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ABSTRACT 

An abstract of the thesis of Rashawn Lee Knapp for the Master of Science in 

Computer Science presented June 15, 2006. 

 

Title:  Towards Environment-Aware Performance Analysis:  Improving Parallel 

Performance Diagnosis by Including Knowledge of the Runtime Environment 

 

Tools used for conducting parallel performance analysis do not adequately convey 

an understanding of an application’s performance in relation to the status and behavior 

of the runtime environment in which an application executes.  This limits the quality 

of diagnosis that tools are able to offer regarding the causes of performance problems. 

This work presents Environment-Aware Performance Analysis, a new approach 

that targets improving the quality of diagnosis offered by performance analysis tools.  

This thesis focuses on Environment-Aware Performance Analysis for parallel 

applications. 

Environment-Aware Performance Analysis includes analysis of an application’s 

execution behavior and analysis of the environment in which an application executes.  
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The performance diagnosis incorporates both sets of analyses, and it seeks to identify 

root causes of performance behavior.  Environment-Aware Performance Analysis 

extends traditional methods of application performance analysis, and, by doing so, has 

potential to improve the quality of performance diagnosis.  In this work, we 

investigate including analysis about the status and behavior of the runtime 

environment. 

A primary goal is to demonstrate a strong need for performance analysis tools to 

utilize information about the runtime environment.  Through simulated experiments 

and by citing published and anecdotal scenarios, we describe situations in which 

traditional performance analysis tools either provide misleading diagnostic 

information or are unable to provide adequate guidance to analysts in determining the 

causes of performance problems.  With proof of concept demonstrations, we show the 

potential for performance analysis tools to improve the quality of diagnosis by 

incorporating analysis of the runtime environment with analysis of application 

behavior.  We present a layered view of the runtime environment and describe how 

this view can be used to frame performance problems in terms of root causes and 

potential optimizations.  We discuss considerations relate development and design of 

environment-aware tools.  In our presentation of related work, we provide a historical 

perspective and describe the state of the art for parallel performance analysis tools.
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CHAPTER 1  INTRODUCTION 

 

This work presents Environment-Aware Performance Analysis, a new approach 

that targets improving the quality of diagnosis offered by application performance 

analysis tools.  The research presented in this thesis focuses on Environment-Aware 

Performance Analysis for parallel applications. 

1.1  Overview 

Environment-Aware Performance Analysis includes both analysis of an 

application’s execution behavior and analysis of the environment in which an 

application executes.  The performance diagnosis incorporates both sets of analyses, 

and it seeks to identify root causes of performance behavior.  Environment-Aware 

Performance Analysis extends traditional methods of application performance 

analysis, and, by doing so, has potential to improve the quality of performance 

diagnosis.  A broad definition of Environment-Aware Performance Analysis interprets 

environment analysis to include the runtime environment and aspects about the build 

and compile time environments.  In this work, we investigate the runtime environment 

portion of the environment analysis component. 

A primary goal of this thesis is to demonstrate a strong need for performance 

analysis tools to utilize information about the runtime environment in the phases of 

performances analysis.  Through simulated experiments and by citing published and 

anecdotal scenarios, we describe situations in which traditional performance analysis 
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tools either provide misleading diagnostic information or are unable to provide 

adequate guidance to analysts in determining the causes of performance problems.  

With proof of concept demonstrations, we show the potential for performance analysis 

tools to improve the quality of diagnosis by incorporating analysis of the runtime 

environment with analysis of application behavior.  We present a layered view of the 

runtime environment and describe how this view can be used to frame performance 

problems in terms of root causes and potential optimizations.  We discuss 

considerations related to design and development of environment-aware tools.  In our 

presentation of related work, we describe other parallel performance analysis tools.   

The contributions of this thesis are: 

• A test suite for evaluating the ability of tools to accurately diagnose 

performance problems; 

• Experimental results showing the limitations of current tools;   

• A set of case studies illustrating situations that might have benefited from  

Environment-Aware Performance Analysis; 

• A discussion of the challenges and concerns for development of environment-

aware tools; and 

• A survey of the state of the art in parallel performance analysis tools. 

1.2  Background 

In this section we introduce the key concepts of parallel computing.  We describe 

some of the motivating factors driving the implementation of large-scale parallel 
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computing systems.  We introduce performance analysis concepts, and we discuss 

challenges related to conducting performance analysis in large-scale environments.  

We present key features in the cycle of performance tuning, and we describe how 

Environment-Aware Performance Analysis extends the scope of traditional 

performance analysis. 

In parallel computing, multiple compute resources act simultaneously to solve 

computational problems.  Compared to serial or sequential processing, in which one 

central processing unit (CPU) is employed, the advantage offered by parallel 

computing is the ability to solve problems in less time.  There are many computational 

problems which cannot be solved on sequential machines simply because the time 

required is too great.  However, by combining computational resources, parallel 

computing creates an environment in which it is possible to solve large and complex 

problems in reasonable amounts of time.  Parallel computing is often referred to as 

high end or high performance computing.   

High performance systems combine parallelism with advances in hardware design 

to achieve faster computation.  Parallelism has several basic forms, each with many 

variations.  One common form is shared memory parallelism, in which processors can 

access memory as a global address space and processes view the shared memory as 

local memory.  Alternatively, in distributed memory parallel computing, memory is 

not shared and communication networks are required for connecting cooperating 

processes.  Many of today’s high performance systems employ a combination of these 

two basic forms, in which a single node comprises several shared memory compute 
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resources and nodes are interconnected via a communication network.  This is a 

common configuration for cluster computing.  The term massively parallel is used to 

describe high end systems containing many processors.  This notion of “many’ is 

subjective and changes over time, as advances in the design of processors, memory, 

and interconnect technology allow new systems to contain more processors than the 

previous generation of high performance systems.  In general, there is a positive 

correlation between the number of processors and the computational power of a 

system.  The TOP500 project ranks the computational capacity of high end systems by 

ordering the top 500 systems according to performance on a benchmark measuring the 

number of floating point operations per second (Flop/s)[87].  With each successive 

publication of the list, the current generation of massively parallel systems rises to the 

upper ranks.  In June of 2002, Earth-Simulator, a 5,120 processor high performance 

system installed at the Earth Simulator Center in Japan, placed first in the TOP500 

ranking [86].  With sustained performance at 35.86 Tera Flop/s (TFlop/s), 

Earth-Simulator ranked first on the list for five consecutive publications and held the 

seventh position in the most recent release, in November of 2005 [87].  BlueGene/L, 

with 131,072 processors, earned first place.  Installed at Lawrence Livermore National 

Laboratory, in the United States, this machine’s sustained performance is rated at 

280.6 TFlop/s [87].  Size and intricacy in hardware design lend to the overall 

complexity of these systems.  The welcome benefit of such complexity is that as more 

combinations and variations of achieving computational power and parallelism are 
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developed, computationally harder problems have the potential to be solved within 

reasonable time frames.  

A class of problems, referred to as “Grand Challenge Problems,” is a driving 

motivation in the implementation and design of today’s high performance systems.  

These problems are characterized as computational problems of significant social and 

economic impact which cannot be solved in reasonable amounts of time using current 

state of the art resources, but whose solutions would be advanced by the application of 

high performance computing techniques and resources [83].  To promote active 

research in the pursuit of solutions to Grand Challenges, the United States enacted the 

High Performance Computing Act of 1991[24].  This legislation launched the 

federally supported High Performance Computing and Communications (HPCC) 

programs, providing significant support and attention to research and development in 

many areas of high performance computing.  One of the identified goals of the act was 

to enable the research and development of software and hardware necessary to address 

Grand Challenges.  Many of the Grand Challenges originating from the legislation 

required simulation, and as a result of the successes of these initiatives, simulations of 

important physical phenomena are now possible.  In many cases where true 

experimentation is severely limited or impossible, simulation has provided the first 

real understanding of certain phenomena.  The successes of these research endeavors 

are outlined in a 1996 HPCC report [36], and include aeropropulsion system 

simulation, combustion modeling, atmospheric modeling, ocean modeling, modeling 

of air pollution dynamics, global climate modeling, earthquake ground motion 
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modeling, analysis of protein and nucleic acid sequences, and protein folding 

prediction.  An update to the 1991 Grand Challenges was recently published by the 

National Coordination Office for Networking and Information Technology Research 

and Development (NITRD) [20]. 

The critical nature of these Grand Challenge problems  requires that the 

applications and systems involved in these computations produce results that are both 

timely and accurate.  Time constraints are imposed upon applications in several ways.  

Often, the data produced by a simulation is needed within some specific time frame.  

For example, in predicting the location along a coast line and with how much force a 

hurricane will hit, the prediction, in order to be useful, must be made well before the 

actual event occurs.  Other time constraints include job scheduling parameters and 

system mean time to failure.  There is a general desire to improve the performance of 

these large-scale scientific applications by decreasing execution time.  Additionally, if 

the execution time, also known as wall-clock time, of a critical high performance 

application exceeds an imposed time constraint or unexpectedly takes longer, a need to 

gain understanding about the application’s behavior arises.   

Performance analysis techniques are used to gain understanding about an 

application’s execution behavior.  Performance analysis involves measurement, 

interpretation, and communication [43].  Measurement is both deciding what to 

measure and how to obtain the measurement.  Interpretation refers to understanding 

the measured results and discerning their significance and validity.  Communication is 

the process of presenting the results.  Even for a simple application, it would be 
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extremely difficult to conduct a performance analysis study using only manual 

methods.  At most, one might be able to gather wall-clock timing information; and this 

would be at the granularity of the stop watch used, a granularity much courser than 

that of the computing system.  Understanding application behavior, even for the 

simplest of applications, requires a degree of automated performance analysis support. 

Performance analysis support can be provided by hardware, by the operating 

system, by library facilities, and by high level tools.  Each mechanism offers varying 

levels of assistance in conducting the three phases of performance analysis.  The 

measurement phase includes instrumentation and data collection.  Instrumentation can 

be accomplished by compiling explicit instrumentation points into the executable 

code, by inserting the instrumentation into an already compiled application, known as 

binary rewriting, and by inserting the instrumentation dynamically, as the application 

executes.   

The four basic approaches to data collection are timing, counting, profiling, and 

tracing [74, 76].  Timing techniques measure execution time.  A common timing 

measurement is total execution time,  also called wall-clock time.  It is also common 

to measure the time spent in certain activities: loops, function calls, time spent 

waiting, etc.  With a clock of adequate resolution, timing techniques provide sufficient 

information regarding where time is spent.  Timing, however, does not encapsulate 

notions of when events occur, with what frequency events occur, or why events occur.  

Counting captures the number of times an event occurs.  Used by itself, counting does 

not provide insight into the dynamic behavior of an application or a system.  Profiling, 
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also called sampling, is a way to approximate values that would be captured by strict 

counting.  Profiling measurements are obtained by periodically sampling some aspect 

of the system state and incrementing a counter associated with the observed state.  At 

the completion of a profiling interval, the value of a counter is proportional to the total 

time spent executing in the associated state.  Profiling provides approximated 

information about the number of times events occur.  The primary limitation of 

profiling is the potential for errors, which is inherent in sampling.  For example, 

profiled statistics would be skewed if  the number of samples obtained is quite low and 

the profiled application is a short-lived application.  Tracing records the occurrences 

of events and saves a descriptive record about each event.  Trace records typically 

contain an event identifier, indicating what event occurred; a timestamp, indicating 

when the event occurred; and data regarding the node, process, and source code line 

associated with the event.  Tracing mechanisms provide detail about what events 

occur, when events occur, and where events occur.  Additionally, counting and timing 

measurements can be computed from the trace data.  Tracing has potential to be highly 

invasive, depending on the number of events that are traced and the frequency of event 

occurrences.  This could lead to unacceptable perturbation in the application.  Tracing 

mechanisms also have potential to produce large volumes of data, leading to 

challenges in data storage and data analysis. 

Two existing approaches for facilitating data interpretation are post-mortem 

analysis and runtime analysis.  Two techniques for carrying out the communication 

phase are visualization of results and automated diagnoses.  
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Many facilities are available for conducting performance analysis in high end 

computing.  These include high level tools which assist with all three phases of 

performance analysis; library interfaces which provide access to lower level facilities 

like timers and hardware counters; and low-level methods for timing and counting.  

We describe some of the performance tools used in high performance computing in 

Chapter Two.   

Even with performance analysis support, there are notable difficulties for 

conducting performance analysis in high end computing.  There are challenges 

presented due to factors of scale, including system size, application size, and the 

potential to produce large volumes of analysis data.  There are also difficulties related 

to the steps taken and tools used in the performance analysis process.  Performance 

analysis often involves the use of several tools and many manual steps, both of which 

add delay to the performance analysis process.  Examples include: associating an 

application execution with the data produced by all of the tools used for analysis; 

keeping track of analysis information for separate runs of an application; knowing 

what varies from one run to the next; and deciding, based on the tool’s presentation of 

results, what to target for optimization.  The reason that applications often need to be 

instrumented with more than one tool is that tools tend to be dependent upon the 

underlying system configuration, the types of applications that will be analyzed, and 

the types of parallelism involved.   

