they occurred, and multiple

experiments can be compared simultaneously. Using the data collection interface,

PerfTrack builds a specified application, collecting and storing information about the

build environment, and PerfTrack launches an application, collecting and storing any

performance data that results from however the application is instrumented. PerfTrack

is flexible and designed to support data collection from any tool.

 52

2.6 Conclusion

In this chapter we identified tools and research initiatives containing components

related to environment-aware performance analysis. We presented system

administration utilities, system monitoring packages, and accessing hardware counters

as methods available for collecting data about an application’s runtime environment.

These facilities, however, do not incorporate application performance analysis. We

then discussed parallel performance tools which focus entirely on application

performance and do not incorporate knowledge about an application’s runtime

environment. There are parallel performance tools which support the collection of

metrics related to the runtime environment, and we presented these in Section 2.3.

The majority of these tools integrate system level data via hardware counter

performance monitoring. These tools support analysis of application and runtime

environment data via visualizations, but performance problem diagnosis is largely the

responsibility of the user. There are a few systems which incorporate automated

diagnosis, but no parallel performance tool identifies root causes that exist in runtime

layers external to the application. We closed this chapter with a discussion about

experiment management.

 53

CHAPTER 3 A FRAMEWORK FOR ENVIRONMENT-AWARE
PERFORMANCE ANALYSIS

In this chapter, we describe environment-aware performance analysis and discuss

issues related to environment-aware tool development. In the first section we present

a layered view for describing the structure of a runtime environment. We define each

layer of the runtime environment, identify the main components of each layer, and

describe how this view can be used to frame performance problems in terms of root

causes and potential optimizations. Although the idea of representing a system with

layers in not new, our approach of using a layered model for performance analysis is.

In the second section we discuss development considerations for the design of

environment-aware tools.

3.1 The Layers of an Application and its Environment

An environment-aware approach to application performance analysis includes

analysis of an application’s execution behavior and analysis of the environment in

which an application executes. Data collection involves application performance data

capture and the collection of data about the status and behavior of the application’s

runtime environment. In diagnosing application performance behavior, an

environment-aware approach utilizes both sets of data to determine potential root

causes for performance behavior. Following the premise that the causes of poor

application performance can be application rooted or can exist in areas of the runtime

environment that are not part of the application itself, environment-aware performance

analysis requires an understanding of the structure of the runtime environment and an

approach for identifying the area of the runtime environment in which root causes

exist.

We consider a runtime environment to be composed of four basic layers: an

application layer, a library layer, an operating system layer, and a physical layer.

Figure 4 shows this basic structure. In the following sections we describe each layer

and identify the common components of each layer. The components of each layer are

shown in Figure 5. The structure presented here is flexible as far as the components

that can be associated with each layer. We express a general environment. For

specific environments, the components could be different.

Figure 4: The Four layers of the Runtime Environment

 54

 55

3.1.1 Application

The application layer represents applications which are available to users for

execution. This includes user developed programs, other applications that users can

launch, and system utilities. An MPI program executed by a user is in the application

layer. System utilities like vmstat, top, and proc are also in the application layer.

3.1.2 Library

The library layer is composed of modules that are required by the application

layer. These include libraries users develop and build into their codes and other

libraries that user programs call upon. Examples of libraries include MPI

implementation libraries and the system library.

Figure 5: Main Components of the Layers of the Runtime Environment

3.1.3 Operating System

The operating system layer is composed of distinct components reflecting the

properties and functions of an operating system. The lowest level incorporates the

system’s device drivers. In modern operating systems, all accesses to physical devices

pass through this layer. Abstractions for file systems, memory management,

processes, and other operating system functionality are located in the level above the

device drivers. As an example of a device driver in the operating system layer,

 56

 57

consider a system configured for Ethernet communication between nodes. In this

scenario, the operating system has a device driver for the associated Ethernet

hardware. In the layered structure, a representation for the Ethernet device driver

exists within the device driver level of the operating system layer. Configuration data

can be associated with the abstractions for file system, memory management, and

process components of the operating system layer. For example, within the file

system component, this data could include the name, version, and configuration

settings for a particular file system. Additionally, data related to operating system

state can be associated with specific components of the operating system layer. For

example, the process component is an ideal categorization for the number of running

processes over a time interval.

3.1.4 Physical

The physical layer contains the tangible components of the system. The model for

the physical layer contains three tiers. The upper level is the machine. This level

contains CPUs, memory, disk storage and I/O devices, network interface cards, and

any other physical properties of a machine. The second level contains media for

external communication with other devices. This level is intended to represent the

physical means by which machines are connected to external machines. The wires

and cables are in this level. The lowest level represents the machines and devices that

 58

a machine connects to. Routers, switches, and other machines are included in this

level.

3.1.5 Specifying Root Causes and Potential Optimizations by Layers

We consider the runtime environment as a set of layers for the purpose of using a

simple representation for showing where root causes of performance problems can

exist and where optimizations can occur. Today’s parallel performance tools often

identify where, in an execution, an application spends most of its time. However, the

place at which a performance problem is detected is not necessarily the place from

which the performance problem emanates. Nor is it necessarily the place where an

optimization should or can be applied.

The layered view of the runtime environment can be used to categorize root causes

of performance problems by layer. We believe that knowing the root cause of a

performance problem is fundamental in deciding what to target for optimization.

Furthermore, there is often more than one way to improve application performance.

Of all possible optimizations that would result in improved application performance,

only a subset may be practical or available to the analyst. For example, if a

performance problem is caused by an inefficient MPI implementation, an application

developer without root privileges would be unable to modify the generally available

MPI library. However, with the knowledge that the MPI library is at the root of the

performance problem, the developer can decide upon several reasonable optimization

 59

approaches. These might include deciding to use a different MPI implementation;

deciding to optimize a copy of the MPI library source code and install the modified

library in a space controlled by the user; or deciding to change the application so it

does not utilize the inefficient MPI components. In this example, the performance

problem was caused by something in the library layer, but optimizations were possible

at several layers. The layered view can be used to categorize potential optimizations

by layer.

3.1.6 Application Execution and the Runtime Environment

Intuitively we understand that an application execution involves multiple passes

through each of the layers of the runtime environment. From an application analysis

perspective, it may not be possible to instrument and collect performance data along

the entire execution path. For example, most dynamic instrumentation tools do not

support dynamic instrumentation of kernel calls. However, it can be useful to know

what components of the runtime environment are touched by an application’s

execution path. To illustrate this point, we present a simple MPI_Send example, in

which process A on node 1 calls MPI_Send to send a message to process B on node

2. The components of the runtime environment involved in the MPI_Send on

process A’s machine include the following: the MPI application in the application

layer; the MPI library in the library layer; memory management in the operating

system layer and memory in the physical layer for accessing the contents of the send

 60

buffer; the Sockets library in the library layer and subsequent low level write from

the System library for writing the data; the TCP and IP protocols in the operating

system layer for handling the message contents; the Ethernet driver in the operating

system layer; the Ethernet adapter in the physical layer representing node 1; CAT 5

cable in the external media level of the physical layer; the local switch in the external

device level of the physical layer; and node 2 in the external device level of the

physical layer. Figure 6 shows a view of the runtime layers with the components

involved in an MPI_Send added to the view. Knowing the runtime components

involved in an application’s execution is useful because these are aspects of the

runtime environment that can directly affect application performance. During the

MPI_Send operation, there are a variety of components spread across all the layers

which can affect performance. Additionally, application performance can be

indirectly affected by other components of the runtime environment. It is important to

make this distinction, as it is not possible to determine which components are indirect

contributors to negative performance only by following the execution flow of control.

For example, processes not associated with a running MPI application can negatively

affect the application’s performance if the processes share the same CPUs, filesystem,

memory, or interconnect as the MPI processes.

Figure 6: Example of Runtime Environment Components Involved in
MPI_Send on an Ethernet based Cluster

3.1.7 Discussion

In this section we presented a layered view of the runtime environment. We

described the four basic layers of the runtime environment: application, library,

operating system, and physical. We discussed this view in terms of a way to

categorize the root causes of performance problems and potential optimizations by

 61

 62

layer. We also considered how this view can be used to identify those components

which directly affect application performance and those components which indirectly

affect application performance.

3.2 Important Issues for Environment-Aware Performance Tuning Approaches

Approaches for design and development of environment-aware analysis tools

involve important considerations regarding time, the application, the runtime

environment, measurement, analysis, and diagnosis.

3.2.1 Time

An important concern in all of distributed computing is determining the order of

distributed events. Clocks among distributed systems are not always synchronized, so

it may be impossible to order events by clock timestamps. However, it is possible to

obtain partial orderings of events; and it is possible to obtain total orderings in some

cases [42]. This same concern is present in environment-aware analysis. In particular,

data collected with different tools must be mapped onto a common time scale to

correlate activities at different layers of the system.

3.2.2 Application

Knowing what the application does during execution is an important issue for

environment-aware approaches. Application analysis tools currently construct a good

 63

picture of what an application does during execution. This information is necessary

for environment-aware approaches to use in determining why behavior happens, as it

is difficult to ask why if there is no context for the question. In order to understand

why a behavior occurs, more than just a description of an application’s execution is

required. Environment aware analysis enhances this description knowledge about

what is happening in the rest of the runtime environment while an application

executes.

3.2.3 Runtime Environment

Capturing a description of the status and behavior of the runtime environment and

associating it to an application execution is an important concern of environment-

aware analysis. To capture this description it will be important to consider what

aspects of the runtime environment can be measured and what metrics will be most

appropriate for enhancing understanding of an application’s performance. Another

consideration is deciding how to collect measurements. A final, but very important

consideration is how to relate the description of the runtime environment to the

description of an application execution.

3.2.4 Measurement

With regard to measurement, the measurement strategy is an important issue. It

will be important to consider how data should be collected. It is important to choose

 64

data collection methods which will support creating a mapping between the

description of the environment and the application based on the two sets of

measurements.

3.2.5 Analysis

In the analysis phase, an area of consideration is how raw data are combined and

calculated upon to compose derived measurements and determining if there are valid

derived metrics composed of data from both application level measurement and

runtime environment measurement. The analysis component is also concerned with

determining what values, in both the application and the runtime environment data set,

fall outside the bounds of an acceptable level of performance.

3.2.6 Diagnosis

The important issues involved in diagnosis involve determining if out of bounds

application metrics correspond to out of bounds runtime environment metrics for a

time slice of interest, and determining how likely it is that an application experienced

performance problem is caused by conditions in the runtime environment, and not by

conditions with in the application.

 65

3.3 Discussion

We described environment-aware performance analysis and discussed issues

related to environment-aware tool development. In the first part of the chapter we

presented a layered view for describing the structure of a runtime environment. This

view contains the application layer, the library layer, the operating system layer, and

the physical layer. We defined each layer and described how this view can be used to

frame performance problems in terms of root causes and potential optimizations. In

the second section we discussed development considerations for the design of

environment-aware tools. These include considerations regarding time, the

application and the runtime environment, measurement, analysis, and diagnosis.

CHAPTER 4 PERFORMANCE ANALYSIS CASE STUDIES

This chapter presents case studies in which application performance was

unexpectedly poor and diagnosing the causes of performance problems was difficult.

In each of these situations, the analysts applied several iterations of performance

testing before gaining a first key insight into what was causing the unexpected

performance. We believe that each of these cases is an ideal candidate for the

application of environment-aware diagnosis. Table 1 lists, for each case, the type of

performance problem noticed and what the root cause of the problem was.

Table 1: Case Studies Organized by Exhibited Performance Behavior and
Root Cause of Performance Problem

 66

 67

The cases presented here are examples of difficult diagnosis situations. This set of

cases is not an exhaustive set, but it is sufficient for demonstrating the need for

performance analysis methods to incorporate knowledge about the runtime

environment.

4.1 OS and File System Upgrade

In this situation, a performance analysis researcher had constructed a series of

experiments designed to study the overheads associated with tracing applications [52].

The study investigated trace buffer sizes and the time required to write trace buffers to

disk.

The analyst selected the SMG2000 ASC Purple benchmark because it generates

many MPI function calls. TAU 2.15.1 was used to trace function entries and exits.

The experiments were conducted on the batch partition of MCR, an 1152 node Linux

cluster at LLNL, running the CHAOS operating system, and configured to use Luster,

a parallel file system. The application was configured with 4 MPI processes for all of

the experiments and associated runs. For each buffer size of interest, three types of

experiments were conducted: one where the application was not traced, one where the

application was traced, but the buffers were not written to disk, and one where the

application was traced and the trace buffers were written to disk.

In the first few experiment sets, it was discovered that the wall-clock time for the

large buffer with write experiments was worse than wall-clock time for the small

buffers with write experiments. This did not make sense. In general, fewer larger

 68

sized writes are more cost effective than many small sized writes. The experiments

were re-run several times, but similar results were obtained each time.

After several rounds of investigation, over the course of several weeks, the analyst

obtained unexpected results that showed the large buffer with write experiments

performing better than the small buffer with write experiments. These results were

perplexing because the analyst knew that the application code had not changed. The

same executable and tracing configurations had been used in all of the experiments.

Fortunately, the analyst had used PerfTrack, an experiment manage system, to

automatically collect characteristic information about the execution environment each

time the application was executed. In reviewing the attribute information associated

with each execution, the analyst discovered that the previous experiments had run on

CHAOS 3.0 and the new results were obtained from CHAOS 3.1. Further

investigation into the details of the CHAOS upgrade revealed that the Lustre file

system had also been upgraded. The analyst contacted the system administrators and

was able to obtain operating system benchmark data for the CHAOS versions installed

over the course of the experiments. With this data, the analyst ruled out the operating

system as the cause of the unexpected performance and concluded that the file system

was the most likely cause.

4.2. Inconsistent I/O Rate Service Time

This case study is an example of a problem that evidenced itself in a Unix server

environment, but could also certainly happen in a high performance cluster

 69

environment [72]. The situation is summarized, in [72], as “a generic problem set

faced by many Unix engineers.” The observed performance problem is that, at times,

database transaction latencies on server A are longer than expected. In this scenario

the file systems of server A and server B share some of the same physical disk

resources. In the case presented, five physical disks had each been partitioned into

two slices. Seven of the slices were allocated to server A and three slices were

allocated to the file system of server B. However, one of the physical disks was

shared by both server A and server B. A commercial tool, RICHPse SymbEL, was

used to analyze “service time” measurements of I/O requests in context of the physical

disks on which the requests occurred. Several additional scripts were written that

enabled service time measurements to be recorded for the disk slices. This then lead

to the discovery that Server B’s sporadic use of the disk slice on the shared disk was

the cause for the inconsistent database transaction latencies noticed on Server A.

This problem could not have been thoroughly investigated using traditional

application analysis tools, as the scope of the problem involved a machine external to

the application’s execution.

4.3 System Interference Related to Variability in Application Performance

The three accounts presented in this section are very interesting because they each

involve nearly identical problems, and the lengths to which the analysts go to track

down the causes of the performance problems is extensive. All three cases deal with

scaling fine-grained applications to run on thousands of nodes, while utilizing the full

 70

set of processors per node. The applications involved experienced poor performance

when configured to use n processors per node, the full set of processors per node. In

each case performance was actually better when n-1 processors per node were

configured, and with this configuration, the applications scaled to high numbers of

processors.

4.3.1 ASCI Q

An interesting story of how operating system interference can affect application

performance is presented in the published account of a performance study on ASCI Q,

a 2048 node high performance computer at Los Alamos National Laboratory (LANL)

[69]. At the time of ASCI Q’s initial deployment, a performance study was designed

to accurately determine the performance that should be expected when running a

hydrodynamics code on the full ASCI Q system. This code had been run on other

platforms, so there was a notion of expected performance based on previous

experience with the code. Additionally, the ASCI Q hardware had undergone

performance testing prior to the production phase. Using the expectations from

previous experiences and the hardware measurement data, a prediction for the

application’s performance was made using a model that had been developed for the

application. The model had been used successfully on other large-scale systems, so

there was confidence in the model.

 71

The first experiments of running the application on the full system performed

much worse than the prediction. In these experiments, four MPI processes were

assigned to each node, thus involving the full amount of processors per node. As

nodes were added to the problem set, the performance continued to deteriorate. At

4096 processors, the time to completion of one application cycle was twice the

predicted value. At first, the analysts considered that the model might be inaccurate.

A series of tests were conducted to determine the accuracy of the model. The first

important finding was that the model was accurate if one, two, or three processors per

node were utilized. Each cycle in the application was configured to perform a

consistent amount of work, and so the expectation was that each executed cycle would

complete in the same amount of time. In analyzing the variability of cycle

completions, the analysts discovered that there was great variability. Further

inspection, breaking up the time spent in each cycle by function, revealed that as

processors increased, the time spent in MPI_Allreduce and MPI_Reduce increased.

This lead the team to consider the collective operations of the MPI implementation as

factors of the poor performance. This resulted in several changes made to the

MPI_Allreduce function, changing the way synchronization was handled. With this

change, the application’s performance was expected to improve by 78%. However,

the difference in performance was negligible. Although the problem was not yet

solved, the analysts were able to eliminate the MPI implementation as the problem

source. The next suspicion was that system interference was causing the problem.

 72

This seemed reasonable, as the noise would go largely undetected as long a free

processor was available for system activities.

In several refinements of tests, using synthetic benchmarks, to isolate system

noise, it was discovered that certain nodes in 32-node clusters experienced similar

noise patterns. In every 32-node cluster, comprising ASCI Q, nodes 0, 1, and 31

showed consistently longer execution times than the other nodes. In a series of

“techniques” that are not described in the accounting, the analysts were able to

identify most of the system activities that were causing application processes to be

switched out, and they were able to identify the delay imposed on the application due

to the context switches. The system activities included two events generated by the

Quadrics resource management system; a cluster management event; and parallel file

system events.

Once they understood the problem, they were able to construct reasonable

solutions. Through a combination of removing some of the daemons, co-scheduling

some of the system processes to occur simultaneously, and distributing the processes

differently, they were able to get reasonable performance from the application running

on the full ASCI Q system.

4.3.2 IBM SP Machines and AIX Trace

A story very similar to the ASCI Q experience played out at Lawrence Livermore

National Laboratory (LLNL) on the IBM SP machines [30]. The machines analyzed

 73

in this study were Blue, a 1120 processor machine, Frost, a 1088 processor machine,

and White, a 8192 processor machine. Frost and White are each configured with 16

processors per node, and Blue is configured with four processors per node. This

performance study was designed to investigate performance variability encountered in

applications for which very little variability was expected. They expected little

variability because the codes were deterministic in the work they did, the work was

balanced among the available processors, and the jobs were scheduled to run on

dedicated nodes.

The investigation into variability lead to the discovery that variability was

minimized and within the expectation if not all of the processors per node were

utilized by the application. At first, the analysts suspected the communications

operations of the IBM MPI implementation. They constructed an experiment to test

this idea. The experiment focused on the collective operation, MPI_Allreduce. The

AIX trace facility was used to examine the behavior of the MPI_Allreduce test. As a

way to improve repeatability of the test, the entire machine was run in dedicated

mode; all cron jobs and monitoring activities that were not part of the experiment were

turned off; and the traffic on the machine interconnect was mostly minimized to just

the test traffic. Similar to the ASCI Q study, it was found that the MPI

implementation was not a factor in the variability problems.