The processes involved in performance analysis form a cycle of events that 

compose a performance tuning cycle.  The cycle displayed in Figure 1 shows a 
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simplified view of the typical steps involved; in practice it is common to have 

additional internal cycles.  For example, given that several tools may be required to 

collect the appropriate measurement data, a cycle may occur between the phases of 

determining what the application does and determining why a performance behavior is 

exhibited.  In tuning an application, analysts first want to obtain a description about 

the execution behavior of the application.  This step asks “What does the application 

do?”  To create this description, an analyst can use the performance analysis 

techniques described earlier to gather data which might be used to construct a timeline 

of application events, report the percentage of time spent in functions, or report 

function call counts.  The information from this step is pulled forward to the diagnosis 

step and is used to answer the question “Why is some behavior exhibited?”  Once an 

answer to this question is obtained, analysts can target something for optimization.  

The optimization could involve an application level change, a change to a library, an 

operating system change, or could involve changing some aspect of the hardware.  

After implementing the optimization, the application’s execution is re-assessed.  In 

this step, analysts determine if the optimization improved performance.   



 

Figure 1:  Steps Involved in a Performance Tuning Cycle 

 

 As shown in Figure 2, today’s performance tools cover part of the scope of 

performance tuning.  Today’s tools are capable of describing the execution behavior of 

an application, but because they do not include analysis about the status and behavior 

of the runtime environment, they are only able to report the causes of application 

performance behavior in terms of the application.  
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Figure 2:  The Scope of Today’s Parallel Performance Tools 

 

Environment aware performance analysis improves the quality of diagnosing why 

a performance behavior is exhibited, and as such, extends the scope of traditional 

performance analysis methods.  This is done by collecting information about the status 

and behavior of the runtime environment, and in particular asks an additional question 

in the first phase of data collection:  “What is the status and behavior of the runtime 

environment?”  The scope of environment-aware performance analysis tools is shown 

in Figure 3. 

 12



 

Figure 3:  The Scope of Environment-Aware Parallel Performance Tools 

 

There are many open challenges for  high end performance analysis; this thesis 

focuses on the difficulty in accurately diagnosing the underlying cause(s) of poor 

performance.  We propose a new approach that incorporates analysis of the runtime 

system into traditional application performance analysis.  Including both analysis of an 

application’s execution behavior and analysis of the runtime environment in which an 

application executes, allows for understanding of an application’s behavior in context 

of its runtime environment.  Furthermore, the use of both analysis sets in the 

construction of a performance diagnosis has potential to identify root causes of 

performance behavior; and by doing this, the quality of diagnosis offered by 

environment-aware techniques is improved.  The available set of performance analysis 

tools used in today’s high end computing environments do not convey adequate 
 13
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understanding of an application’s actual performance in relation to the runtime 

environment in which an application executes. 

In this chapter, we presented an introduction to Environment-Aware Performance 

Analysis, a new technique for enhancing the quality of diagnosis offered by 

application performance analysis tools.  We defined this term and stated the scope of 

the research in this area for this thesis.  We presented the goals of this research and 

enumerated the contributions of this thesis.  Additionally, we introduced the key 

concepts of high performance computing and performance analysis within this 

environment.  We described motivation for the implementation of large-scale parallel 

systems, and we discussed some of the performance analysis challenges that exist in 

these large-scale environments.   

In the next chapter we present related work.  In Chapter 3, we present a view of the 

runtime environment and discuss issues related to development of environment-aware 

performance analysis tools.  Case studies which illustrate candidate situations for 

environment-aware performance analysis are presented in Chapter 4.  This is followed, 

in Chapter 5, by a description of a proposed test suite for evaluating the ability of 

performance analysis tools to accurately diagnose performance problems.  Our 

experiments and results are presented in Chapter 6.  We present our conclusions and 

identify areas of future work in Chapter 7. 
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CHAPTER 2  RELATED WORK  

 

This chapter presents research related to our goals and contributions.  An 

environment-aware tool conducts both application level analysis and analysis of the 

environment in which the application executes and can correlate the analysis of the 

runtime environment to the analysis of the application.  Related work falls into three 

categories:  tools that measure the environment, tools that measure applications, and 

tools that include some combination of both.  We also identify tools which conduct 

automated diagnosis techniques and tools which provide facilities for experiment 

management.  This chapter not only presents related work, but also depicts the current 

state of the art for parallel performance tools. 

2.1  Environment and System Analysis 

Tools for environment and system analysis fall into three categories:  system 

administration utilities, system monitoring packages, and hardware counters. 

2.1.1  System Administration Utilities 

It is common for operating systems to provide a wide range of system 

administration utilities [27].  These types of utilities report on the active environment, 

including process, memory, I/O, and network activity, as well as on machine, device, 

and operating system configuration details.  Although generally categorized as 
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administrative tools, application performance analysts use many of these facilities in 

the process of gaining understanding about the environments in which their 

applications execute.  Examples of utilities available on Unix and Linux operating 

systems that measure operating system performance include proc, sar, top, ps, vmstat, 

and iostat.  The proc file system is a highly informative tool.  This virtual file system 

resides in the kernel memory and provides comprehensive reports on a full range of 

configuration details and process activities.  The sar utility samples selected operating 

system counters at regular intervals.  By default, sar reports CPU utilization as 

percentages of time for specific intervals for user level utilization, kernel level 

utilization, idle time during which the system had an outstanding disk I/O request, and 

idle time in which the system did not have an outstanding disk I/O request.  The top 

utility is another tool used by performance analysts.  This utility, which updates values 

while it is running, provides a view of the process table which can be ordered by CPU 

usage, memory usage, or by user.  The continually refreshed header is useful for 

capturing a summary of system load, user and system utilization of the CPUs, and 

memory activity.  The ps utility, available on Unix and Linux systems, presents a 

snapshot of current processes.  Other Linux and Unix system utilities commonly used 

by performance analysts and application developers include vmstat to report virtual 

memory statistics and iostat to report on CPU and device utilization.   

Most platforms provide tracing utilities, allowing users and administrators to gain 

insight about the behavior of certain events.  For example, Linux offers strace to trace 

system calls made by a process and ltrace to trace the dynamic library calls made by a 
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process.  AIX has trace which traces user-specified events like function entry and exit, 

kernel routines, and interrupt handlers.  The Solaris operating system provides truss 

for tracing system calls invoked by a process and sotruss for tracing library calls made 

by a process.  Newer versions of Solaris also incorporate a utility called DTrace for 

dynamic tracing of user level, operating system, and kernel events.   

It is typical for operating systems to provide administration utilities for monitoring 

and measuring network activity.  Utilities commonly used for these tasks include 

tcpdump, netstat, ping, and traceroute.  The tcpdump utility prints the header 

information of packet traffic on a network interface.  The utility allows network 

administrators to inspect the frequency and kind of traffic occurring on a network.  To 

obtain status information about an entire network, the netstat utility can be used.  

Information can be obtained regarding the status of active sockets, network interfaces, 

internal data structures, routing tables, and multicast memberships.  Another useful 

utility is ping, which can be used to determine if a host is in operation and what the 

round trip time is for sending to and receiving packets from the host.  The network 

administration utility traceroute is used to determine a possible path a packet may take 

to reach a destination. 

In general, system administration utilities, most of which operate with a text 

interface, are very good at reporting raw data and leave the task of interpretation to 

higher level functions.  They report some of the kinds of information about the 

runtime environment that environment-aware performance analysis tools need in order 

to correlate the runtime environment to application performance.  However, these 
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utilities do not provide mechanisms for coordinated analysis across runtime layers, nor 

are there provisions for relating the measurements to the performance of an 

application. 

 

2.1.2  System Monitoring 

System monitoring packages generally facilitate gathering several system level 

measurements and reporting statistics about where time is spent.   

OProfile, bundled with the Linux kernel, is a system-wide profiler, capable of 

profiling all running programs and kernel activity [38, 60].  OProfile produces post-

mortem reports of profiled activities, and it provides an option to output annotated 

source, showing profile statistics next to lines of source code.  OProfile does not 

attempt to determine the causes of what it terms “hot spots.”  OProfile supports single 

and multi processor systems, but does not support distributed memory or message 

passing systems.  OProfile contains several elements which would be desirable in a 

high performance environment-aware tool:  It captures measurement information 

across several layers for an entire system; it does not have to be invoked for or by a 

specific application; and it has the ability to collect statistics continually.  However, it 

does not include the ability to coordinate measurements across processes in a 

distributed memory environment. 

The Network Weather Service (NWS) is a research project focused on producing 

accurate short-term performance forecasts for distributed systems [95, 94].  The goal 
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is to characterize and forecast the performance that an application can expect to 

achieve from a set of distributed computational and network resources.  This requires 

a perspective of the entire runtime environment in which the application executes; in 

particular knowledge of the capacity and availability of resources and how these 

restrictions change over time.  The NWS research is applicable to Grid computing, and 

the design of the NWS architecture is composed of services and sensors.  NWS does 

not provide application level instrumentation or analysis, but rather predicts the 

availability of resources that an application can expect to leverage in the short term. 

CODE is a software framework for Control and Observation in Distributed 

Environments, supporting Globus-based grids [79].  This framework is a toolkit, 

enabling performance monitoring and management of resources.  The design targets 

system administrators, providing an interactive GUI that allows for resources to be 

clicked on and current status reports to be viewed.  Through the GUI, the current 

status of the grid, as perceived by the set of monitors deployed, can be viewed; 

notification messages about problems are logged; and historical grid performance can 

be viewed.  CODE targets resource utilization, and does not relate this analysis to 

applications executing in the grid environment. 

NWPerf, developed at Pacific Northwest National Laboratory, is a system wide 

performance monitoring tool for Linux clusters [53].  NWPerf seeks to address the 

problem of gathering fine-granularity system performance metrics while sustaining 

low and acceptable levels of interference to user applications.  Similar to OProfile, 

NWPerf is not invoked for a specific application, but rather monitors all applications 
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running on a Linux cluster, providing course-grained profiling information about 

individual application performance.  One of the research goals is to be able to 

determine how well a system is utilized by the jobs that run on it.  The prototype 

implementation collected two kinds of metrics: CPU performance counter 

information, like percent of peak flops and memory bytes per cycle; and information 

analogous to that reported by vmstat.  Similar to the other monitoring facilities 

discussed, NWPerf does not relate the behavior of the monitored system to events and 

behaviors within an application’s execution. 

2.1.3  Hardware Counters 

Hardware counters provide another means by which to obtain data about the 

runtime environment.  Many of the high performance tools discussed in this chapter 

provide support for hardware counter data collection.  Low level measurements can be 

obtained by the hardware counters provided by individual system architectures.  On 

any given platform, hardware counters exist as a limited number of registers which 

count events affecting processor functionality.  Examples of events that hardware 

counters can capture include cache hits and cache misses for each cache level; counts 

for completed integer, floating point, load, and store instructions; and instruction 

stalls.  The number of counters available and the types of events that can be counted 

are architecture dependent.  Since there is great variability among platforms, interfaces 

for accessing hardware counters have been developed.  This enables application level 
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code to access a single interface to obtain hardware counter data, and, as a result 

increases portability across architectures. 

The Portable Interface to Hardware Performance Counters (PAPI) [61, 4] and the 

Performance Counter Library (PCL) [65, 3, 2] are hardware counter interfaces 

specifically targeted to performance analysis in high end computing.  They share the 

same goal of easing the task of incorporating hardware counter information into high 

end performance analysis tools.  Both PCL and PAPI provide access to raw hardware 

counter data.  Additionally, they also provide a number of derived metrics, rates, and 

ratios which are compositions of the raw metrics.  Although providing hardware 

counter access for a wide range of platforms, PCL does not easily support newer 

architectures, as it has not been upgraded for several years.  PCL is supported in the 

Tuning and Analysis Utilities (TAU) suite of parallel performance tools [78].  PAPI 

support is enabled in a handful of parallel computing performance analysis tools, 

including KOJAK and TAU [93, 78, 61].   

2.1.4  Discussion 

In this section, we have discussed three typical mechanisms by which information 

about the runtime system can be obtained.  With operating system provided utilities, a 

wide variety of data can be captured regarding processor, memory, I/O, and network 

usage.  There are also a number of tracing facilities for tracing system calls and library 

calls.  System utilities generally report raw data and provide very little data analysis.  

System monitoring packages facilitate simultaneous collection of much of the same 
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information that can be obtained using system utilities.  Monitoring packages usually 

include analysis facilities for providing summary information.  Application developers 

can use hardware counters and higher level interfaces to access the counters to obtain 

system event count data.  With these mechanisms it is possible to understand the 

behavior of computing systems.  However, these mechanisms do not include facilities 

for correlating system events and application events.   

 

2.2  Application Focused Performance Tools 

Many of the performance analysis tools developed for high end computing focus 

primarily on application level performance.  In this section we present several tools 

which represented early advances in parallel performance research; we provide an 

overview of the MPI profiling interface and present several of the commonly used 

MPI profiling libraries; and we present some of the application focused parallel 

performance tools used in today’s high performance environments.   

2.2.1  gprof 

Although not a parallel performance tool, gprof [18, 19] deserves mention for 

several reasons.  It is widely used in performance tuning of sequential codes; it is 

supported on Unix and Linux platforms; it has been a viable tool for over twenty 

years; and it is used by parallel performance analysts, even though it does not support 

parallel codes.  gprof is a simple to use tool which conducts profiling, by sampling the 

program counter at regular intervals.  It records the measured data in text files.  gprof 



 

 23

extends the Unix prof utility.  This utility is capable of providing a listing of each 

function, the number of times each function is called,  the time spent in each call, and 

the average time per function call.  However, it is not possible, with prof data, to 

determine the callers or callees of functions.  This knowledge can be somewhat 

ascertained by knowing the call structure of the source code.  However, this view does 

not predict the exact nature of the runtime behavior of function caller and callee 

relationships.  To provide this knowledge, gprof maintains caller information and 

reports call graph detail, showing caller and callee relationships.  Providing call graph 

information and the tool’s ease of use enabled gprof to become a widely used tool. 