The test data revealed that MPI_Allreduce was susceptible to some variability,

namely there were a few reduction operations in each test that were much longer than

the others. These “long-lived” reductions were analyzed with the AIX trace facility.

 74

This showed that one or more of the participating processes in each of the long

reduction operations was delayed by operating system interference. They were then

able to identify two kinds of interference. The first was interference caused by the

AIX timer decrement interrupts. These happened at 100 Hz and were staggered across

every CPU in a node. The second type of interference identified was system daemon

scheduling. These interference activities were much longer in duration than the timer

interrupts.

With further testing, they were able to assess the impact of both types of

interference. These results showed that the daemon scheduling interference was the

larger contributor to the variability experienced by the application.

4.3.3 NAMD

As a final example of the difficulties in detecting operating system interference as

a factor in poor application performance we present the experience of scaling NAMD,

a molecular dynamics code, on Lemieux, a 3000 processor cluster at the Pittsburgh

Supercomputing Center (PSC) [70]. In this work, the goal was to achieve optimal

performance of NAMD on Lemieux. The scientists describe several of the

optimizations employed at the application and communication layers to achieve

scaling performance similar to results achieved on ASCI Red. As in the previous two

examples, the application scaled well, utilizing three of the four processors per node,

but when the full set was attempted performance deteriorated. The analysts identified

 75

that the inability to utilize all of the processors was due to some operations taking

much longer to complete than expected. They were able to establish that the majority

of these “stretches” took place in send and receive communications operations. Since

they achieved reasonable scaling at three processors per node, they did not further

investigate the cause of the “stretches”. It is likely that father investigation would

have yielded results showing what kinds of system interference were causing the

problems.

However, in a later study, the scientists decided to pursue optimizations at the

application and communications library layers [31]. By making several changes at

these layers, the scientists were able to get the NAMD molecular dynamics code to

scale to 3000 processors, utilizing the full set of processors per node. The application

level optimization involved changing non-blocking receives to blocking receives. The

library level optimizations involved changes to the Quadrics elan communications

library.

4.4 Faulty Hardware

This situation was described by Dr. Douglas Pase, with IBM’s server performance

team [64]. In this case study, actual performance was far below expected performance

in benchmarking memory performance on a new server system. The cause of the poor

performance was difficult to identify using a routine set of performance analysis

methods.

 76

The goal of the performance study was to obtain memory performance

measurements for a new machine, the IBM eServer 325. The analysis team used

STREAM, a well known memory performance benchmark [45]. The STREAM

benchmark measures sustainable memory bandwidth (in MB/s). For the eServer 325

tests, the OpenMP threaded version of STREAM was used.

The eServer 325 contained two 2.0 GHz single-core AMD Opteron processors and

six GB of DDR333 memory. In the BIOS, SRAT, DRAM Interleave, ECC and

ChipKill were enabled, while Node Interleave was disabled. The server was not

connected to a network and it was tested as a stand-alone system. This was a new

machine, and the STREAM benchmark had not yet been tested on it.

The actual performances for the STREAM tests were less than 50% of the

calculated theoretical performance. The team had calculated peak memory bandwidth

to be 10.6 GB/s. The team had prior experience using this benchmark, and they knew

that typically, a system achieves 75-85% of the theoretical performance.

The analysts conducted a series of tests to investigate the unexpected behavior.

One of the things they discovered was that single threaded configurations performed

as expected. However, any configuration with more than one thread obtained poor

memory performance. The analysts checked the BIOS settings looking for

configuration settings that didn’t make sense; they inspected the BIOS logs; and they

swapped out memory, thinking bad memory could be the cause. None of these checks

proved to be causing the poor performance.

 77

Eventually, the team realized that the system was experiencing a very high number

of interrupts. These were on the order of 10,000 to 100,000 interrupts per second, and

the rate was high regardless of the benchmark executing or not. Once the high number

of interrupts was discovered, the team was able to more precisely direct their

investigation. They quickly discovered that the majority of the interrupts were related

to a USB device. In discussion with the developers of the system, it was discovered

that the mother board had a minor design flaw. The developers were able to easily

resolve the problem.

4.5 Discussion

In this chapter we presented several case studies which illustrate situations which

would have benefited from environment-aware performance analysis. Each of these

cases is an example of difficult diagnosis. The cases demonstrate the need for

additional information about the runtime environment to be included in performance

analysis. We also see common themes shared among these situations. It was often the

case that the analysts conducted several iterations of performance tuning before

reaching a key insight point. These cases also showed that finding good solutions

required learning what the root causes of the problems were. In the cases where tools

were used, the diagnoses offered by the tools were not sufficient for determining what

to target for optimization. These studies support our claim that the quality of

 78

diagnosis in parallel performance tools can be improved by incorporating knowledge

about the runtime environment.

 79

CHAPTER 5 A TEST SUITE FOR PERFORMANCE DIAGNOSIS

In this chapter we present a test suite that can be use to determine how well

application performance analysis tools determine causes of poor application

performance. Ideally, a tool should direct the user to the layer of the runtime

environment in which the root cause of a performance problem exists, and identify the

specific conditions within the layer that are most likely causing the performance

problem. Each test simulates or constructs a condition existing in a particular layer

that will negatively affect application performance. The results are interpreted by

comparing the diagnosis of the evaluated tool to the real diagnosis. To fully pass a

test, a tool must correctly identify the root cause layer and correctly identify at least

one condition within the layer responsible for the performance problem. We envision

the test suite to be of value to developers of environment-aware performance tools and

we anticipate that this type of test suite will be most useful in the first prototype

implementations of environment-aware parallel performance tools.

 For each test, we present a brief description of what the test targets; describe how

to construct the experiment; explain how to interpret the results; and state what

application performance analysis tools, without knowledge of the entire runtime

environment, would generally report about the performance behavior.

 80

5.1 Application Layer: Naive Broadcast

Test Overview. The Naive Broadcast test is designed to verify that performance

problems originating in the application layer can be correctly diagnosed by commonly

used tools. For these kinds of problems it is possible to optimize the application

performance by directly modifying the application source code, but we want a tool to

inform us that this is the appropriate layer to investigate.

Experimental Setup. The application focus of this experiment is an MPI

application with this communication pattern: the one sending process uses a point to

point communications operation to send the same message content as separate

messages to every other participating MPI process, rather than using the collective

operation MPI_Bcast.

Interpretation of Results. To fully pass this test, the tool must identify the

application layer as the layer containing the root cause and identify that the MPI_Send

could potentially be replaced by MPI_Bcast.

Diagnosis without Environment-Aware Analysis. Application level tools indicate

that one process does a majority of the work in many MPI send calls, and other

processes are spending time waiting to receive messages. Although the detection of

where the application is spending most of its time is correct, tools do not point to the

important aspect of the MPI application: that the MPI broadcast function should be

used instead of the individual MPI_Send calls.

 81

5.2 Library Layer: MPI Library Bottleneck

Test Overview. The MPI Library Bottleneck test is designed to verify that

performance problems originating in the Library Layer can be correctly diagnosed by

commonly used tools.

Experimental Setup. In this test, we take advantage of the MPI profiling interface.

In this test we consider the case of poorly implemented MPI collective operations. We

use an open source MPI profiling library and modify the MPI_Allreduce function so

that it wastes some time before calling the real collective operation in the MPI library.

We link the modified profiling library to an MPI application that uses the

MPI_Allreduce operation.

Interpretation of Results. To fully pass this test, the tool must identify the library

layer as the layer containing the root cause and identify that the MPI_Allreduce

function is a costly function.

Diagnosis without Environment-Aware Analysis. Application level tools identify

the user level call made to MPI_Allreduce as a bottleneck. In instances where the

library has been compiled with debugging options, some application level tools are

able to traverse to this level and identify the collective operation in the library layer as

a bottleneck.

5.3 Operating System Layer: NFS Server Experiment

Test Overview. The NFS Server Test is designed to verify that performance

problems in the Operating Systems Layer can be correctly diagnosed by commonly

 82

used application level tools. This experiment creates a scenario where an NFS server

receives a high number of requests for the same file from various clients. One of the

clients happens to be an MPI application that needs to read the file. Other clients, not

associated with the MPI application, are also trying to access the file for writing. The

experiment investigates the affects of this situation on the MPI application’s

performance and looks into how well application analysis tools guide an analyst in

understanding that application performance is negatively affected by the high demand

on the file by unrelated processes.

Experimental Setup. In this test one machine that is separate from the

application’s cluster is designated as the NFS server. The MPI application is

configured to runs on one node in the cluster, and it does a series of file reads on a

single file. Two other nodes, on which the MPI application is not running, have

processes writing to the same file that the MPI application is trying to read.

Interpretation of Results. To fully pass this test, the tool must identify the

operating system layer as the layer containing the root cause and identify that the file

system has several processes trying to access the same file.

Diagnosis without Environment-Aware Analysis. Application performance

analysis tools show that the MPI application performs poorly in the application level

calls to read the file. Without additional information from the runtime environment,

these tools are unable to indicate that the likely cause of the poor performance is

contention for the file resource by processes running on other machines and not part of

the MPI application.

 83

5.4 Physical Layer: Memory Difference

Test Overview. The Memory Difference Test is designed to verify that

performance problems in the Physical Layer can be correctly diagnosed by commonly

used application analysis tools. In this example, an MPI application’s performance is

negatively affected by a node that has less memory than the other nodes on which the

application’s MPI processes execute.