2.2.2  AIMS 

One of the early tools developed for distributed memory parallel performance 

analysis was AIMS, an acronym for Automated Instrumentation and Monitoring 

System [96].  AIMS was developed by NASA Ames Research Center and supported 

parallel programs written in C and FORTRAN which used message passing 

implementations that pre-dated the MPI standard.  AIMS used trace based 

instrumentation so that events of an application’s execution could be reconstructed 

during post-mortem visualization.  The instrumentation points were automatically 

inserted into source code before compilation.  After applying the instrumentation, 

applications were compiled and linked with the AIMS run-time performance 

monitoring library.  This library facilitated data collection across the participating 

nodes of an application’s execution, and managed the process of writing collected 
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events to a single trace file.  Events that could be traced included entry and exit points 

for subroutines, loops, and user-defined code segments; time spent in communication 

routines; time spent in file read and write operations; and time spent in barrier 

operations.  Post-mortem visualization of traced events was enabled by the built-in 

visualization tool kit.  The vk feature of the tool kit provided several views for 

understanding an application’s behavior over time.  These included an animation 

facility, in which the events could be viewed at several speeds; and a source code 

mapping facility, in which trace events were associated with exact points in 

application source code.  The visualization tool kit also provided a mechanism to 

generate lists of resource utilization statistics for nodes and routines, with the intention 

that the data provided in these lists could be used as input to statistical graphing 

packages. 

For the most part, AIMS focused entirely on application behavior.  It did not 

collect any information about the runtime environment in which an application 

executed.  However, the final version of AIMS [97] included a utility called sysconfig 

which enabled a static view of the likely routes for packets to take for communications 

between nodes.  sysconfig examined either a host file or an AIMS trace file to extract 

host machine names and then used traceroute to determine packet routes for every 

machine pair.  The data were saved in a file and could be viewed in conjunction with 

execution trace records. 
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2.2.3  MPP Apprentice 

The original MPP Apprentice [91] was designed for application tuning on the Cray 

T3D.  Data collection was accomplished via a “stop-watch” technique, which is the 

combination of timing and counting instrumentation methods.  As such, performance 

information was presented from the perspective of the source code, rather than from 

the perspective of time.  The MPP Apprentice collected stop-watch data for code 

sections, including the whole program, sub routines, and code blocks.  The 

instrumentation methods were built into the compiler, and instrumentation was turned 

on by a compile time flag.  During execution of an instrumented application, collected 

data were aggregated within each processor and maintained locally in each processor’s 

memory.  Either by user request or at the end of execution, the per-processor data were 

aggregated across all processors and stored in a file, which was used as input to the 

post-mortem visualization component.  The visualization component provided a 

summary report and graphical display of count and timing statistics for the entire 

execution and all subroutines, ordering “critical” subroutines at the top of the list.  

Long running subroutines were categorized as “critical,” and users could tune this 

value to suite an expectation about application runtime performance.  Additionally, for 

the instrumented subroutines, summary information for time spent in overhead, 

parallel work, I/O, and called routines was presented.  Instrumented subroutines could 

be expanded to view details about nested code sections, like loops and “if” clauses.  

Upon user request, the MPP Apprentice displayed the source code associated with any 
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viewable construct.  Another possible display with the MPP Apprentice was the call 

sites view which showed all the call sites for a selected subroutine and all the calls 

made by the selected subroutine.  The MPP Apprentice included a knowledge base 

which served two primary purposes.  First, derived metrics from the base statistics 

collected could be calculated and reported in the visualization session.  For example 

Flop/s and cache usage metrics could be computed and displayed.  Second, the MPP 

Apprentice knowledge base offered tips and suggestions to users.  The tool could 

inform the user about properties of the architecture design that could affect 

performance.  For certain observed performance problems, the MPP Apprentice 

provided suggestions on how to pursue performance problem resolutions.  

Cray has continued to provide performance tools as part of a Cray system.  In 

newer architectures, the instrumentation, data collection, and file generation 

components are done by the Cray PAT tools, while the Apprentice2 acts as a 

visualization GUI [12]. 

The MPP Apprentice provided summary information about event counts and 

execution times, but did not have the ability to reconstruct the events of an application 

execution according to time.  However, its visual displays, acute knowledge of the 

system architecture, and ability to provide tips and suggestions regarding critical 

performance areas assisted users in performance problem detection and resolution. 
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2.2.4  The MPI Profiling Interface and MPI Profiling Tools 

The MPI standard [81, 21] specifies a profiling interface for MPI implementations 

where all MPI functions have a second name identical to the normal name, but 

preceded with a ”P”.  Within an MPI implementation these “P” functions are wrapper 

functions which simply call the normal named MPI function.  MPI profiling libraries 

contain functions that are named the same as the normal named MPI functions.  The 

functions are implemented so that they call the “P” named functions that exist in the 

MPI implementation.  Besides being simple wrappers to the “P” functions, typical 

implementations conduct profiling activities, maintaining event counts and execution 

times.  The library functions call the MPI implementation’s “P” named functions.  

This makes it fairly easy to develop profiling libraries separate from an MPI 

implementation, and it enables MPI applications to be developed without needing to 

know specific details about the kinds or types of instrumentation that might be 

conducted via the profiling interface. 

The MPI Parallel Environment (MPE) package is a tool kit for MPI applications 

[54].  The profiling component of MPE is an example of a library that takes advantage 

of the profiling interface provided by MPI implementations.  MPE collects and logs 

statistics related to message passing activities during a program’s execution.  MPE 

includes the Upshot, Nupshot, and Jumpshot [67, 23, 35, 98, 99] viewers for post-

mortem visualization of the profiled data.  MPE is part of the MPICH distributions, 
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but can be downloaded separately and works with most MPI implementations, 

including Lam/MPI [41] and OpenMPI [59].  

Another MPI profiling library is mpiP [55].  Developed at Lawrence Livermore 

National Laboratory (LLNL), this profiler collects statistical information about MPI 

function calls and presents the summary data to the user in tabular format after 

execution of a profiled application.  mpiP can relate function call statistics to source 

code line numbers.  Tool Gear, also developed at LLNL, is a graphical viewer for 

mpiP output [85].  Tool Gear uses the mpiP data regarding source code line numbers 

to display the specific source code involved with a call site statistic reported by mpiP. 

 

2.2.5  Upshot, Nupshot, Jumpshot 

Argonne National Laboratory (ANL), promotes a research program called 

Performance Visualization for Parallel Programs [66].  This research focuses on post-

mortem visualization of parallel application performance.  Over the course of several 

years, Upshot [23], Nupshot [35], and Jumpshot [98, 99]  have been developed and 

implemented for this purpose.  Chronologically, Upshot was developed first and is 

written in Tcl/TK.  Nupshot was developed as an improved version of Upshot, in 

which part of the Tcl code was re-written in C to improve graphic performance.  

Jumpshot, a Java-based tool, is the most recent viewer in the series and expands the 

capabilities of both its predecessors.  Currently, all three tools are part of the MPE 

suite of performance tools [54].  These tools focus entirely on post-mortem 
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visualization of trace records.  They do not provide facilities for instrumentation, data 

collection, or trace generation.  The tools support several trace file formats and present 

visual representations of the events contained in a trace file.  The primary visualization 

feature is the zoomable timeline which shows the interaction of events among 

participating processes and nodes.  

 

2.2.6  Discussion 

In this section we presented application focused parallel performance tools.  The 

tools in this section only collect application related measurement data.  Since these 

tools do not have knowledge about the runtime environment in which applications 

execute, they are only able to present performance behavior in terms of the 

application.  In the following section, we will identify parallel performance tools 

which collect varying degrees of information about the runtime environment. 

 

2.3  Integrated System and Application Level Performance Tools 

In this section we present systems and tools which support collecting  

measurement data related to application performance and system related metrics.  

Most tools in this section collect runtime metrics via hardware counter support.  Even 

though these tools integrate system level metrics into data collection techniques, they 

do not, for the most part, provide performance diagnoses which consider both the 
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application and the runtime environment.  It is most often the case that the analysis 

results are displayed and diagnosis of application performance behavior is conducted 

by the user of the tool. 

 

2.3.1  IPS-2 

IPS-2 was an early research tool developed at the University of Wisconsin for 

parallel application performance analysis [47].  IPS-2 used tracing as the mechanism 

for collecting performance data.  Events, such as synchronization operations and 

procedure entries and exits, were logged to trace files.  Instead of modifying 

applications to insert instrumentation manually, users only had to specify a compiler 

option and IPS-2 applied the instrumentation automatically.  The interactive user 

interface allowed the user to specify what aspects of the program should be measured 

and displayed performance analysis results after the program’s execution.  Results 

could be viewed in tabular form or as a time histogram.   

Critical path analysis and phase behavior analysis were two automated techniques, 

offered by the interactive interface, which guided users toward deciding how best to 

improve an application’s performance.  In an execution, the critical path is the 

execution path that consumes the most time.  From an execution’s trace history, IPS-2 

identified this path and identified the execution times for components along the path.  

Since decreasing the execution time of the critical path causes a decrease in an 

application’s total execution time, users could use the critical path analysis to decide 
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which component along the critical path should be targeted for optimization.  Phase 

behavior analysis, a second automated guidance technique introduced in IPS-2, 

identified the phases of a program’s execution.  With this technique, each phase could 

be evaluated as a smaller sub-problem of the entire execution.  For example, critical 

path analysis could be applied to a phase.   

IPS-2 was later extended to support external metrics, a feature which allowed users 

to define metrics not provided in the default set of metrics [26].  In the original 

implementation, only events at the application level were measured.  With this added 

support, it was possible to define metrics at other levels of the runtime environment, 

including the operating system, the hardware, and the network level.  One such 

external metric, described in [26] used filtered data from the vmstat system call.  

The user interface allowed for transparent viewing of the performance results of both 

the application level and the external metrics.   

IPS-2 provided graphical displays for all metric values, which was useful for 

viewing aspects of program behavior along side aspects of system behavior.  This 

feature combined with the critical path and phase behavior analysis techniques 

improved the degree of assistance offered to the user in deciding how an application 

could be modified. 
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2.3.2  Paradyn 

The Paradyn parallel performance measurement tool [46], developed at the 

University of Wisconsin, finds it roots in IPS-2, but is quite different in the way it 

provides instrumentation and analysis.  Paradyn uses an instrumentation technique 

called dynamic instrumentation, in which instrumentation is inserted into a running 

executable.  Additionally, Paradyn presents the results of performance analysis in an 

online fashion, while the application executes.  User specified metrics can be viewed, 

online, via bar charts, tables, and histograms.  Additionally, the Paradyn Performance 

Consultant conducts automated bottleneck search and detection; and presents the 

results online.  We discuss the Performance Consultant in greater detail in section 

2.4.2.  Paradyn can be used to analyze MPI and sequential applications; and it supports 

a range of  Solaris, Linux, Windows, and AIX platforms [62]. 

By default, Paradyn does not provide metrics for measurements external to the 

application.  However, Paradyn allows users to create new metrics using the Metric 

Definition Language (MDL).  With this mechanism, it is possible to collect 

measurements about aspects of the runtime environment.  All metrics can be viewed 

with the Paradyn visualizations.   

Although system level metrics can be collected and visualized, two important 

features of environment-aware performance analysis are missing:  Paradyn does not 

provide system level integration by default, and Paradyn does not utilize the data 

associated with external metrics in its automated diagnosis techniques. 
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2.3.3  DPCL 

The Dynamic Probe Class Library (DPCL) is a dynamic instrumentation 

infrastructure for performance tools [11].  At the time of DPCL’s development, the 

Dyninst Application Program Interface (API) [6] could be used to provide dynamic 

instrumentation.  Dyninst facilitates dynamic instrumentation of code that executes on 

a single machine.  However it does not provide a means for managing dynamic 

instrumentation of executing code that spans multiple nodes.  Prior to DPCL, parallel 

tools which conducted dynamic instrumentation had to provide the necessary support 

for managing dynamic instrumentation across multiple nodes.  DPCL utilizes Dyninst, 

but eases the task of supporting dynamic instrumentation in parallel tools by providing 

the necessary infrastructure to manage dynamic instrumentation across multiple nodes 

of an executing application.  Originally implemented by IBM and distributed as an 

IBM licensed product,  DPCL was later made available under an open source license.   

 

 

2.3.4  DCPI 

The Digital Continuous Profiling Infrastructure (DCPI) was designed to run 

continuously on multi-processor systems, conducting sample-based profiling of entire 

system activity, including user programs, shared libraries, and operating system 

kernels [1].  DCPI was designed for Digital Alpha processors and was supported on 
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the Digital Unix platform.  The data collection component sampled program counters 

with high frequency and stored the profiled data to disk.  DCPI also supported 

hardware counter sampling.  DCPI provided several utilities for post-mortem analysis 

of the stored data.  These tools displayed the number of samples per procedure; 

calculated cycles per instruction; identified instruction stalls and provided possible 

causes for stalls; and analyzed profile data across multiple sessions. 

Although DCPI supported a narrow range of processors and operating systems,  

DCPI showed that it is possible to conduct fine-grained sampling for long periods of 

time with minimal overhead.  This is an important consideration for environment-

aware performance tool development. 

 

2.3.5  VAMPIR 

VAMPIR (Visualization and Analysis of MPI Resources) is a trace-based tool for 

post-mortem visualization of MPI programs [57].  Originally developed and 

maintained as a commercial product by Pallas GmbH, VAMPIR is now an Intel 

product and is distributed as part of the commercial Intel Trace Analyzer and Collector 

[28].  In this form, only Intel based architectures are supported.  VAMPIR supports a 

variety of platforms and implementations of MPI, and tracing is not limited to just 

MPI routines.  Trace data can be viewed in several ways, offering generalized 

summaries of events on each node and time-line displays which show activities for all 

nodes over the execution interval.  The time-line displays incorporate a zoom feature, 
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allowing users to zoom in and out on program details.  VAMPIR can collect and 

display counter data, and it supports the PAPI hardware counter interface.  In the time-

line display, counter data  is displayed in the same view as application events.  Since 

its initial development, a next generation version of the tool, VAMPIR NG (VNG), 

has been released [5].  Accomplishing much of what VAMPIR did, VNG operates as a 

distributed and parallel application.  With VAMPIR and its successors, visualization 

of program activity is the primary goal.  The post-mortem visualization sessions allow 

users to analyze the behavior of application executions.  Although it has the ability to 

present system level information, through its display of counter data, and application 

event data, VAMPIR does not interpret the data or detect performance problems.  The 

user is responsible for this type of analysis.  

 

2.3.6  SvPablo 

Source View Pablo (SvPablo), developed at the University of Illinois,  is a 

graphical environment for instrumenting application source code and viewing 

performance data for sequential and parallel applications[10].  SvPablo incorporates 

components of the Pablo Performance Analysis Environment, also developed at the 

University of Illinois [75].   

Data collection in SvPablo is similar to profiling, capturing only statistical 

information rather than detailed event traces.  Additionally, SvPablo supports 

hardware counter data collection.  Instrumentation is inserted into source code, prior to 
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compilation, and can be done either automatically or interactively.  After execution, 

the application level data and hardware counter data collected from each processor are 

merged and additional metrics are computed.  These results are correlated to 

application source code and are viewable via the tool’s browser facility. 

The visualization interface displays application summary statistics and hardware 

performance data.  The interface also supports multi-execution displays, so that users 

can compare analysis data for multiple executions.  To display source code associated 

with a function, users click on the function name. 

 

2.3.7  SCALEA and SCALEA-G 

ASKALON is a research project aimed at developing a programming environment 

and tool set for cluster and grid computing [16].  The vision for the framework 

contains five components: AKSUM, an automatic performance bottleneck analysis 

tool; Performance PROPHET, a performance modeling and prediction system; 

SCALEA, a performance instrumentation, measurement, and analysis tool; 

ZENTURIO, an automatic performance experiment management system; and an 

integrated graphical user interface for the tool set.   

The performance analysis tool SCALEA [88] supports OpenMP, MPI, HPF, and 

mixed parallel/distributed programs.  Performance analysis is done in a post-mortem 

fashion, and visualizations are generated from trace files.  Instrumentation can be 

inserted automatically for pre-defined code regions and it can be inserted manually, 
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using SCALEA directives.  SCALEA also supports hardware counter profiling.  

Post-mortem analysis relates results to source code lines.  This appears seamless to the 

user as all collected profiling and trace data are correlated with the corresponding code 

regions. 

SCALEA-G is a system monitoring and performance analysis package designed to 

encompass Grid computing [89, 90].  In Grid computing, system monitoring and 

application performance analysis techniques have developed separately, although both 

are viewed as crucial to Grid performance.  SCALEA-G is a first attempt at integrating 

both system monitoring and performance analysis into a unified tool for Grid 

computing.  System monitoring is accomplished through a network of services and 

sensors; and instrumentation can be inserted into original source code, requiring 

recompilation, or it can occur dynamically, while an application executes.  The 

interactive GUI allows users to create and add monitoring sensors to running systems, 

and it provides online application analysis and system monitoring.  Application 

performance and the Grid system as a whole can be monitored via the same interactive 

session. 

Both SCALEA and SCALEA-G include aspects of environment-aware 

performance analysis.  SCALEA incorporates hardware counter profiling and 

SCALEA-G packages system monitoring and application performance analysis for 

grids into one tool.  Both tools provide integrated visualizations of application and 

system level analysis results.  
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2.3.8  PerfSuite 

PerfSuite is tool kit for Linux desktop and cluster applications [40, 39].  It is in 

active development at the National Center for Supercomputing Applications (NCSA).  

PerfSuite conducts hardware performance event counting and profiling of 

applications.  It supports MPI, single-threaded, and POSIX multi-threaded 

applications.  Raw performance data are written to XML files, and the analysis of the 

data is done by a post-mortem process which calculates summary and derived results; 

maps event data to source code lines; and combines multi-file collected data that may 

span processes and machines to calculate summary data for the whole set.  PerfSuite 

provides summary results of counts and profile statistics in text format, but supports 

the export of data to other formats.  In 2005, NCSA moved PerfSuite into full scale 

production, automatically measuring all applications that use the NCSA SGI Altix 

system, including parallel shared and distributed memory applications [68].  

PerfSuite provides hardware counter support and application profiling; and it 

presents summary results of hardware counter performance and application profiled 

statistics. 

2.3.9  Active Harmony 

Active Harmony is a research project that focuses on online and automatic 

adaptation of applications and work loads to changing conditions in parallel and 

distributed computing environments [25].  We discuss the techniques for conducting 

automated adaptation in Section 2.4.6.  Active Harmony considers the application and 
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the resources utilized by the application as tunable parameters of the execution 

environment. 

In order to facilitate online adaptation of applications and resources, Active 

Harmony requires a perspective of the interactions and relations of the application and 

the runtime environment.  This includes ideas of environment-aware performance 

analysis.  The goals of Active Harmony, however, differ from the goals presented in 

this thesis.  Active Harmony focuses on efficient resource utilization for a whole 

system, while our goals target parallel performance improvement. 

 

2.3.10  TAU 

Tuning and Analysis Utilities (TAU)  is a research tool for parallel and distributed 

performance analysis [78].  TAU can be configured to run on many platforms, and it 

supports MPI and shared memory parallel applications.   

TAU supports profiling and trace-based data collection.  It offers many methods 

for applying instrumentation, including source-based, allowing users to manually 

annotate source code following a TAU specification; preprocessor-based, where a user 

selects the kinds of instrumentation to apply, but the source code is instrumented 

automatically before compilation; compiler-based, where the compiler inserts 

instrumentation into the object code that it generates; wrapper library-based, where 

standard library routines are substituted with wrapper routines that include 

instrumentation and call the original routine; and dynamic instrumentation.  TAU 
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includes hardware counter support and provides interfaces to PAPI and PCL hardware 

counter libraries.  

Performance analysis and visualization is done post-mortem.  TAU includes 

profiling data support with ParaProf and PerfDMF.  ParaProf supports single 

experiment visualization, and multi-experiment visualization can be conducted with 

PerfDMF.  TAU does not implement its own support for trace analysis and 

visualization, but supports export of trace collected data to other analysis and 

visualization tools, including Vampir, Jumpshot, Paraver,  and  EPILOG. 

In TAU’s profiling analysis and visualization tools, TAU reports and shows 

summary information about function calls and hardware events.  Similar to other 

visualization based analysis tools, TAU does not identify causes of performance 

problems, and interpretation of analysis is largely the responsibility of the user. 

 

2.3.11  PEM and CPO 

A collaborative research project between IBM and the University of Colorado has 

resulted in several key ideas related to the integration of environment and application 

performance analysis, with the goal being automated and online optimization of a 

whole system [92, 8].  The paradigm presented by this work is referred to as 

Continuous Program Optimization (CPO), which involves cyclic phases of monitoring 

and optimization.  In the monitoring phase, information across system layers is 

obtained and analyzed; and in the optimization phase, this information is used in a 
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continual process of feed-back directed adaptation where applications adapt to the 

execution environment and the execution environment can change to improve 

application performance.  The monitoring facility of the architecture is termed PEM, 

an acronym for  Performance and Environment Monitoring.  This component is 

responsible for capturing the behavior of the runtime system.  PEM is presented as a 

vertical set of layers in which the interactions among hardware and software are 

understood and optimizations are relevant based on the analysis of the interactions.  

The presentation of the runtime environment as a set of layers is similar to the notion 

presented in this thesis work for environment-aware diagnosis.  The framework 

presented in the CPO and PEM work does not include explicit instrumentation 

techniques for capturing application level performance data.  The experimental work 

presented to date does not include deployment on cluster or distributed systems, but 

only single machines.  Nor have thoughts been presented about how this framework 

will scale to large cluster and distributed parallel systems. 

 

2.3.12  Discussion 

In this section we presented tools, infrastructure systems, and research ideas that 

support data collection of system level metrics and application level metrics.  Most of 

these systems present the analysis data for both sets of metrics in single visualization 

sessions, but largely rely on users to infer diagnoses.   
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2.4  Automated Performance Diagnosis 

In this section we present tools which conduct automated performance diagnosis.  

This means that the tool uses some form of automated analysis to determine where 

performance problems exist, when they occur, and why they occur.  This strategy is 

called the W3 approach [46].  It has generally been implemented with respect to the 

application that a performance tool analyzes.  Most of the tools presented in this 

section automatically determine where, in the application source code, performance 

problems exist; when, during an execution, performance problems occur; and why is 

generally answered by determining the state of the executing application at the point 

of the performance problem.  We believe that this approach is a necessary component 

of environment-aware diagnosis, but that the strategy must be expanded along each 

dimension to incorporate the status of the runtime environment and its impact on 

application level performance.   

 

2.4.1  ATExpert 

Designed for Cray platforms, the goal of the ATExpert was to assist users in 

application tuning so that the best possible speedup could be achieved [37].  The tool 

worked in conjunction with the Autotasking compiler which automatically 

instrumented applications if a specific compiler option was used.  ATExpert post-

processed Autotasking’s runtime trace files and graphically displayed the performance 
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of parallel programs and predictions for speedup.  The key features of ATExpert were 

its ability to relate performance characteristics back to source code, its ability to 

simulate what Autotasking’s measured results would have been if all possible numbers 

of processors were available for the application execution, its graphical displays of 

performance and predicted speedup, and its ability to associate suggestions for 

improving performance with specific performance observations.  For the most part, 

ATExpert focused on application performance and did not consider how and to what 

extent the runtime environment affected application performance.  However, the rules-

based mechanisms employed for relating specific actions to take for improving 

application performance to specific performance behaviors demonstrated by the 

application is an idea that can be carried forward into the design of environment-aware 

performance analysis tools. 

 

2.4.2  Paradyn 

Key to Paradyn, is the Performance Consultant (PC) [46, 62], a module which 

automates the process of discovering performance problems.  Paradyn introduced the 

W3 method for bottleneck search and detection.  This method searches for bottlenecks 

along three dimensions:  the “why” axis, the “where” axis, and the “when” axis.  The 

results of the PC search are graphically displayed to the user, as the application 

executes, by the Search History Graph.   
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The PC operates on a set of hypotheses which are predefined performance 

problems and are evaluated for values of true or false.  The hypothesis set composes 

the “why” axis and refers to the types of performance problems that Paradyn can 

identify.  The current hypotheses include evaluations for comparing CPU time, total 

synchronization waiting time, total I/O waiting time, and average number of bytes per 

I/O operation to threshold values.  The “where” axis contains the program resources 

which can be considered for evaluation.  Paradyn’s default setting is to start automated 

searches by considering the whole program.  The “when” contains the phases of a 

program.  Detected performance problems are associated with specific phases of an 

application’s total execution.  Each phase can be inspected by a different PC.  The 

phase associated with the entire execution is called the global phase. 

The PC begins its search along the “why” and “where” axes, by evaluating the top 

level hypotheses for the whole program.  If any one of the hypotheses evaluates to 

true, further refinement along that hypothesis and associated resource hierarchy is 

conducted.  It is possible to have more than one true hypothesis.  If a performance 

bottleneck is detected, the Search History Graph displays the component of the 

resource hierarchy where the bottleneck occurs, identifies the hypothesis that evaluates 

to true for the bottleneck, and indicates the phase in which the problem occurs. 

In Paradyn, the “why” axis contains the types of performance problems included in 

the PC’s search, and the “where” axis includes the components of the application 

which are instrumented and subsequently evaluated for performance problems.  In its 

current form, the Performance Consultant does not include performance problem 
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hypotheses which test aspects of the runtime environment.  This limits its ability to 

provide quality diagnosis about the true causes of performance problems; especially if 

the causes are rooted in layers of the runtime environment external to the application.  

 

2.4.3  KOJAK 

 KOJAK (Kit for Objective Judgment and Automatic Knowledge-based 

detection of bottlenecks) is a generic environment for automatic performance analysis 

of parallel programs [17, 51, 93].  The goal of KOJAK is to automatically identify 

bottlenecks which fall into the dual categories of well-defined and typical.  This goal 

is motivated by the fact that most parallel performance tools at the time of KOJAK’s 

initial development did not apply automated techniques to identifying common case 

bottlenecks, such as those due to load balancing problems or message passing 

overhead.  

 

2.4.4  ASL 

The working group on Automatic Performance Analysis: Resources and Tools 

(APART), introduced a specification in 1999 for automatic performance analysis.  The 

specification is called the APART Specification Language (ASL) [15].  The 

specification is a formalization of performance bottlenecks and the data required to 

detect them.  Although the specification acknowledges that performance data 

encompasses metrics about applications and the runtime environment, it does not 
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address the issue of diagnosing the cause of bottlenecks.  The goal is to formalize what 

a bottleneck is so that automated bottleneck detection is easier to build into a tool. 