Experimental Setup. This experiment constructs a physical environment where

one node in a cluster has less memory than the other nodes. Other than the memory

difference, the nodes are homogeneous. The MPI application is configured to run on a

set of nodes that includes the node with less memory, and one process is assigned to

each node. The application is constructed so that every MPI process does the same set

of memory intensive tasks. The process assigned to the node with less memory takes

longer to complete its work than the other processes.

Interpretation of Results. To fully pass this test, the tool must identify the physical

layer as the layer containing the root cause and identify performance is constrained by

the size of memory available on one of the participating nodes.

Diagnosis without Environment-Aware Analysis. Application level tools identify

the process that takes more time than the other participants to complete its work. The

tools also identify where in the application this slowness is attributed. The tools do

not indicate that a machine configuration difference is what causes one process to

work longer than the others.

 84

5.5 Physical Layer: Interconnect Test

Test Overview. The Interconnect Test is designed to verify that performance

problems in the Physical Layer can be correctly diagnosed by commonly used tools.

This experiment was designed to consider the interconnect component of a cluster

from the perspective of available network bandwidth.

Experimental Setup. The experiment is constructed to examine the performance of

a communication intensive MPI application when available bandwidth is far below the

theoretical capacity. In this test a very large message is passed back and forth between

two processes using the blocking MPI_Send and MPI_Recv communication methods.

This experiment is configured to run on two nodes with one process per node.

Available network bandwidth for the participating processes is reduced by generating

extra traffic on the links between the two nodes.

Interpretation of Results. To fully pass this test, the tool must identify the physical

layer as the layer containing the root cause and identify that the media for

communication is constrained.

Diagnosis without Environment-Aware Analysis. Application performance

analysis tools identify the MPI send and receive routines in the application as the

locations of slower performance in this reduced bandwidth setting. Without additional

information about the availability of network bandwidth, tools cannot correctly

identify the cause of this problem.

 85

5.6 Discussion

This test suite that can be used to evaluate how well application performance

analysis tools identify the causes of poor application performance. These tests

construct conditions at different layers of the runtime environment that will negatively

impact the performance of an application. We described the goals of each test;

explained how to construct the experiment; gave an overview of what constitutes

passing a test; and stated what would generally be reported by application

performance analysis tools that do not have access to additional knowledge about the

runtime environment.

 86

CHAPTER 6 EXPERIMENTAL RESULTS

In this section, we describe our experimental methods and results. The general

design of each experiment is similar. With these experiments we want to show that

application performance analysis tools do not adequately incorporate information

about the runtime environment and we want to demonstrate that when status

information about the runtime environment is used in performance analysis, there is

great potential to accurately diagnose the causes of application performance problems.

To do this we construct example situations, in which we have two environments: a

normal environment that can be used as a baseline for application performance; and an

environment where some aspect of the normal environment has been changed in order

to dramatically affect application performance. We call this second environment the

sub-optimal environment. The general approach taken in all of the experiments was to

evaluate an application’s performance in both environments using one or more

application performance analysis tools, compare the results given by the tools between

the two environments, and then supplement the tools’ results with additional

information collected about an execution’s runtime environment to demonstrate the

value added to the overall problem diagnosis.

We chose to construct the sub-optimal environment for several reasons. First,

since our goal is to demonstrate our hypothesis through well-designed experiments,

we need our experiments to be repeatable and we need to obtain results that are

 87

comparable. It is much easier to achieve repeatability and comparability if we have

tight control over the experiment environment. Secondly, the construction of the sub-

optimal environment suits the needs of the study, in which we want to show specific

examples of performance analysis tools unable to capture how the runtime

environment contributes to an application’s performance behavior.

The goals of these experiments are two-fold. We first want to show that difficult

diagnosis scenarios likely to go undetected by application performance analysis tools.

Secondly, by building up this experiment set with several concrete examples where we

have injected additional information about the runtime environment, we are able to

support the claim that environment-aware diagnosis is a necessary component for

automated performance analysis

6.1 Available network bandwidth for Inter-node communication

This experiment was designed to consider the interconnect component of a cluster

from the perspective of available network bandwidth. In this experiment we show that

overall performance of an MPI application is affected by actual capacity of the inter-

node communication links, but that it is difficult to assess the contribution of available

bandwidth on application performance using only application performance analysis

tools. In the normal environment for this experiment available bandwidth was

consistently high, near the theoretical peak, and in the sub-optimal environment, the

available bandwidth for the communicating processes was severely reduced. The

 88

application performance analysis tools identified the MPI send and receive

communication routines in the application as the locations of slower performance in

the reduced bandwidth setting. However, without additional information it was

impossible to determine why these application level routines were so much slower in

one setting than in the other. When we supplemented the results provided by the

application performance tools with data collected about available bandwidth, it

became clear, from a user perspective, that the poor performance observed in the sub-

optimal environment was related to availability of bandwidth during the application’s

execution.

The experiment was constructed to examine the performance of big-message, a

communication intensive MPI micro-benchmark from the PPerfMark 2.0 benchmark

suite [71], when available bandwidth was close to the theoretical peak and when

available bandwidth was much less than the theoretical peak. In this test, a bottleneck

in the system is created by passing very large messages back and forth between two

processes. The actual size of the message is 100,000 bytes. The message is sent and

received between two processes for a specified number of iterations, using MPI_Send

and MPI_Recv, which are blocking communication routines. In this experiment set,

we used 1,000 iterations so that the wall-clock time in the normal environment was at

least 1 minute. All of the executions in this experiment were configured to run on two

nodes with one process per node. A description of the static structure of the main loop

in big-message is shown in Figure 7. The Gsend_message and Grecv_message calls

are wrapper functions to MPI_Send and MPI_Recv.

 89

CALL MPI_Wtime()
IF rank == 0
 LOOP until message[] is filled
 Assign ‘1’ to message[i]
 END LOOP
 LOOP ITERATIONS times
 CALL Gsend_message
 CALL Grecv_message
 END LOOP
ELSE
 LOOP ITERATIONS times
 CALL Grecv_message
 CALL Gsend_message
 END LOOP
END IF

CALL MPI_Wtime()

Figure 7: Static structure of main loop in big-message

We analyzed application performance with mpiP 2.8.2 [56], a MPI profiling tool,

and with Paradyn 4.2.1 [63, 62], a dynamic instrumentation and online performance

analysis tool. We viewed the mpiP results with mpipview, a graphical viewer

provided by Tool Gear 1.30 [84]. Additionally, the micro benchmark included several

source code level measurement components. Elapsed wall-clock time for the entire

program for each process is measured using MPI_Wtime which has microsecond

resolution on the systems used in this experiment. The micro benchmark also records

user process time and system process time for the entire program for each process

using getrusage().

The bandwidth measurements were collected using NetPIPE 3.6.2 [80,58].

NetPIPE is a suite of applications aimed at gathering throughput and latency

 90

measurements of the underlying network. NetPIPE’s TCP and MPI modules were

used to collect throughput and latency measurements between the two nodes on which

big-message was executed. Each module runs a series of ping pong tests between two

nodes, in which the number of bytes sent is increased in each successive test.

This experiment utilized the LAM/MPI 7.0.6 [41] implementation of MPI. The

experiments were conducted in the computer science Linux Laboratory at Portland

State University on homogeneous single processor Linux nodes, running kernel

version 2.6.9-22.0.2.EL. Each node was configured with 786 MB of memory, one

network interface card capable of 100 Mbps transmission, and a 1400MHz Intel

Pentium 4 processor with 256 KB cache. The laboratory network environment is 100

megabit Ethernet, and every node is directly connected to the switch serving the

laboratory.

To construct the sub-optimal environment we reduced the bandwidth available to

big-message’s communicating processes by generating traffic on the subnet using

Iperf 1.7.0 [29]. Iperf is a research tool designed to measure TCP bandwidth. In our

use, we did not analyze the measurements collected by the tool, but rather used the

tool as a means to create network traffic between clients and a respective server. We

configured four of the laboratory’s nodes to be servers and then used all of the

remaining available nodes as clients, including the two nodes that were involved in the

big-message executions.

To understand what the baseline environment for bandwidth capacity was for the

laboratory configuration we measured TCP and LAM/MPI throughput and latency

 91

using NetPIPE. Since, these experiment were conducted in a general purpose

instructional laboratory, we found that the most consistent normal environment existed

at non-peak hours, generally between 2:00am and 8:00am. Therefore, all of the tests

for the bandwidth experiments were conducted during these hours. Three

representative trials from the TCP measurements for the normal environment are

presented in Figure 8. These graphs show that as message sizes increased, the

throughput measurements approached the theoretical peak of 100 Mbps (Mega bits per

second). Latency is less than 0.1 seconds for message sizes 1 MB and smaller. The

largest message tested was 8 MB and the incurred latency was 0.714 seconds. Figure

9 shows TCP measurements, using the same representative runs as earlier, and three

representative runs from the LAM/MPI measurements. In these measurements, LAM

does not add significant overhead to TCP. After gathering the baseline bandwidth

measurements for the laboratory, we ran ten trials of the big-message application on

the machines paulus and jess. Each trial was configured to utilize two nodes with one

process per node and to execute the MPI message loop for 1,000 iterations. In each

trial the master process executed on paulus. The summary wall-clock results for these

trials are presented in Table 2. We then analyzed the performance of the big-message

application in the normal environment with mpiP and Paradyn. With Tool Gear we

viewed the results of the profiled big-message benchmark. Figure 10 is a screen shot

of the Tool Gear display. Here, we see that 58.89 % of the time spent in all MPI

profiled functions was assigned to the MPI_Recv function and 41.11% of MPI time

was assigned to the MPI_Send function. The screen shot shows the details mpiP

calculated for MPI_Recv in big-message. We see that the function was called 2,000

times, which is because each process called it 1,000 times. The counts presented for

each process make sense. The maximum, mean, and minimum timing values for

MPI_Recv are presented for each process and for both processes combined. Tool

Gear also shows the location in the source code of the MPI_Recv call.