2.4.5  AKSUM 

AKSUM [14], a component of the ASKALON project [16] , is a performance 

analysis tool for parallel applications which conducts automatic searches for 

bottlenecks over multiple experiments.  In its current implementation, automatic 

instrumentation is facilitated by ASKALON’s SCALEA [88], a single experiment 

performance analysis tool.  AKSUM assumes the existence of an experiment 

management system and works with ZENTURIO [73], the experiment management 

component of  ASKALON.   

To guide the automated search for performance bottlenecks, AKSUM uses 

performance property specifications.  A performance property is a predefined 

description of a specific negative performance behavior that could occur in an 

application execution.  In an execution a performance property is “true” if the 

behavior specified occurs.  Additionally with each performance property instance, 

AKSUM assigns severity and confidence values, indicating how severe the problem is 

and the degree of confidence in the indication that the problem exists.  AKSUM 

defines several default properties and allows users to custom define new properties.  

Users are also able to specify what performance properties should be searched for in 

an analysis session.  Once instrumentation is complete, the application is compiled and 

executed by the experiment engine, which interfaces with the experiment management 
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system.  For every normally terminating execution, the performance data is stored in 

the experiment management system.  This multi-experiment data is available to 

ASKUM’s performance property search mechanism. 

 

2.4.6  Active Harmony 

From an application perspective Active Harmony [25] provides automated 

diagnosis through an exported metric interface which allows applications to access 

metrics about processors, network activity, and operating system activities.  

Applications are able to export tuning options to the execution environment, 

specifying expected consumption of system resources.  Then the system adapts 

applications to changes in the environment.  Making the decision about how to adapt 

an application requires a prediction of the effectss of a proposed adaptation.  Active 

Harmony provides metrics to facilitate this decision making.  In the prototype 

implementation Active Harmony had developed a Load Balancing Factor (LBF) 

metric.  One of the variations of the LBF computes the impact of reconfiguring the 

assignment of processes to processors.  This impact is presented as the potential 

improvement in execution time of each proposed change in configuration. 

 

2.4.7  Self-propelled Instrumentation 

The goal of self-propelled instrumentation [49] is to automate anomaly detection 

and root cause identification of anomalies.  This is an aspect of automated diagnosis 
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which is being researched at the University of Wisconsin.  Self propelled 

instrumentation is a form of dynamic instrumentation, in which an autonomous agent 

follows the program’s flow of control instrumenting to a fine level of granularity.  

Data collection is similar to tracing, where each instrumented event is recorded.  Trace 

data are analyzed to look for differences among processes, for example one process 

stops earlier or later than others.  Two techniques have been developed for automating 

the process of determining the root cause of a failure, and both show promise in 

identifying root causes in the application level. 

 

2.4.8  Discussion 

In this section we presented tools which conduct automated performance 

diagnosis.  The parallel performance tools discussed in this section automatically 

determine where, in the application source code, performance problems exist; when, 

during an execution, performance problems occur; and provide diagnoses as to why 

performance problems exist.  The diagnoses, however, lack specificity if the root 

cause of a performance problem is external to the application.  Environment aware 

performance analysis seeks to identify root causes regardless of where they exist in the 

runtime environment.   
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2.5  Tools for Experiment Management 

An important aspect of performance analysis is the ability to compare different 

executions.  In high performance computing, multi-execution comparison is 

cumbersome and error prone in the absence of automated experiment management.  In 

this section, we discuss how experiment management applies to parallel performance 

analysis and we present two experiment management systems.   

 

2.5.1  Early Work 

Early work in experiment management involved laying out a comprehensive 

framework for comparing executions of an application and determining differences in 

performance between executions [32].  The initial work in this area proposed the idea 

that every run, simulated result, and model are experiments and can be organized and 

compared via an experiment management system.  Three key ideas were proposed and 

demonstrated by Karavanic and Miller [32, 33].  First, an experiment management 

system must be able to map the full space of an application, spanning all of its 

experiments which differ by both execution environment and code structure.  Second, 

the experiment management system should automate the task of comparing two or 

more experiments.  Third, the experiment management system should provide a 

mechanism for making its stored data available to performance analysis tools to use in 

enhancing performance diagnosis. 
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As high performance systems continue to get larger and more complex, automated 

experiment management becomes more and more necessary in large-scale 

performance analysis endeavors.  Experiment management, however, is still largely an 

area of research.  Recent work in the capabilities and extensions of automated 

experiment management include ZENTURIO [73] and PerfTrack [34]. 

 

2.5.2  ZENTURIO 

ZENTURIO is an automatic experiment management system designed with the 

goals of cluster and grid computing in mind [73].  It is one of the components of the 

ASKALON infrastructure [16].  ZENTURIO is designed as three grid services: a 

registry service, an experiment generator, and an experiment executer.  The client 

entry point into the system is through a graphical interface that facilitates experiment 

preparation,  monitoring, and visualization.  Using a directive language, users specify 

what aspects of an experiment event should be analyzed and maintained in the 

experiment management system.  These aspects include things like execution 

parameters and performance metrics.  Once this specification is defined, the generator 

and executer services carry out automatically building and launching all executions 

pertaining to the application.  After execution, the collected performance data are 

analyzed, further computed, and stored using a component of SCALEA [88].  With 

post-mortem visualization, the performance results and output data of the most recent 

experiment and a subset of the full experiment set can be viewed.  In the graphical 
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session, the user can visualize a single experiment or compare multiple experiments by 

specifying the metrics of interest for the comparison.   

 

2.5.3  PerfTrack 

 PerfTrack is a data store and interface for managing performance data and 

associated data related to the environment for large-scale parallel applications [34].  

As an experiment management system, PerfTrack enables comparative analysis of 

performance results of multiple experiments.  The PerfTrack model for cataloging 

resources and associating resources to performance results is generic and easily 

extendable.  PerfTrack is not a performance analysis tool in the traditional sense, as it 

does not provide facilities for application instrumentation or measurement.  PerfTrack 

is a means for storing data and maintaining relationships that exist between collected 

data and associated environment information, so that performance results can be 

considered in the context of the environment in which they occurred, and multiple 

experiments can be compared simultaneously.  Using the data collection interface, 

PerfTrack builds a specified application, collecting and storing information about the 

build environment, and PerfTrack launches an application, collecting and storing any 

performance data that results from however the application is instrumented.  PerfTrack 

is flexible and designed to support data collection from any tool. 
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2.6  Conclusion 

In this chapter we identified tools and research initiatives containing components 

related to environment-aware performance analysis.  We presented system 

administration utilities, system monitoring packages, and accessing hardware counters 

as methods available for collecting data about an application’s runtime environment.  

These facilities, however, do not incorporate application performance analysis.  We 

then discussed parallel performance tools which focus entirely on application 

performance and do not incorporate knowledge about an application’s runtime 

environment.  There are parallel performance tools which support the collection of 

metrics related to the runtime environment, and we presented these in Section 2.3.  

The majority of these tools integrate system level data via hardware counter 

performance monitoring.  These tools support analysis of application and runtime 

environment data via visualizations, but performance problem diagnosis is largely the 

responsibility of the user.  There are a few systems which incorporate automated 

diagnosis, but no parallel performance tool identifies root causes that exist in runtime 

layers external to the application.  We closed this chapter with a discussion about 

experiment management.   
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CHAPTER 3  A FRAMEWORK FOR ENVIRONMENT-AWARE 
PERFORMANCE ANALYSIS 

 

In this chapter, we describe environment-aware performance analysis and discuss 

issues related to environment-aware tool development.  In the first section we present 

a layered view for describing the structure of a runtime environment.  We define each 

layer of the runtime environment, identify the main components of each layer, and 

describe how this view can be used to frame performance problems in terms of root 

causes and potential optimizations. Although the idea of representing a system with 

layers in not new, our approach of using a layered model for performance analysis is. 

In the second section we discuss development considerations for the design of 

environment-aware tools. 

3.1  The Layers of an Application and its Environment 

An environment-aware approach to application performance analysis includes 

analysis of an application’s execution behavior and analysis of the environment in 

which an application executes.  Data collection involves application performance data 

capture and the collection of data about the status and behavior of the application’s 

runtime environment.  In diagnosing application performance behavior, an 

environment-aware approach utilizes both sets of data to determine potential root 

causes for performance behavior.  Following the premise that the causes of poor 

application performance can be application rooted or can exist in areas of the runtime 



 

environment that are not part of the application itself, environment-aware performance 

analysis requires an understanding of the structure of the runtime environment and an 

approach for identifying the area of the runtime environment in which root causes 

exist.   

We consider a runtime environment to be composed of four basic layers: an 

application layer, a library layer, an operating system layer, and a physical layer.  

Figure 4 shows this basic structure.  In the following sections we describe each layer 

and identify the common components of each layer.  The components of each layer are 

shown in Figure 5.  The structure presented here is flexible as far as the components 

that can be associated with each layer.  We express a general environment.  For 

specific environments, the components could be different. 

 

 

Figure 4:  The Four layers of the Runtime Environment 

 54



 

 55

 

3.1.1  Application 

The application layer represents applications which are available to users for 

execution.  This includes user developed programs, other applications that users can 

launch, and system utilities.  An MPI program executed by a user is in the application 

layer.  System utilities like vmstat, top, and proc are also in the application layer. 

 

3.1.2  Library 

The library layer is composed of modules that are required by the application 

layer.  These include libraries users develop and build into their codes and other 

libraries that user programs call upon.  Examples of libraries include MPI 

implementation libraries and the system library. 



 

 

Figure 5: Main Components of the Layers of the Runtime Environment 

 

3.1.3  Operating System 

The operating system layer is composed of distinct components reflecting the 

properties and functions of an operating system.  The lowest level incorporates the 

system’s device drivers.  In modern operating systems, all accesses to physical devices 

pass through this layer.  Abstractions for file systems, memory management, 

processes, and other operating system functionality are located in the level above the 

device drivers.  As an example of a device driver in the operating system layer, 
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consider a system configured for Ethernet communication between nodes.  In this 

scenario, the operating system has a device driver for the associated Ethernet 

hardware.  In the layered structure, a representation for the Ethernet device driver 

exists within the device driver level of the operating system layer.  Configuration data 

can be associated with the abstractions for file system, memory management, and 

process components of the operating system layer.  For example, within the file 

system component, this data could include the name, version, and configuration 

settings for a particular file system.  Additionally, data related to operating system 

state can be associated with specific components of the operating system layer.  For 

example, the process component is an ideal categorization for the number of running 

processes over a time interval.   

 

3.1.4  Physical  

The physical layer contains the tangible components of the system.  The model for 

the physical layer contains three tiers.  The upper level is the machine.  This level 

contains CPUs, memory, disk storage and I/O devices, network interface cards, and 

any other physical properties of a machine.  The second level contains media for 

external communication with other devices.  This level is intended to represent the 

physical means by which machines are connected to external machines.  The wires 

and cables are in this level.  The lowest level represents the machines and devices that 
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a machine connects to.  Routers, switches, and other machines are included in this 

level. 

 

3.1.5  Specifying Root Causes and Potential Optimizations by Layers 

We consider the runtime environment as a set of layers for the purpose of using a 

simple representation for showing where root causes of performance problems can 

exist and where optimizations can occur.  Today’s parallel performance tools often 

identify where, in an execution, an application spends most of its time.  However, the 

place at which a performance problem is detected is not necessarily the place from 

which the performance problem emanates.  Nor is it necessarily the place where an 

optimization should or can be applied.   

The layered view of the runtime environment can be used to categorize root causes 

of performance problems by layer.  We believe that knowing the root cause of a 

performance problem is fundamental in deciding what to target for optimization.  

Furthermore, there is often more than one way to improve application performance.  

Of all possible optimizations that would result in improved application performance, 

only a subset may be practical or available to the analyst.  For example, if a 

performance problem is caused by an inefficient MPI implementation, an application 

developer without root privileges would be unable to modify the generally available 

MPI library.  However, with the knowledge that the MPI library is at the root of the 

performance problem, the developer can decide upon several reasonable optimization 
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approaches.  These might include deciding to use a different MPI implementation; 

deciding to optimize a copy of the MPI library source code and install the modified 

library in a space controlled by the user; or deciding to change the application so it 

does not utilize the inefficient MPI components.  In this example, the performance 

problem was caused by something in the library layer, but optimizations were possible 

at several layers.  The layered view can be used to categorize potential optimizations 

by layer. 

 

3.1.6  Application Execution and the Runtime Environment 

Intuitively we understand that an application execution involves multiple passes 

through each of the layers of the runtime environment.  From an application analysis 

perspective, it may not be possible to instrument and collect performance data along 

the entire execution path.  For example, most dynamic instrumentation tools do not 

support dynamic instrumentation of kernel calls.  However, it can be useful to know 

what components of the runtime environment are touched by an application’s 

execution path.  To illustrate this point, we present a simple MPI_Send example, in 

which process A on node 1 calls MPI_Send to send a message to process B on node 

2.  The components of the runtime environment involved in the MPI_Send on 

process A’s machine include the following: the MPI application in the application 

layer; the MPI library in the library layer; memory management in the operating 

system layer and memory in the physical layer for accessing the contents of the send 



 

 60

buffer; the Sockets library in the library layer and subsequent low level write from 

the System library for writing the data; the TCP and IP protocols in the operating 

system layer for handling the message contents; the Ethernet driver in the operating 

system layer; the Ethernet adapter in the physical layer representing node 1; CAT 5 

cable in the external media level of the physical layer; the local switch in the external 

device level of the physical layer; and node 2 in the external device level of the 

physical layer.  Figure 6 shows a view of the runtime layers with the components 

involved in an MPI_Send added to the view.  Knowing the runtime components 

involved in an application’s execution is useful because these are aspects of the 

runtime environment that can directly affect application performance.  During the 

MPI_Send operation, there are a variety of components spread across all the layers 

which can affect performance.  Additionally, application performance can be 

indirectly affected by other components of the runtime environment.  It is important to 

make this distinction, as it is not possible to determine which components are indirect 

contributors to negative performance only by following the execution flow of control.  