Figure 8: TCP Throughput and Latency in the Normal Environment

Figure 9: TCP and MPI Throughput and Latency in the Normal
Environment

 92

Table 2: Summary Statistics. Summary wall-clock statistics, reported in
seconds, for 10 trials of big-message in the normal environment

Figure 10: Tool Gear 1.30 screen shot of big-message in the normal
environment

We also used Paradyn 4.2.1 to dynamically instrument big-message, and to view,

as the program executed, the results of the automated performance bottleneck search

and detection. To use Paradyn effectively, we needed big-message to run for a longer

 93

period of time. The benchmark source was modified slightly, to enable the iteration

count to be infinite. The automated bottleneck search and detection component of

Paradyn is presented to the user as the Search History Graph. The Search History

Graph results for the modified big-message in the normal environment are presented

in Figure 11. This shows that ExcessiveSyncWaitingTime is the problem hypothesis

which tested true for being a bottleneck. Paradyn uses a color coding scheme to

denote this. In this scheme a blue background indicates that the hypothesis has

evaluated to true. A pink background indicates that the hypothesis evaluated to false.

The bottlenecks are big-message’s wrapper functions around MPI_Send and

MPI_Recv. We also configured a table visualization to present the results of a few

metrics of interest, as shown in Figure 12. This table shows the number of bytes sent

and received; the total CPU time, including the time of all called procedures; and the

total time, including the time of called procedures, spent waiting on synchronization

operations.

Figure 11: Paradyn 4.2.2 screen shot of Search History Graph of big-message
in the normal environment

 94

Figure 12: Paradyn 4.2.2 screen shot Table Visualization of big-message in
the normal environment

The previous results are all reported about the normal environment. Now we

present the results of running big-message in the sub-optimal environment. We

present the same set of data: the summary statistics from big-message’s self

instrumented wall-clock timing in Table 3; the profile from mpiP and Tool Gear in

Figure 13; and the Search History Graph and table visualization from Paradyn in

Figure 14 and Figure 15. We see readily that it took much longer to execute 1,000

iterations. This is evident from the summary statistics shown in Table 3.

From the Tool Gear screen shot, we see that the maximum, minimum, and mean

times for the MPI_Recv function are much larger than before. The percentage

breakdown of MPI work assigned to functions has not changed too much. We do not

expect this to change since the program repeats the same steps in each execution. The

Paradyn collected data in the sub-optimal environment also has changed. We can see

that MPI_Send and MPI_Recv evaluated to true for being potential bottlenecks.

Whereas, in the normal environment results, the wrapper functions tested true, but

MPI_Send and MPI_Recv tested false. Since MPI_Send and MPI_Recv tested true in

 95

the changed environment, their associated resource trees are expanded out. The green

background for the sub trees of MPI_Send and MPI_Recv indicates that the truth

value of the hypothesis is unknown for theses resources..

Table 3: Summary Statistics. Summary wall-clock statistics, reported in
seconds, for 6 trials of big-message in the sub-optimal environment

 96

Figure 13: Tool Gear 1.30 screen shot of big-message in the sub-optimal
environment

Figure 14: Screen shot of Search History Graph of big-message in the sub-
optimal environment

 97

Figure 15: Paradyn 4.2.2 screen shot Table Visualization of big-message in
the sub-optimal environment

In this experiment set, we examined the performance of an MPI benchmark

application in two environments. In the analysis from the runs in the normal

environment, we are able to identify that the MPI_Recv and MPI_Send functions are

where performance bottlenecks could potentially exist. When the application was

executed in the sub-optimal environment, it was obvious from wall clock time that

something was different between the two execution environments. The analysis tools

were helpful in showing us where the performance problem existed in relation to the

source code. We were able to ascertain from both mpiP and Paradyn that MPI_Recv

and MPI_Send were the functions executing the largest percentage of time. Paradyn

provided more detailed information than mpiP about what the performance problem

really was. In both the normal and suboptimal environments the hypothesis test for

ExcessiveSyncWaitingTime tests to true, indicating that the default threshold for

synchronization waiting time had been exceeded by the total synchronization waiting

time of the executing application. We are not able to determine from the analysis

results presented what would be the best course of action to pursue to get the

application’s wall clock time back to what had been experienced in the first set of

 98

 99

runs. An analyst is likely to suspect the MPI library implementation or possibly the

application itself as potential targets for optimization. To be able to make a decision

about what course of action to take, the analyst really needs some other information

brought into the description of the application’s performance. To illustrate this point,

we have supplemented the analysis information provided by the tools with

information collected about the available network bandwidth between the

communicating processes of the big-message application. These results are shown in

Figure 16. The graphs present TCP throughput and latency measurements that

occurred in the normal environment and in the suboptimal environment. It is clear

that bandwidth throughput became constrained by more than 50% and that latency

was severely impacted. With access to this piece of supplemental information, an

analyst would know that the application’s available bandwidth had been reduced.

Provided that the analyst knows that nothing had changed in the MPI

implementations and the application executable between the executions in the normal

environment and the executions in the suboptimal environment, the analyst can safely

eliminate both the application and the MPI library as possible sources of the problem.

Figure 16: TCP throughput and latency in the normal and the sub-optimal
environments

6.2 Gathering system info with MPI processes

6.2.1 Overview

In this experiment we explored the idea of using MPI processes to track system

information. The idea is that an MPI application could have one process per node

reserved just for system monitoring activities. In this scheme, the monitor processes

only do monitoring activities, while the worker processes do the work of the

application. In this experiment, all MPI processes are specified as arguments to

program which launches MPI executions. It is possible to create the monitor

processes dynamically, but this is not a fully supported feature of all MPI

implementations.

There are several advantages gained by allowing the application to perform the

monitoring tasks. One of the advantages is that the gathered information correlates

with the application’s execution. The application starts and stops the monitoring

 100

 101

activity. Another advantage is that the application controls what is monitored and

with what frequency data is collected.

There are several drawbacks to this method. In systems composed of single CPU

nodes, the cost of running two MPI processes on a node could negatively impact

application performance.

6.2.2 Purpose

The purpose of this experiment is to determine if a mapping between application

performance and system activity can be done using generally available methods. In

the results presented we execute an MPI monitor program. The program is

constructed such that the worker tasks do the targeted work of the application and the

monitor process collects some system level information and writes this data to a log

file. In our test program, the monitor processes execute the vmstat system level utility.

6.2.3 Methods

In the vmstat monitor application, the monitor runs the vmstat utility at one second

intervals for a specified duration. The worker processes do a simple loop computation

and do not perform any MPI communication operations. By collecting vmstat data,

we want to observe the application’s performance in view of virtual memory activities.

The vmstat utility reports information on processes, memory, paging, block IO, traps,

and cpu activity. In this experiment we configured vmstat to update at one second

 102

intervals, and we configured it to produce the basic vmstat report. The kinds of things

reported in each update, in the basic report, include the number of processes waiting,

the number of processes in uninterruptible sleep, the amount of virtual memory used,

the amount of idle memory, amount of memory swapped in from disk and out to disk,

blocks received and sent to block I/O devices, the number of interrupts and context

switches, and total CPU time percentages.

We executed the experiment in two environments. The first environment was

considered the normal environment, and the second environment was the sub-optimal

environment. For executions in the normal environment, the wall-clock times for the

worker processes in each execution were nearly identical. In the sub-optimal

environment, the wall-clock times for the worker tasks on one of the nodes was

consistently longer over several executions than the corresponding value for the

worker process on the other node. This experiment utilized the LAM/MPI 7.0.6 [41]

implementation of MPI. The tests were conducted in the computer science Linux

Laboratory at Portland State University on homogeneous single processor Linux

nodes, running kernel version 2.6.9-34.0.1.ELsmp. Each node was configured with 1

GB of memory, one network interface card capable of 100 Mbps transmission, and a

3.20GHz Intel Pentium 4 processor with 1 MB size cache. The laboratory network

environment is 100 megabit Ethernet, and every node is directly connected to the

switch serving the laboratory.

6.2.4 Results

From the application timing results, we could see that the worker process on one of

the nodes was taking longer to complete its simple loop computation. This is

unexpected behavior for the application for three reasons. First, the application is

deterministic. Second, the nodes selected for execution were homogeneous. Third,

from previous experiences of running the application on the two nodes, we knew that

the worker processes normally completed their tasks at about the same time.

Table 4 presents the wall-clock times, in seconds, for the worker process on each

node for a representative execution from the normal environment. Table 5 presents

similar metrics for the sub-optimal environment. We see that the worker process on

andrea takes about 11 seconds longer to complete than it did in the normal

environment, resulting in a 10% slowdown for the simple loop computation of the

application.

Table 4: Wall Clock Times. Wall-Clock times, in seconds, for worker process
on each node for two different executions, in the normal environment.

Table 5: Wall Clock Times. Wall-Clock times, in seconds, for worker process
on each node for two different executions, in the normal environment

 103

To investigate the problem further, we inspected the monitoring information that

was gathered during these representative executions. Table 6 and Table 7 present the

average values from the vmstat reports for the normal and sub-optimal environments

respectively. Table 8 provides an explanation of the vmstat measurements and units.

Table 6: Vmstat reported values. Average values, by node, from vmstat for
two different executions in normal environment

Table 7: Vmstat reported values. Average values, by node, from vmstat for
two different executions in sub-optimal environment

Table 8: Explanation of Vmstat measurements and units
 104

 105

By inspection of Table 6 and Table 7, we noted some values that looked different

enough to warrant further inspection. We can see that in the sub-optimal environment

andrea, on average, has two process waiting to run. Normally, only one process is

waiting to run. We also notice an increase in blocks sent to I/O devices for andrea, in

the sub-optimal environment. Two dramatic changes are noticed in the number of

interrupts and context switches logged on andrea during the application’s execution in

the sub-optimal environment. It is also evident that the break down of CPU time

percentages for andrea in the sub-optimal environment changed: the percentage of

time spent executing user code decreased, the percentage of time spent executing

kernel code increased, and the percentage of time spent idle decreased. Just from the

information presented in the averages table, we can theorize with a high degree of

confidence that the addition of a second process on andrea is the cause of the

performance problem. However, we can view these metrics of interest with a simple

time-line representation. These views are displayed in Figure 17.

Figure 17: Processes, Interrupts and Context Switches for paulus and andrea
in the Normal and Sub-optimal Environments. The first graph shows data for
paulis in the normal environment. The second graph shows data for andrea in

the normal environment. The third graph shows data for paulus in the sub-
optimal Environment. The fourth graph shows data for andrea in the sub-

optimal environment.

 106

 107

6.2.5 Discussion

We conclude that it is possible to use generally available system utilities to gain

insight into the performance behavior of applications, however, integrating this

information with application level data requires new tool support.

 108

CHAPTER 7 CONCLUSIONS AND FUTURE WORK

In this thesis we proposed a new approach for performance analysis called

Environment-Aware Performance Analysis. This approach focuses on improving the

quality of diagnosis offered by performance analysis tools. We limited the focus of

this thesis to the investigation of environment-aware performance analysis for parallel

applications.

Environment-Aware Performance Analysis includes analysis of an application’s

execution behavior and analysis of the environment in which an application executes.

The performance diagnosis incorporates both sets of analyses, and it seeks to identify

root causes of performance behavior. Environment-Aware Performance Analysis

extends traditional methods of application performance analysis, and, by doing so, has

potential to improve the quality of performance diagnosis.

This thesis demonstrates a need for performance analysis tools to utilize

information about the runtime environment in the analyzing performance data and

formulating performance diagnoses. To support this claim we presented real

situations in which traditional performance analysis tools either provided misleading

diagnostic information or were unable to provide adequate guidance to analysts in

determining the causes of performance problems. We also provided proof of concept

examples to show the potential for performance analysis tools to improve the quality

 109

of diagnosis by incorporating analysis of the runtime environment with analysis of

application behavior.

We presented a layered view of the runtime environment which can be used to

frame performance problems in terms of root causes and potential optimizations. We

also discussed development considerations for the design of environment-aware tools.

The contributions of this thesis include a test suite for evaluating the ability of

tools to accurately diagnose performance problems; experimental results showing the

limitations of current tools; a set of case studies illustrating situations that might have

benefited from environment-aware performance analysis; a discussion of the

challenges and concerns for development of environment-aware tools; and a survey of

the state of the art in parallel performance analysis tools.

As we continue our research in this area we have identified several areas for future

work. We would like to conduct a tool evaluation study using the test suite, and we

want to complete other experiments that are currently in progress. We plan to develop

a prototype tool that encompasses the key features of environment-aware performance

analysis. This effort will entail preliminary work in the development of techniques for

integration of data collected from different layers and by different tools. An example

of this is integrating application performance trace data, MPI library profiling data,

vmstat-like data collected from a system monitoring facility, and hardware counter

performance data. These data sets span the layers of the runtime environment and

could potentially be collected by different tools. We want to develop methods for

 110

automated analysis of integrated data which detect performance problems and identify

the runtime layers in which likely causes of performance problems exist.

This work focused on performance of high end parallel applications. Environment

aware analysis is also applicable to other computing domains, including databases,

server applications, operating system benchmarking, and Grid computing.

Environment aware performance analysis can support user perspectives other than the

application developer/user. For example, a system engineer, designing new systems

or benchmarking systems, is concerned with the performance of system hardware

components, and is less concerned with improving the performance of individual

applications.

 111

REFERENCES

1. Anderson, J. M., Berc, L. M., Dean, J., Ghemawat, S., Henzinger, M. R., Leung,
S. A., Sites, R. L., Vandevoorde, M. T., Waldspurger, C. A., and Weihl, W. E.
1997. Continuous profiling: where have all the cycles gone?. ACM Trans.
Comput. Syst. 15, 4 (Nov. 1997), 357-390. DOI=
http://doi.acm.org/10.1145/265924.265925.

2. Berrendorf, R. and Mohr, B. PCL - The Performance Counter Library: A
Common Interface to Access Hardware Performance Counters on
Microprocessors (version 2.2). 2003. Zentralinstitut für Angewandte
Mathematik (ZAM), . Retrieved 6-20-06 from ZAM:
http://www.fz-juelich.de/zam/PCL/doc/pcl/pcl.pdf.

3. Berrendorf, R. and Ziegler, H. PCL - The Performance Counter Library: A
Common Interface to Access Hardware Performance Counters on
Microprocessors. Technical Report FZJ-ZAM-IB-9816, Zentralinstitute Fur
Angewandte Mathematik, October, 1998.

4. Browne, S., Dongarra, J., Garner, N., Ho, G., and Mucci, P. A portable
programming interface for performance evaluation on modern processors. The
International Journal of High Performance Computing Applications. 14, 3 (Fall
2000), 189-204.

5. Brunst, H., Kranzlmüller, D., Nagel, W. E. 2004. Tools for Scalable Parallel
Program Analysis - Vampir VNG and DeWiz. In Distributed and Parallel
Systems: Cluster and Grid Computing, Z. Juhasz, P. Kacsuk and D.
Kranzlmüller, Eds. Kluwer International Series in Engineering and Computer
Science, Springer, New York, NY, 777, 93-102.

6. Buck, B. R. and Hollingsworth, J. K. An api for runtime code patching. Journal
of High Performance Computing Applications, 14 (4). 317-329.

7. Cascaval, C., Duesterwald, E., Sweeney, P.F, and Wisniewski, R. Vertical
Performance Monitoring. Presentation. WAPA, 2005, IBM T. J. Watson
Research Center, December 16, 2005.

8. Cascaval, C., Dusterwald, E., Sweeney, P. F., and Wisniewski, R. W.
Performance and environment monitoring for continuous program optimization.
IBM Journal of Research and Development. 50, 2-3 (March/May 2006), 239-
247.

9. Cheng, D. Y. and Pase, D. M. 1991. An evaluation of automatic and interactive
parallel programming tools. In Proceedings of the 1991 ACM/IEEE Conference

 112

on Supercomputing (Albuquerque, New Mexico, United States, November 18 -
22, 1991). Supercomputing '91. ACM Press, New York, NY, 412-423. DOI=
http://doi.acm.org/10.1145/125826.126052.

10. DeRose, L. and Reed, D. A. 1999. SvPablo: A multi-language architecture-
independent performance analysis system. In Proceedings of the International
Conference on Parallel Processing (ICPP'99), (Fukushima, Japan, September
21-24, 1999). IEEE Computer Society Press, 311-318.

11. DeRose, L. Hoover, Jr., T., and Hollingsworth, J. K. 2001. The Dynamic Probe
Class Library – An Infrastructure for Developing Instrumentation for
Performance Tools. In Proceedings of the 15th International Parallel and
Distributed Processing Symposium (IPDPS'01) (San Francisco, CA, April 23-27,
2001). IEEE Computer Society, 10066b.
DOI=http://doi.ieeecomputersociety.org/10.1109/IPDPS.2001.925012

12. DeRose, L.
http://www.ccs.ornl.gov/workshops/FallCreek05/presentations/l_derose.pdf,
retrieved 5-31-06.

13. DeRose, L., Hoover Jr., Hollingsworth, J. K. 2001. The dynamic probe class
library – an infrastructure for developing instrumentation for performance tools.
Proceedings of the 15th International Parallel and Distributed Processing
Symposium (IPDPS'01). 1:10066.2, 2001

14. Fahringer, T. and Seragiotto, C. 2004. AKSUM: A performance analysis tool for
parallel and distributed applications. In Performance Analysis and Grid
Computing, V. Getov, M. Gerndt, A. Hoisie, A. Malony, and B. Miller, Eds.
Kluwer Academic Publishers, Norwell, MA, 189-208.

15. Fahringer, T., Gerndt, M., Riley, G. and Traff, J. Knowledge Specification for
Automatic Performance Analysis. Technical Report FZJ-ZAM-IB-9918, APART
ESPRIT IV Working Group on Automatic Performance Analysis: Resources and
Tools, November, 1999

16. Fahringer, T., Jugravu, A., Pllana, S., Prodan, R., Seragiotto Jr., C. and Truong,
H-L. ASKALON: a tool set for cluster and grid computing. Concurrency and
Computation: Practice and Experience, 17, 2-4 (2005), 143-169.

17. Gerndt, M., Mohr, B., Pantano, M. and Wolf, F. Automatic performance analysis
for CRAY T3E. In Proceedings of the Seventh Workshop on Compilers for
Parallel Computers (CPC'98), University of Linköping, Sweden, June 29 - July
1 1998, pp. 69-78

18. Graham, S. L., Kessler, P. B., and Mckusick, M. K. 1982. gprof: a call graph
execution profiler. In Proceedings of the 1982 SIGPLAN Symposium on
Compiler Construction (SIGPLAN '82) (Boston, Massachusetts, United States,
June 23 - 25, 1982). ACM Press, New York, NY, 120-126.