For example, processes not associated with a running MPI application can negatively 

affect the application’s performance if the processes share the same CPUs, filesystem, 

memory, or interconnect as the MPI processes. 

 



 

Figure 6:  Example of Runtime Environment Components Involved in 
MPI_Send on an Ethernet based Cluster 

 

3.1.7  Discussion 

In this section we presented a layered view of the runtime environment.  We 

described the four basic layers of the runtime environment: application, library, 

operating system, and physical.  We discussed this view in terms of a way to 

categorize the root causes of performance problems and potential optimizations by 
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layer.  We also considered how this view can be used to identify those components 

which directly affect application performance and those components which indirectly 

affect application performance.   

 

3.2  Important Issues for Environment-Aware Performance Tuning Approaches  

Approaches for design and development of environment-aware analysis tools 

involve important considerations regarding time, the application, the runtime 

environment, measurement, analysis, and diagnosis. 

3.2.1  Time 

An important concern in all of distributed computing is determining the order of 

distributed events.  Clocks among distributed systems are not always synchronized, so 

it may be impossible to order events by clock timestamps.  However, it is possible to 

obtain partial orderings of events; and it is possible to obtain total orderings in some 

cases [42].  This same concern is present in environment-aware analysis.  In particular, 

data collected with different tools must be mapped onto a common time scale to 

correlate activities at different layers of the system. 

 

3.2.2  Application 

Knowing what the application does during execution is an important issue for 

environment-aware approaches.  Application analysis tools currently construct a good 
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picture of what an application does during execution.  This information is necessary 

for environment-aware approaches to use in determining why behavior happens, as it 

is difficult to ask why if there is no context for the question.  In order to understand 

why a behavior occurs, more than just a description of an application’s execution is 

required.  Environment aware analysis enhances this description knowledge about 

what is happening in the rest of the runtime environment while an application 

executes. 

 

3.2.3  Runtime Environment 

Capturing a description of the status and behavior of the runtime environment and 

associating it to an application execution is an important concern of environment-

aware analysis.  To capture this description it will be important to consider what 

aspects of the runtime environment can be measured and what metrics will be most 

appropriate for enhancing understanding of an application’s performance.  Another 

consideration is deciding how to collect measurements.  A final, but very important 

consideration is how to relate the description of the runtime environment to the 

description of an application execution. 

 

3.2.4  Measurement 

With regard to measurement, the measurement strategy is an important issue.  It 

will be important to consider how data should be collected.  It is important to choose 



 

 64

data collection methods which will support creating a mapping between the 

description of the environment and the application based on the two sets of 

measurements.   

 

3.2.5  Analysis 

In the analysis phase, an area of consideration is how raw data are combined and 

calculated upon to compose derived measurements and determining if there are valid 

derived metrics composed of data from both application level measurement and 

runtime environment measurement.  The analysis component is also concerned with 

determining what values, in both the application and the runtime environment data set, 

fall outside the bounds of an acceptable level of performance. 

 

3.2.6  Diagnosis 

The important issues involved in diagnosis involve determining if out of bounds 

application metrics correspond to out of bounds runtime environment metrics for a 

time slice of interest, and determining how likely it is that an application experienced 

performance problem is caused by conditions in the runtime environment, and not by 

conditions with in the application. 
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3.3  Discussion 

We described environment-aware performance analysis and discussed issues 

related to environment-aware tool development.  In the first part of the chapter we 

presented a layered view for describing the structure of a runtime environment.  This 

view contains the application layer, the library layer, the operating system layer, and 

the physical layer.  We defined each layer and described how this view can be used to 

frame performance problems in terms of root causes and potential optimizations.  In 

the second section we discussed development considerations for the design of 

environment-aware tools.  These include considerations regarding time, the 

application and the runtime environment, measurement, analysis, and diagnosis. 



 

CHAPTER 4  PERFORMANCE ANALYSIS CASE STUDIES 

 

This chapter presents case studies in which application performance was 

unexpectedly poor and diagnosing the causes of performance problems was difficult.  

In each of these situations, the analysts applied several iterations of performance 

testing before gaining a first key insight into what was causing the unexpected 

performance.  We believe that each of these cases is an ideal candidate for the 

application of environment-aware diagnosis.  Table 1 lists, for each case, the type of 

performance problem noticed and what the root cause of the problem was. 

 

Table 1: Case Studies Organized by Exhibited Performance Behavior and 
Root Cause of Performance Problem 
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The cases presented here are examples of difficult diagnosis situations.  This set of 

cases is not an exhaustive set, but it is sufficient for demonstrating the need for 

performance analysis methods to incorporate knowledge about the runtime 

environment. 

4.1  OS and File System Upgrade  

In this situation, a performance analysis researcher had constructed a series of 

experiments designed to study the overheads associated with tracing applications [52].  

The study investigated trace buffer sizes and the time required to write trace buffers to 

disk. 

The analyst selected the SMG2000 ASC Purple benchmark because it generates 

many MPI function calls.  TAU 2.15.1 was used to trace function entries and exits.  

The experiments were conducted on the batch partition of MCR, an 1152 node Linux 

cluster at LLNL, running the CHAOS operating system, and configured to use Luster, 

a parallel file system.  The application was configured with 4 MPI processes for all of 

the experiments and associated runs.  For each buffer size of interest, three types of 

experiments were conducted: one where the application was not traced, one where the 

application was traced, but the buffers were not written to disk, and one where the 

application was traced and the trace buffers were written to disk.   

In the first few experiment sets, it was discovered that the wall-clock time for the 

large buffer with write experiments was worse than wall-clock time for the small 

buffers with write experiments.  This did not make sense.  In general, fewer larger 
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sized writes are more cost effective than many small sized writes.  The experiments 

were re-run several times, but similar results were obtained each time. 

After several rounds of investigation, over the course of several weeks, the analyst 

obtained unexpected results that showed the large buffer with write experiments 

performing better than the small buffer with write experiments.  These results were 

perplexing because the analyst knew that the application code had not changed.  The 

same executable and tracing configurations had been used in all of the experiments.  

Fortunately, the analyst had used PerfTrack, an experiment manage system, to 

automatically collect characteristic information about the execution environment each 

time the application was executed.  In reviewing the attribute information associated 

with each execution, the analyst discovered that the previous experiments had run on 

CHAOS 3.0 and the new results were obtained from CHAOS 3.1.  Further 

investigation into the details of the CHAOS upgrade revealed that the Lustre file 

system had also been upgraded.  The analyst contacted the system administrators and 

was able to obtain operating system benchmark data for the CHAOS versions installed 

over the course of the experiments.  With this data, the analyst ruled out the operating 

system as the cause of the unexpected performance and concluded that the file system 

was the most likely cause. 

4.2.  Inconsistent I/O Rate Service Time 

This case study is an example of a problem that evidenced itself in a Unix server 

environment, but could also certainly happen in a high performance cluster 
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environment [72].  The situation is summarized, in [72], as “a generic problem set 

faced by many Unix engineers.”   The observed performance problem is that, at times, 

database transaction latencies on server A are longer than expected.  In this scenario 

the file systems of server A and server B share some of the same physical disk 

resources.  In the case presented, five physical disks had each been partitioned into 

two slices.  Seven of the slices were allocated to server A and three slices were 

allocated to the file system of server B.  However, one of the physical disks was 

shared by both server A and server B.  A commercial tool, RICHPse SymbEL, was 

used to analyze “service time” measurements of I/O requests in context of the physical 

disks on which the requests occurred.  Several additional scripts were written that 

enabled service time measurements to be recorded for the disk slices.  This then lead 

to the discovery that Server B’s sporadic use of the disk slice on the shared disk was 

the cause for the inconsistent database transaction latencies noticed on Server A. 

This problem could not have been thoroughly investigated using traditional 

application analysis tools, as the scope of the problem involved a machine external to 

the application’s execution. 

4.3  System Interference Related to Variability in Application Performance 

The three accounts presented in this section are very interesting because they each 

involve nearly identical problems, and the lengths to which the analysts go to track 

down the causes of the performance problems is extensive.  All three cases deal with 

scaling fine-grained applications to run on thousands of nodes, while utilizing the full 
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set of processors per node.  The applications involved experienced poor performance 

when configured to use n processors per node, the full set of processors per node.  In 

each case performance was actually better when n-1 processors per node were 

configured, and with this configuration, the applications scaled to high numbers of 

processors. 

 

4.3.1  ASCI Q 

An interesting story of how operating system interference can affect application 

performance is presented in the published account of a performance study on ASCI Q, 

a 2048 node high performance computer at Los Alamos National Laboratory (LANL) 

[69].  At the time of ASCI Q’s initial deployment, a performance study was designed 

to accurately determine the performance that should be expected when running a 

hydrodynamics code on the full ASCI Q system.  This code had been run on other 

platforms, so there was a notion of expected performance based on previous 

experience with the code.  Additionally, the ASCI Q hardware had undergone 

performance testing prior to the production phase.  Using the expectations from 

previous experiences and the hardware measurement data, a prediction for the 

application’s performance was made using a model that had been developed for the 

application.  The model had been used successfully on other large-scale systems, so 

there was confidence in the model.   
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The first experiments of running the application on the full system performed 

much worse than the prediction.  In these experiments, four MPI processes were 

assigned to each node, thus involving the full amount of processors per node.  As 

nodes were added to the problem set, the performance continued to deteriorate.  At 

4096 processors, the time to completion of one application cycle was twice the 

predicted value.  At first, the analysts considered that the model might be inaccurate.  

A series of tests were conducted to determine the accuracy of the model.  The first 

important finding was that the model was accurate if one, two, or three processors per 

node were utilized.  Each cycle in the application was configured to perform a 

consistent amount of work, and so the expectation was that each executed cycle would 

complete in the same amount of time.  In analyzing the variability of cycle 

completions, the analysts discovered that there was great variability.  Further 

inspection, breaking up the time spent in each cycle by function, revealed that as 

processors increased, the time spent in MPI_Allreduce and MPI_Reduce increased.  

This lead the team to consider the collective operations of the MPI implementation as 

factors of the poor performance.  This resulted in several changes made to the 

MPI_Allreduce function, changing the way synchronization was handled.  With this 

change, the application’s performance was expected to improve by 78%.  However, 

the difference in performance was negligible.  Although the problem was not yet 

solved, the analysts were able to eliminate the MPI implementation as the problem 

source.  The next suspicion was that system interference was causing the problem.  
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This seemed reasonable, as the noise would go largely undetected as long a free 

processor was available for system activities. 

In several refinements of tests, using synthetic benchmarks, to isolate system 

noise, it was discovered that certain nodes in 32-node clusters experienced similar 

noise patterns.  In every 32-node cluster, comprising ASCI Q, nodes 0, 1, and 31 

showed consistently longer execution times than the other nodes.  In a series of 

“techniques” that are not described in the accounting, the analysts were able to 

identify most of the system activities that were causing application processes to be 

switched out, and they were able to identify the delay imposed on the application due 

to the context switches.  The system activities included two events generated by the 

Quadrics resource management system; a cluster management event; and parallel file 

system events.  

Once they understood the problem, they were able to construct reasonable 

solutions.  Through a combination of removing some of the daemons, co-scheduling 

some of the system processes to occur simultaneously, and distributing the processes 

differently, they were able to get reasonable performance from the application running 

on the full ASCI Q system. 

 

4.3.2  IBM SP Machines and AIX Trace  

A story very similar to the ASCI Q experience played out at Lawrence Livermore 

National Laboratory (LLNL) on the IBM SP machines [30].  The machines analyzed 
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in this study were Blue, a 1120 processor machine, Frost, a 1088 processor machine, 

and White, a 8192 processor machine.  Frost and White are each configured with 16 

processors per node, and Blue is configured with four processors per node.  This 

performance study was designed to investigate performance variability encountered in 

applications for which very little variability was expected.  They expected little 

variability because the codes were deterministic in the work they did, the work was 

balanced among the available processors, and the jobs were scheduled to run on 

dedicated nodes. 

The investigation into variability lead to the discovery that variability was 

minimized and within the expectation if not all of the processors per node were 

utilized by the application.  At first, the analysts suspected the communications 

operations of the IBM MPI implementation.  They constructed an experiment to test 

this idea.  The experiment focused on the collective operation, MPI_Allreduce.  The 

AIX trace facility was used to examine the behavior of the MPI_Allreduce test.  As a 

way to improve repeatability of the test, the entire machine was run in dedicated 

mode; all cron jobs and monitoring activities that were not part of the experiment were 

turned off; and the traffic on the machine interconnect was mostly minimized to just 

the test traffic.  Similar to the ASCI Q study, it was found that the MPI 

implementation was not a factor in the variability problems. 