 113

19. Graham, S. L., Kessler, P. B., and McKusick, M. K. 2004. gprof: a call graph
execution profiler. SIGPLAN Not. 39, 4 (Apr. 2004), 49-57. DOI=
http://doi.acm.org/10.1145/989393.989401.

20. Grand Challenges: Science, Engineering, and Societal Advances Requiring
Networking and Information Technology Research and Development, 2004.
Howe, S. E. and King, F. D. Eds. National Coordination Office for Information
Technology Research and Development (NITRD), Arlington, VA. Retrieved 5-
10-06 from NITRD: http://www.nitrd.gov/pubs/200311_grand_challenges.pdf

21. Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir,
W. and Snir, M. MPI: The Complete Reference (Vol. 2), Volume 2 - The MPI-2
Extensions. The MIT Press,Cambridge, MA, 1998.

22. Hauswirth, M., Diwan, A., Sweeney, P. F., and Mozer, M. C. 2005. Automating
vertical profiling. In Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object Oriented Programming, Systems, Languages, and Applications (San
Diego, CA, USA, October 16 - 20, 2005). OOPSLA '05. ACM Press, New
York, NY, 281-296. DOI= http://doi.acm.org/10.1145/1094811.1094834

23. Herrarte, V. and Lusk, E. Studying Parallel Program Behavior with Upshot.
Technical Report ANL-91/15, Argonne National Laboratory, Argonne, IL, 1991.

24. High Performance Computing Act of 1991. National Coordination Office for
Networking and Information Technology Research and Development (NITRD),
Arlington, VA. Retrieved 5-10-06 from NITRD:
http://www.nitrd.gov/congressional/laws/pl_102-194.html.

25. Hollingsworth, J. K. and Keleher, P. J. 1998. Prediction and Adaptation in
Active Harmony. In Proceedings of the Seventh IEEE international Symposium
on High Performance Distributed Computing (July 28 - 31, 1998). HPDC. IEEE
Computer Society, Washington, DC, 180.

26. Hollingsworth, J. K., Irvin, R. B. and Miller, B. P. The Integration of Application
and System Based Metrics in a Parallel Program Performance Tool.
Technical Report TR996, University of Wisconsin-Madison, Computer Sciences
Department, Madison, WI, 1991.

27. http://bhami.com/rosetta.html, retrieved 6-1-06.

28. Intel Trace Analyzer and Collector. Retrieved 5-24-06 from Intel:
http://www.intel.com/cd/software/products/asmo-
na/eng/cluster/tanalyzer/index.htm, retrieved 5-24-06.

29. Iperf. http://dast.nlanr.net/projects/Iperf/, retrieved 3-6-06.

30. Jones, T. R., Brenner, L. B. and Fier, J. M. Impacts of Operating Systems on the
Scalability of Parallel Applications, Technical Report, Lawrence Livermore
National Laboratory, 2003.

 114

31. Kale, L. V., Kumar, S., Zheng, G. and Lee, C. W. 2003. Scaling molecular
dynamics to 3000 processors with projections: a performance analysis case
study. In Proceedings of the Terascale Performance Analysis Workshop,
International Conference on Computational Science (ICCS 2003) (Melbourne,
Australia, June 2-4, 2003). Lecture Notes in Computer Science, Springer,
Berlin/Heidelberg, 2660. 25-32.

32. Karavanic, K. L. and Miller, B. P. 1997. Experiment management support for
performance tuning. In Proceedings of the 1997 ACM/IEEE Conference on
Supercomputing (Cdrom) (San Jose, CA, November 15 - 21, 1997).
Supercomputing '97. ACM Press, New York, NY, 1-10. DOI=
http://doi.acm.org/10.1145/509593.509601.

33. Karavanic, K. L. and Miller, B. P. 1999. Improving online performance
diagnosis by the use of historical performance data. In Proceedings of the 1999
ACM/IEEE Conference on Supercomputing (Cdrom) (Portland, Oregon, United
States, November 14 - 19, 1999). Supercomputing '99. ACM Press, New York,
NY, 42. DOI= http://doi.acm.org/10.1145/331532.331574.

34. Karavanic, K. L., May, J., Mohror, K., Miller, B., Huck, K., Knapp, R., and
Pugh, B. 2005. Integrating Database Technology with Comparison-based
Parallel Performance Diagnosis: The PerfTrack Performance Experiment
Management Tool. In Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing (November 12 - 18, 2005). Conference on High Performance
Networking and Computing. IEEE Computer Society, Washington, DC, 39.
DOI= http://dx.doi.org/10.1109/SC.2005.36.

35. Karrels, E. and Lusk, E. Performance Analysis of MPI Programs. 1994. In
Proceedings of the Workshop on Environments and Tools for Parallel Scientific
Computing (Townsend, TN, May 1994). J. Dongarra and B. Tourancheau, Eds.
SIAM Publications, 195-200.

36. Kitchens, T. A., Austin D. M., Fitzmaurice, J. M., Glick, N. S., Johnson, F. C.,
Kelley, R. L., Martino, R. L., Milstead, P. L., Novak, J. H., Poliakoff, A. T.,
Turnbull, W. T., Ricart, G. and Voigt, R. G. 1996. High Performance Computing
and Communications: Foundation for America's Information Future. S. Howe,
Ed. The National Coordination Office for High Performance Computing and
Communications (NCO), Bethseda, MD. Retrieved 5-10-06 from NITRD:
http://www.nitrd.gov/pubs/bluebooks/1996/.

37. Kohn, J. and Williams, W. ATExpert. Journal of Parallel and Distributed
Computing, 18, 2 (June 1993), 205-222.

38. Kola, G., Kosar, T., and Livny, M. Profiling grid data transfer protocols and
servers. Europar 2004.

 115

39. Kufrin, R. 2005. Measuring and improving application performance with
PerfSuite. Linux J. 2005, 135 (Jul. 2005), 4

40. Kufrin, R., PerfSuite: An Accessible, Open Source Performance Analysis
Environment for Linux, 6th International Conference on Linux Clusters: The
HPC Revolution 2005. Chapel Hill, NC, April 2005

41. LAM/MPI. http://www.lam-mpi.org, retrieved 3-17-06.

42. Lamport, L. 1978. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21, 7 (Jul. 1978), 558-565. DOI=
http://doi.acm.org/10.1145/359545.359563.

43. Lilja, D. J. Measuring Computer Performance. A Practitioner's Guide.
Cambridge University Press, Cambridge, UK, 2000.

44. M. Hauswirth, P. F. Sweeney, A. Diwan, M. Hind. “Vertical Profiling:
Understanding the Behavior of Object-Oriented Applications”. OOPSLA '04:
Proceedings of the 19th annual ACM SIGPLAN Conference on Object-oriented
programming, systems, languages, and applications. 251-269, Vancouver, BC,
Canada, October 2004.

45. McCalpin, J. D. STREAM: Sustainable Memory Bandwidth in High Performance
Computers. Retrieved 6-01-06 from http://www.cs.virginia.edu/stream/.

46. Miller, B. P., Callaghan, M. D., Cargille, J. M., Hollingsworth, J. K., Irvin, R.
B., Karavanic, K. L., Kunchithapadam, K. and Newhall, T. The Paradyn parallel
performance measurement tool, IEEE Computer 28, 11 (November 1995), 37-
46. Special issue on performance evaluation tools for parallel and distributed
computer systems.

47. Miller, B. P., Clark, M., Hollingsworth, J., Kierstead, S., Lim, S.-S. and
Torzewski, T. IPS-2: the second generation of a parallel program measurement
system. IEEE Transactions on Parallel and Distributed Systems, 1, 2 (April
1990), 206 - 217.

48. Miller, B., Cortes, A., Senar, M. A., and Livny, M. 2003. The Tool Dæmon
Protocol (TDP). In Proceedings of the 2003 ACM/IEEE Conference on
Supercomputing (November 15 - 21, 2003). Conference on High Performance
Networking and Computing. IEEE Computer Society, Washington, DC, 19.

49. Mirgorodskiy, A. V. and Miller, B. P. Autonomous analysis of interactive
systems with self-propelled instrumentation. Multimedia Computing and
Networking Conference (MMCN '05), (San Jose, California, 2005).

50. Mirgorodskiy, A. V., Maruyama, N. and Miller, B. P. Miller, "Problem
Diagnosis in Large-Scale Computing Environments", Submitted for publication.

51. Mohr, B., Wolf, F., 2003. KOJAK – A Tool Set for Automatic Performance
Analysis of Parallel Programs. In Harald Kosch, László Böszörményi, Hermann

 116

Hellwagner (Eds.): Euro-Par 2003. Parallel Processing, 9th International Euro-
Par Conference, Klagenfurt, Austria, August 26-29, 2003. Proceedings. Springer.
Lecture Notes in Computer Science, Vol. 2790, 1301 - 1304, 2003.

52. Mohror, K., Personal Communication, June 2, 2006.

53. Mooney, R., Studham, R. S., Schmidt, K. P., Nieplocha, J. 2004. NWPerf: A
System Wide Performance Monitoring Tool for Large Linux Clusters. Cluster
Computing, 2004 IEEE International Conference (San Diego, California,
September 20-23, 2004). 379-389.

54. MPE. http://www-unix.mcs.anl.gov/perfvis/download/index.htm#MPE, retrieved
5-25-06.

55. mpiP current version. http://www.llnl.gov/CASC/mpip/, retrieved 5-25-06.