The test data revealed that MPI_Allreduce was susceptible to some variability, 

namely there were a few reduction operations in each test that were much longer than 

the others.  These “long-lived” reductions were analyzed with the AIX trace facility.  
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This showed that one or more of the participating processes in each of the long 

reduction operations was delayed by operating system interference.  They were then 

able to identify two kinds of interference.  The first was interference caused by the 

AIX timer decrement interrupts.  These happened at 100 Hz and were staggered across 

every CPU in a node.  The second type of interference identified was system daemon 

scheduling.  These interference activities were much longer in duration than the timer 

interrupts. 

With further testing, they were able to assess the impact of both types of 

interference.  These results showed that the daemon scheduling interference was the 

larger contributor to the variability experienced by the application. 

 

4.3.3  NAMD 

As a final example of the difficulties in detecting operating system interference as 

a factor in poor application performance we present the experience of scaling NAMD, 

a molecular dynamics code, on Lemieux, a 3000 processor cluster at the Pittsburgh 

Supercomputing Center (PSC) [70].  In this work, the goal was to achieve optimal 

performance of NAMD on Lemieux.  The scientists describe several of the 

optimizations employed at the application and communication layers to achieve 

scaling performance similar to results achieved on ASCI Red.  As in the previous two 

examples, the application scaled well, utilizing three of the four processors per node, 

but when the full set was attempted performance deteriorated.  The analysts identified 
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that the inability to utilize all of the processors was due to some operations taking 

much longer to complete than expected.  They were able to establish that the majority 

of these “stretches” took place in send and receive communications operations.  Since 

they achieved reasonable scaling at three processors per node, they did not further 

investigate the cause of the “stretches”.  It is likely that father investigation would 

have yielded results showing what kinds of system interference were causing the 

problems. 

However, in a later study, the scientists decided to pursue optimizations at the 

application and communications library layers [31].  By making several changes at 

these layers, the scientists were able to get the NAMD molecular dynamics code to 

scale to 3000 processors, utilizing the full set of processors per node.  The application 

level optimization involved changing non-blocking receives to blocking receives.  The 

library level optimizations involved changes to the Quadrics elan communications 

library. 

 

4.4  Faulty Hardware 

This situation was described by Dr. Douglas Pase, with IBM’s server performance 

team [64].  In this case study, actual performance was far below expected performance 

in benchmarking memory performance on a new server system.  The cause of the poor 

performance was difficult to identify using a routine set of performance analysis 

methods. 
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The goal of the performance study was to obtain memory performance 

measurements for a new machine, the IBM eServer 325.  The analysis team used 

STREAM, a well known memory performance benchmark [45].  The STREAM 

benchmark measures sustainable memory bandwidth (in MB/s).  For the eServer 325 

tests, the OpenMP threaded version of STREAM was used.   

The eServer 325 contained two 2.0 GHz single-core AMD Opteron processors and 

six GB of DDR333 memory.  In the BIOS, SRAT, DRAM Interleave, ECC and 

ChipKill were enabled, while Node Interleave was disabled.  The server was not 

connected to a network and it was tested as a stand-alone system.  This was a new 

machine, and the STREAM benchmark had not yet been tested on it. 

The actual performances for the STREAM tests were less than 50% of the 

calculated theoretical performance.  The team had calculated peak memory bandwidth 

to be 10.6 GB/s.  The team had prior experience using this benchmark, and they knew 

that typically, a system achieves 75-85% of the theoretical performance.   

The analysts conducted a series of tests to investigate the unexpected behavior.  

One of the things they discovered was that single threaded configurations performed 

as expected.  However, any configuration with more than one thread obtained poor 

memory performance.  The analysts checked the BIOS settings looking for 

configuration settings that didn’t make sense; they inspected the BIOS logs; and they 

swapped out memory, thinking bad memory could be the cause.  None of these checks 

proved to be causing the poor performance. 
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Eventually, the team realized that the system was experiencing a very high number 

of interrupts.  These were on the order of 10,000 to 100,000 interrupts per second, and 

the rate was high regardless of the benchmark executing or not.  Once the high number 

of interrupts was discovered, the team was able to more precisely direct their 

investigation.  They quickly discovered that the majority of the interrupts were related 

to a USB device.  In discussion with the developers of the system, it was discovered 

that the mother board had a minor design flaw.  The developers were able to easily 

resolve the problem. 

 

4.5  Discussion   

In this chapter we presented several case studies which illustrate situations which 

would have benefited from environment-aware performance analysis.  Each of these 

cases is an example of difficult diagnosis.  The cases demonstrate the need for 

additional information about the runtime environment to be included in performance 

analysis.  We also see common themes shared among these situations.  It was often the 

case that the analysts conducted several iterations of performance tuning before 

reaching a key insight point.  These cases also showed that finding good solutions 

required learning what the root causes of the problems were.  In the cases where tools 

were used, the diagnoses offered by the tools were not sufficient for determining what 

to target for optimization.  These studies support our claim that the quality of 
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diagnosis in parallel performance tools can be improved by incorporating knowledge 

about the runtime environment. 
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CHAPTER 5  A TEST SUITE FOR PERFORMANCE DIAGNOSIS 

 

In this chapter we present a test suite that can be use to determine how well 

application performance analysis tools determine causes of poor application 

performance.  Ideally, a tool should direct the user to the layer of the runtime 

environment in which the root cause of a performance problem exists, and identify the 

specific conditions within the layer that are most likely causing the performance 

problem.  Each test simulates or constructs a condition existing in a particular layer 

that will negatively affect application performance.  The results are interpreted by 

comparing the diagnosis of the evaluated tool to the real diagnosis.  To fully pass a 

test, a tool must correctly identify the root cause layer and correctly identify at least 

one condition within the layer responsible for the performance problem.  We envision 

the test suite to be of value to developers of environment-aware performance tools and 

we anticipate that this type of test suite will be most useful in the first prototype 

implementations of environment-aware parallel performance tools.  

 For each test, we present a brief description of what the test targets; describe how 

to construct the experiment; explain how to interpret the results; and state what 

application performance analysis tools, without knowledge of the entire runtime 

environment, would generally report about the performance behavior. 
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5.1  Application Layer:  Naive Broadcast 

Test Overview.  The Naive Broadcast test is designed to verify that performance 

problems originating in the application layer can be correctly diagnosed by commonly 

used tools.  For these kinds of problems it is possible to optimize the application 

performance by directly modifying the application source code, but we want a tool to 

inform us that this is the appropriate layer to investigate.  

Experimental Setup.  The application focus of this experiment is an MPI 

application with this communication pattern:  the one sending process uses a point to 

point communications operation to send the same message content as separate 

messages to every other participating MPI process, rather than using the collective 

operation MPI_Bcast. 

Interpretation of Results.  To fully pass this test, the tool must identify the 

application layer as the layer containing the root cause and identify that the MPI_Send 

could potentially be replaced by MPI_Bcast. 

Diagnosis without Environment-Aware Analysis.  Application level tools indicate 

that one process does a majority of the work in many MPI send calls, and other 

processes are spending time waiting to receive messages.  Although the detection of 

where the application is spending most of its time is correct, tools do not point to the 

important aspect of the MPI application:  that the MPI broadcast function should be 

used instead of the individual MPI_Send calls. 
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5.2  Library Layer:  MPI Library Bottleneck 

Test Overview.  The MPI Library Bottleneck test is designed to verify that 

performance problems originating in the Library Layer can be correctly diagnosed by 

commonly used tools.   

Experimental Setup.  In this test, we take advantage of the MPI profiling interface.  

In this test we consider the case of poorly implemented MPI collective operations.  We 

use an open source MPI profiling library and modify the MPI_Allreduce function so 

that it wastes some time before calling the real collective operation in the MPI library.  

We link the modified profiling library to an MPI application that uses the 

MPI_Allreduce operation. 

Interpretation of Results.  To fully pass this test, the tool must identify the library 

layer as the layer containing the root cause and identify that the MPI_Allreduce 

function is a costly function. 

Diagnosis without Environment-Aware Analysis.  Application level tools identify 

the user level call made to MPI_Allreduce as a bottleneck.  In instances where the 

library has been compiled with debugging options, some application level tools are 

able to traverse to this level and identify the collective operation in the library layer as 

a bottleneck.   

5.3  Operating System Layer:  NFS Server Experiment 

Test Overview.  The NFS Server Test is designed to verify that performance 

problems in the Operating Systems Layer can be correctly diagnosed by commonly 
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used application level tools.  This experiment creates a scenario where an NFS server 

receives a high number of requests for the same file from various clients.  One of the 

clients happens to be an MPI application that needs to read the file.  Other clients, not 

associated with the MPI application, are also trying to access the file for writing.  The 

experiment investigates the affects of this situation on the MPI application’s 

performance and looks into how well application analysis tools guide an analyst in 

understanding that application performance is negatively affected by the high demand 

on the file by unrelated processes. 

Experimental Setup.  In this test one machine that is separate from the 

application’s cluster is designated as the NFS server.  The MPI application is 

configured to runs on one node in the cluster, and it does a series of file reads on a 

single file.  Two other nodes, on which the MPI application is not running, have 

processes writing to the same file that the MPI application is trying to read.  

Interpretation of Results.  To fully pass this test, the tool must identify the 

operating system layer as the layer containing the root cause and identify that the file 

system has several processes trying to access the same file. 

Diagnosis without Environment-Aware Analysis.  Application performance 

analysis tools show that the MPI application performs poorly in the application level 

calls to read the file.  Without additional information from the runtime environment, 

these tools are unable to indicate that the likely cause of the poor performance is 

contention for the file resource by processes running on other machines and not part of 

the MPI application.  
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5.4  Physical Layer:  Memory Difference  

Test Overview.  The Memory Difference Test is designed to verify that 

performance problems in the Physical Layer can be correctly diagnosed by commonly 

used application analysis tools.  In this example, an MPI application’s performance is 

negatively affected by a node that has less memory than the other nodes on which the 

application’s MPI processes execute. 

Experimental Setup.  This experiment constructs a physical environment where 

one node in a cluster has less memory than the other nodes.  Other than the memory 

difference, the nodes are homogeneous.  The MPI application is configured to run on a 

set of nodes that includes the node with less memory, and one process is assigned to 

each node.  The application is constructed so that every MPI process does the same set 

of memory intensive tasks.  The process assigned to the node with less memory takes 

longer to complete its work than the other processes. 

Interpretation of Results.  To fully pass this test, the tool must identify the physical 

layer as the layer containing the root cause and identify performance is constrained by 

the size of memory available on one of the participating nodes. 

Diagnosis without Environment-Aware Analysis.  Application level tools identify 

the process that takes more time than the other participants to complete its work.  The 

tools also identify where in the application this slowness is attributed.  The tools do 

not indicate that a machine configuration difference is what causes one process to 

work longer than the others. 
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5.5  Physical Layer:  Interconnect Test 

Test Overview.  The Interconnect Test is designed to verify that performance 

problems in the Physical Layer can be correctly diagnosed by commonly used tools.  

This experiment was designed to consider the interconnect component of a cluster 

from the perspective of available network bandwidth.   

Experimental Setup.  The experiment is constructed to examine the performance of 

a communication intensive MPI application when available bandwidth is far below the 

theoretical capacity.  In this test a very large message is passed back and forth between 

two processes using the blocking MPI_Send and MPI_Recv communication methods.  

This experiment is configured to run on two nodes with one process per node.  

Available network bandwidth for the participating processes is reduced by generating 

extra traffic on the links between the two nodes. 

Interpretation of Results.  To fully pass this test, the tool must identify the physical 

layer as the layer containing the root cause and identify that the media for 

communication is constrained. 

Diagnosis without Environment-Aware Analysis.  Application performance 

analysis tools identify the MPI send and receive routines in the application as the 

locations of slower performance in this reduced bandwidth setting.  Without additional 

information about the availability of network bandwidth, tools cannot correctly 

identify the cause of this problem. 



 

 85

5.6  Discussion 

This test suite that can be used to evaluate how well application performance 

analysis tools identify the causes of poor application performance.  These tests 

construct conditions at different layers of the runtime environment that will negatively 

impact the performance of an application.  We described the goals of each test; 

explained how to construct the experiment; gave an overview of what constitutes 

passing a test; and stated what would generally be reported by application 

performance analysis tools that do not have access to additional knowledge about the 

runtime environment. 
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CHAPTER 6  EXPERIMENTAL RESULTS 

 

In this section, we describe our experimental methods and results.  The general 

design of each experiment is similar.  With these experiments we want to show that 

application performance analysis tools do not adequately incorporate information 

about the runtime environment and we want to demonstrate that when status 

information about the runtime environment is used in performance analysis, there is 

great potential to accurately diagnose the causes of application performance problems.  

To do this we construct example situations, in which we have two environments:  a 

normal environment that can be used as a baseline for application performance; and an 

environment where some aspect of the normal environment has been changed in order 

to dramatically affect application performance.  We call this second environment the 

sub-optimal environment.  The general approach taken in all of the experiments was to 

evaluate an application’s performance in both environments using one or more 

application performance analysis tools, compare the results given by the tools between 

the two environments, and then supplement the tools’ results with additional 

information collected about an execution’s runtime environment to demonstrate the 

value added to the overall problem diagnosis.  

We chose to construct the sub-optimal environment for several reasons.  First, 

since our goal is to demonstrate our hypothesis through well-designed experiments, 

we need our experiments to be repeatable and we need to obtain results that are 
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comparable.  It is much easier to achieve repeatability and comparability if we have 

tight control over the experiment environment.  Secondly, the construction of the sub-

optimal environment suits the needs of the study, in which we want to show specific 

examples of performance analysis tools unable to capture how the runtime 

environment contributes to an application’s performance behavior. 