56. mpiP earlier verison. http://www.llnl.gov/CASC/mpip/, retrieved 3-02-06.

57. Nagel, W. E. Nagel, Arnold, A., Weber, M., Hoppe, H.-C. and Solchenbach, K.
VAMPIR: Visualization and analysis of MPI resources. Supercomputer,
12(1):69--80, January 1996.

58. NetPIPE. http://www.scl.ameslab.gov/netpipe/, retrieved 1-3-2006.

59. Open MPI: Open Source High Performance Computing. Retrieved 6-20-06 from
Open MPI: http://www.open-mpi.org/.

60. OProfile. http://oprofile.sourceforge.net , retrieved 5-24-06.

61. PAPI. http://icl.cs.utk.edu/papi/, retrieved 5-25-06.

62. Paradyn Parallel Performance Tools User's Guide, Release 4.2, Paradyn
Project, Computer Sciences Department, University of Wisconsin, Madison, WI
53706-1685. March 2005. Retrieved 8-5-05 from University of Wisconsin:
http://www.paradyn.org/html/manuals.html.

63. Paradyn Parallel Performance Tools. Paradyn Project, Computer Sciences
Department, University of Wisconsin, Madison, WI. Retrieved 3-20-06 from
University of Wisconsin: http://www.paradyn.org.

64. Pase, D., Personal Communication, 2006.

65. PCL - The Performance Counter Library Version 2.2, January 2003.
Zentralinstitut für Angewandte Mathematik (ZAM), . Retrieved 5-25-06 from
ZAM: http://www.fz-juelich.de/zam/PCL/.

66. Performance Visualization for Parallel Programs. Argonne National Laboratory,
Argonne, IL. Retrieved 6-18-06 from ANL: http://www-
unix.mcs.anl.gov/perfvis/

 117

67. Performance Visualization for Parallel Programs: Viewers. Argonne National
Laboratory, Argonne, IL. Retrieved 6-18-06 from ANL:
http://www-unix.mcs.anl.gov/perfvis/software/viewers/index.htm

68. PerfSuite. http://perfsuite.ncsa.uiuc.edu/, retrieved 6-1-06.

69. Petrini, F., Kerbyson, D. J., and Pakin, S. 2003. The case of the missing
supercomputer performance: achieving optimal performance on the 8,192
processors of ASCI Q. In Proceedings of the 2003 ACM/IEEE Conference on
Supercomputing (November 15 - 21, 2003). Conference on High Performance
Networking and Computing. IEEE Computer Society, Washington, DC, 55.

70. Phillips, J. C., Zheng, G., Kumar, S., and Kalé, L. V. 2002. NAMD:
biomolecular simulation on thousands of processors. In Proceedings of the 2002
ACM/IEEE Conference on Supercomputing (Baltimore, Maryland). Conference
on High Performance Networking and Computing. IEEE Computer Society
Press, Los Alamitos, CA, 1-18.

71. PPerfMark. http://www.cs.pdx.edu/~karavan/pperfdb/PPerfMark20.tar.gz,
retrieved 2-21-06.

72. Purdy, M. 2006. Modern Performance Monitoring. Queue 4, 1 (Feb. 2006), 48-
57. DOI= http://doi.acm.org/10.1145/1117389.1117404.

73. Radu Prodan and Thomas Fahringer. 2002. ZENTURIO: An experiment
management system for cluster and grid computing. In Proceedings of the 4th
International Conference on Cluster Computing (CLUSTER 2002) (Chicago,
USA, September 2002). IEEE Computer Society Press.

74. Reed, D. A. 1993. Performance instrumentation techniques for parallel systems.
In Performance Evaluation of Computer and Communication Systems, Joint
Tutorial Papers of Performance '93 and Sigmetrics '93 (May 10 - 14, 1993). L.
Donatiello and R. D. Nelson, Eds. Springer-Verlag, London, 729 (1993), 463-
490.

75. Reed, D. A., Aydt, R. A., Noe, R. J., Roth, P. C., Keith A. Shields, Bradley
Schwartz, and Luis F. Tavera, "Scalable Performance Analysis: The Pablo
Performance Analysis Environment," Anthony Skjellum(ed), Proceedings of the
Scalable Parallel Libraries Conference, IEEE Computer Society, October 1993,
pp. 104-113.

76. Roth, P. C. Etrusca: event trace reduction using statistical data clustering
analysis. 1996. Thesis.

77. Roth, P. C., Arnold, D. C., and Miller, B. P. 2003. MRNet: A Software-Based
Multicast/Reduction Network for Scalable Tools. In Proceedings of the 2003
ACM/IEEE Conference on Supercomputing (November 15 - 21, 2003).
Conference on High Performance Networking and Computing. IEEE Computer
Society, Washington, DC, 21.

 118

78. Shende, S. and Malony, A. D. 2005. The TAU parallel performance system.
(submitted to) International Journal of High Performance Computing
Applications, ACTS Collection Special Issue, 2005.

79. Smith, W. A system for monitoring and management of computational grids.
International Conference on Parallel Processing (ICPP'02). 55, 2002.

80. Snell, Q., Mikler, A., and Gustafson, J. Netpipe: a network protocol independent
performance evaluator. In IASTED International Conference on Intelligent
Information Management and Systems. June 1996.

81. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J. MPI: The
Complete Reference (Vol. 1) - 2nd Edition, Volume 1 - The MPI Core. The MIT
Press,Cambridge, MA, 1998.

82. Srivastava, A. and Eustace, A. 2004. ATOM: a system for building customized
program analysis tools. SIGPLAN Not. 39, 4 (Apr. 2004), 528-539. DOI=
http://doi.acm.org/10.1145/989393.989446

83. Tapia, R., Lanius, C., McZeal, M. and Parks, T. A. Computational Science:
Tools for a Changing World. A High School Curriculum. Rice University, 2001.
Retrieved 5-2-06, from Rice University:
http://ceee.rice.edu/Books/CS/index.html.

84. Tool Gear earlier version. http://www.llnl.gov/CASC/tool_gear/, retrieved 3-02-
06.

85. Tool Gear later version. http://www.llnl.gov/CASC/tool_gear/, retrieved 6-1-06.

86. TOP 500, 2002. http://www.top500.org/list/2002/06/, retrieved 5-15-06.

87. TOP 500. http://www.top500.org/, retrieved 5-15-06.

88. Truong, H-L, Fahringer, T, Madsen, G., Malony, A. D., Moritsch H. and Shende,
S. "On using SCALEA for Performance Analysis of Distributed and Parallel
Programs", Supercomputing 2001 Conference (SC2001), Denver, Colorado,
USA. November 10-16,2001

89. Truong, H-L. and Fahringer T. SCALEA-G: a unified monitoring and
performance analysis system for the grid. Scientific Programming, 12, 4 (2004),
225-237.

90. Truong, H-L., Fahringer, T. and Dustdar, S. Dynamic instrumentation,
performance monitoring and analysis of grid scientific workflows. Journal of
Grid Computing, 3, 1-2 (June 2005), 1-18. DOI= 10.1007/s10723-005-5299-6

91. Williams, W., Hoel, T., Pase, D. 1994. The MPP apprentice performance tool:
delivering the performance of the Cray T3D. Programming Environments for
Massively Parallel Distributed Systems, K. Decker and R. M. Rehman, Eds.
Birkhauser Verlag, Basel, 333-346.

 119

92. Wisniewski, R.W., Sweeney, P. F., Sudeep, K., Hauswirth, M., Duesterwald, E.,
Cascaval, C., and Azimi, R. "Performance and Environment Monitoring for
Whole-System Characterization and Optimization", PAC2 Conference on
Power/Performance interaction with Architecture, Circuits, and Compilers. IBM
T.J. Watson Research Center, Yorktown Heights, New York, September, 2004.

93. Wolf, F. and Mohr, B. 2003. Hardware-counter based automatic performance
analysis of parallel programs. In Proceedings of the Minisymposium
'Performance Analysis' Conference on Parallel Computing (PARCO '03),
(Dresden, Germany, September 3, 2003), Elsevier.

94. Wolski, R. 2003. Experiences with predicting resource performance on-line in
computational grid settings. SIGMETRICS Perform. Eval. Rev. 30, 4 (Mar.
2003), 41-49. DOI= http://doi.acm.org/10.1145/773056.773064

95. Wolski, R., Spring, N and Hayes, J. “The Network Weather Service: A
Distributed Resource Performance Forecasting Service for Metacomputing”,
Journal of Future Generation Computing Systems, 15(5-6):757-768, October,
1999.

96. Yan, J. C. 1994. Performance tuning with AIMS -- an automated instrumentation
and monitoring system for multicomputers. In Proceedings of the 27th Hawaii
International Conference on System Sciences (Wailea, Hawaii, January, 4 - 7,
1994). 2. 625-633.

97. Yan, J. C., etal. The automated instrumentation and monitoring system version
3.7 users’ guide. 1997. Retrieved 6-18-06 from NAS Systems Division, NASA
Ames Research Center:
http://www.nas.nasa.gov/Groups/Tools/AIMS/manual/TableTest.html.

98. Zaki, O., Lusk, E., Gropp, W., and Swider, D. Toward Scalable Performance
Visualization with Jumpshot. Mathematics and Computer Science Division,
Argonne National Laboratory, 1999. Retrieved 6-18-06 from ANL: http://www-
unix.mcs.anl.gov/perfvis/software/viewers/jumpshot-2/paper.html.

99. Zaki, O., Lusk, E., Gropp, W., and Swider, D. Toward scalable performance
visualization with jumpshot. High-Performance Computing Applications, 13(2).
277-288.