The goals of these experiments are two-fold.  We first want to show that difficult 

diagnosis scenarios likely to go undetected by application performance analysis tools.  

Secondly, by building up this experiment set with several concrete examples where we 

have injected additional information about the runtime environment, we are able to 

support the claim that environment-aware diagnosis is a necessary component for 

automated performance analysis 

  

6.1  Available network bandwidth for Inter-node communication 

This experiment was designed to consider the interconnect component of a cluster 

from the perspective of available network bandwidth.  In this experiment we show that 

overall performance of an MPI application is affected by actual capacity of the inter-

node communication links, but that it is difficult to assess the contribution of available 

bandwidth on application performance using only application performance analysis 

tools.  In the normal environment for this experiment available bandwidth was 

consistently high, near the theoretical peak, and in the sub-optimal environment, the 

available bandwidth for the communicating processes was severely reduced.  The 
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application performance analysis tools identified the MPI send and receive 

communication routines in the application as the locations of slower performance in 

the reduced bandwidth setting.  However, without additional information it was 

impossible to determine why these application level routines were so much slower in 

one setting than in the other.  When we supplemented the results provided by the 

application performance tools with data collected about available bandwidth, it 

became clear, from a user perspective, that the poor performance observed in the sub-

optimal environment was related to availability of bandwidth during the application’s 

execution. 

The experiment was constructed to examine the performance of big-message, a 

communication intensive MPI micro-benchmark from the PPerfMark 2.0 benchmark 

suite [71], when available bandwidth was close to the theoretical peak and when 

available bandwidth was much less than the theoretical peak.  In this test, a bottleneck 

in the system is created by passing very large messages back and forth between two 

processes.  The actual size of the message is 100,000 bytes.  The message is sent and 

received between two processes for a specified number of iterations, using MPI_Send 

and MPI_Recv, which are blocking communication routines.  In this experiment set, 

we used 1,000 iterations so that the wall-clock time in the normal environment was at 

least 1 minute.  All of the executions in this experiment were configured to run on two 

nodes with one process per node.  A description of the static structure of the main loop 

in big-message is shown in Figure 7.  The Gsend_message and Grecv_message calls 

are wrapper functions to MPI_Send and MPI_Recv.   
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CALL MPI_Wtime() 
IF rank == 0 
 LOOP until message[] is filled 
  Assign ‘1’ to message[i] 
 END LOOP 
 LOOP ITERATIONS times 
  CALL Gsend_message 
  CALL Grecv_message 
 END LOOP 
ELSE 
 LOOP ITERATIONS times 
  CALL Grecv_message 
  CALL Gsend_message 
 END LOOP 
END IF 

CALL MPI_Wtime() 

Figure 7:  Static structure of main loop in big-message

 

We analyzed application performance with mpiP 2.8.2 [56], a MPI profiling tool, 

and with Paradyn 4.2.1 [63, 62], a dynamic instrumentation and online performance 

analysis tool.  We viewed the mpiP results with mpipview, a graphical viewer 

provided by Tool Gear 1.30 [84].  Additionally, the micro benchmark included several 

source code level measurement components.  Elapsed wall-clock time for the entire 

program for each process is measured using MPI_Wtime which has microsecond 

resolution on the systems used in this experiment.  The micro benchmark also records 

user process time and system process time for the entire program for each process 

using getrusage().  

The bandwidth measurements were collected using NetPIPE 3.6.2 [80,58].  

NetPIPE is a suite of applications aimed at gathering throughput and latency 
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measurements of the underlying network.  NetPIPE’s TCP and MPI modules were 

used to collect throughput and latency measurements between the two nodes on which 

big-message was executed.  Each module runs a series of ping pong tests between two 

nodes, in which the number of bytes sent is increased in each successive test.   

This experiment utilized the LAM/MPI 7.0.6 [41] implementation of MPI.  The 

experiments were conducted in the computer science Linux Laboratory at Portland 

State University on homogeneous single processor Linux nodes, running kernel 

version 2.6.9-22.0.2.EL.  Each node was configured with 786 MB of memory, one 

network interface card capable of 100 Mbps transmission, and a 1400MHz Intel 

Pentium 4 processor with 256 KB cache.  The laboratory network environment is 100 

megabit Ethernet, and every node is directly connected to the switch serving the 

laboratory. 

To construct the sub-optimal environment we reduced the bandwidth available to 

big-message’s communicating processes by generating traffic on the subnet using 

Iperf 1.7.0 [29].  Iperf is a research tool designed to measure TCP bandwidth.  In our 

use, we did not analyze the measurements collected by the tool, but rather used the 

tool as a means to create network traffic between clients and a respective server.  We 

configured four of the laboratory’s nodes to be servers and then used all of the 

remaining available nodes as clients, including the two nodes that were involved in the 

big-message executions.   

To understand what the baseline environment for bandwidth capacity was for the 

laboratory configuration we measured TCP and LAM/MPI throughput and latency 
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using NetPIPE.  Since, these experiment were conducted in a general purpose 

instructional laboratory, we found that the most consistent normal environment existed 

at non-peak hours, generally between 2:00am and 8:00am.  Therefore, all of the tests 

for the bandwidth experiments were conducted during these hours.  Three 

representative trials from the TCP measurements for the normal environment are 

presented in Figure 8.  These graphs show that as message sizes increased, the 

throughput measurements approached the theoretical peak of 100 Mbps (Mega bits per 

second).  Latency is less than 0.1 seconds for message sizes 1 MB and smaller.  The 

largest message tested was 8 MB and the incurred latency was 0.714 seconds.  Figure 

9 shows TCP measurements, using the same representative runs as earlier, and three 

representative runs from the LAM/MPI measurements.  In these measurements, LAM 

does not add significant overhead to TCP.  After gathering the baseline bandwidth 

measurements for the laboratory, we ran ten trials of the big-message application on 

the machines paulus and jess.  Each trial was configured to utilize two nodes with one 

process per node and to execute the MPI message loop for 1,000 iterations.  In each 

trial the master process executed on paulus.  The summary wall-clock results for these 

trials are presented in Table 2.  We then analyzed the performance of the big-message 

application in the normal environment with mpiP and Paradyn.  With Tool Gear we 

viewed the results of the profiled big-message benchmark.  Figure 10 is a screen shot 

of the Tool Gear display.  Here, we see that 58.89 % of the time spent in all MPI 

profiled functions was assigned to the MPI_Recv function and 41.11% of MPI time 

was assigned to the MPI_Send function.  The screen shot shows the details mpiP 



 

calculated for MPI_Recv in big-message.  We see that the function was called 2,000 

times, which is because each process called it 1,000 times.  The counts presented for 

each process make sense.  The maximum, mean, and minimum timing values for 

MPI_Recv are presented for each process and for both processes combined.  Tool 

Gear also shows the location in the source code of the MPI_Recv call. 

Figure 8:  TCP Throughput and Latency  in the Normal Environment 

 

Figure 9:  TCP and MPI Throughput and Latency in the Normal 
Environment 
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Table 2:  Summary Statistics.  Summary wall-clock statistics, reported in 
seconds, for 10 trials of big-message in the normal environment 

 

Figure 10:  Tool Gear 1.30 screen shot of big-message in the normal 
environment 

 

We also used Paradyn 4.2.1 to dynamically instrument big-message, and to view, 

as the program executed, the results of the automated performance bottleneck search 

and detection.  To use Paradyn effectively, we needed big-message to run for a longer 
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period of time.  The benchmark source was modified slightly, to enable the iteration 

count to be infinite.  The automated bottleneck search and detection component of 

Paradyn is presented to the user as the Search History Graph.  The Search History 

Graph results for the modified big-message in the normal environment are presented 

in Figure 11.  This shows that ExcessiveSyncWaitingTime is the problem hypothesis 

which tested true for being a bottleneck.  Paradyn uses a color coding scheme to 

denote this.  In this scheme a blue background indicates that the hypothesis has 

evaluated to true.  A pink background indicates that the hypothesis evaluated to false.  

The bottlenecks are big-message’s wrapper functions around MPI_Send and 

MPI_Recv.  We also configured a table visualization to present the results of a few 

metrics of interest, as shown in Figure 12.  This table shows the number of bytes sent 

and received; the total CPU time, including the time of all called procedures; and the 

total time, including the time of called procedures, spent waiting on synchronization 

operations. 

 

Figure 11:  Paradyn 4.2.2 screen shot of Search History Graph of big-message 
in the normal environment 
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Figure 12:  Paradyn 4.2.2 screen shot Table Visualization of  big-message in 
the normal environment

 

 

The previous results are all reported about the normal environment.  Now we 

present the results of running big-message in the sub-optimal environment.  We 

present the same set of data:  the summary statistics from big-message’s self 

instrumented wall-clock timing in Table 3; the profile from mpiP and Tool Gear in 

Figure 13; and the Search History Graph and table visualization from Paradyn in 

Figure 14 and Figure 15.  We see readily that it took much longer to execute 1,000 

iterations.  This is evident from the summary statistics shown in Table 3.   

From the Tool Gear screen shot, we see that the maximum, minimum, and mean 

times for the MPI_Recv function are much larger than before.  The percentage 

breakdown of MPI work assigned to functions has not changed too much.  We do not 

expect this to change since the program repeats the same steps in each execution.  The 

Paradyn collected data in the sub-optimal environment also has changed.  We can see 

that MPI_Send and MPI_Recv evaluated to true for being potential bottlenecks.  

Whereas, in the normal environment results, the wrapper functions tested true, but 

MPI_Send and MPI_Recv tested false.  Since MPI_Send and MPI_Recv tested true in 
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the changed environment, their associated resource trees are expanded out.  The green 

background for the sub trees of MPI_Send and MPI_Recv indicates that the truth 

value of the hypothesis is unknown for theses resources.. 

 

 

Table 3:  Summary Statistics.  Summary wall-clock statistics, reported in 
seconds, for 6 trials of big-message in the sub-optimal environment 
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Figure 13:  Tool Gear 1.30 screen shot of big-message in the sub-optimal 
environment 

 

Figure 14:  Screen shot of Search History Graph of big-message in the sub-
optimal environment 
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Figure 15:  Paradyn 4.2.2 screen shot Table Visualization of  big-message in 
the sub-optimal environment 

 

In this experiment set, we examined the performance of an MPI benchmark 

application in two environments.  In the analysis from the runs in the normal 

environment, we are able to identify that the MPI_Recv and MPI_Send functions are 

where performance bottlenecks could potentially exist.  When the application was 

executed in the sub-optimal environment, it was obvious from wall clock time that 

something was different between the two execution environments.  The analysis tools 

were helpful in showing us where the performance problem existed in relation to the 

source code.  We were able to ascertain from both mpiP and Paradyn that MPI_Recv 

and MPI_Send were the functions executing the largest percentage of time.  Paradyn 

provided more detailed information than mpiP about what the performance problem 

really was.  In both the normal and suboptimal environments the hypothesis test for 

ExcessiveSyncWaitingTime tests to true, indicating that the default threshold for 

synchronization waiting time had been exceeded by the total synchronization waiting 

time of the executing application.  We are not able to determine from the analysis 

results presented what would be the best course of action to pursue to get the 

application’s wall clock time back to what had been experienced in the first set of 
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runs.  An analyst is likely to suspect the MPI library implementation or possibly the 

application itself as potential targets for optimization.  To be able to make a decision 

about what course of action to take, the analyst really needs some other information 

brought into the description of the application’s performance.  To illustrate this point, 

we have supplemented the analysis information provided by the tools with 

information collected about the available network bandwidth between the 

communicating processes of the big-message application.  These results are shown in 

Figure 16.  The graphs present TCP throughput and latency measurements that 

occurred in the normal environment and in the suboptimal environment.  It is clear 

that bandwidth throughput became constrained by more than 50% and that latency 

was severely impacted.  With access to this piece of supplemental information, an 

analyst would know that the application’s available bandwidth had been reduced.  

Provided that the analyst knows that nothing had changed in the MPI 

implementations and the application executable between the executions in the normal 

environment and the executions in the suboptimal environment, the analyst can safely 

eliminate both the application and the MPI library as possible sources of the problem.   

 



 

 

Figure 16:  TCP throughput and latency in the normal and the sub-optimal 
environments

 

6.2  Gathering system info with MPI processes 

6.2.1  Overview 

In this experiment we explored the idea of using MPI processes to track system 

information.  The idea is that an MPI application could have one process per node 

reserved just for system monitoring activities.  In this scheme, the monitor processes  

only do monitoring activities, while the worker processes do the work of the 

application.  In this experiment, all MPI processes are specified as arguments to 

program which launches MPI executions.  It is possible to create the monitor 

processes dynamically, but this is not a fully supported feature of all MPI 

implementations.   

There are several advantages gained by allowing the application to perform the 

monitoring tasks.  One of the advantages is that the gathered information correlates 

with the application’s execution.  The application starts and stops the monitoring 
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activity.  Another advantage is that the application controls what is monitored and 

with what frequency data is collected. 

There are several drawbacks to this method.  In systems composed of single CPU 

nodes, the cost of running two MPI processes on a node could negatively impact 

application performance. 

 

6.2.2  Purpose 

The purpose of this experiment is to determine if a mapping between application 

performance and system activity can be done using generally available methods.  In 

the results presented we execute an MPI monitor program.  The program is 

constructed such that the worker tasks do the targeted work of the application and the 

monitor process collects some system level information and writes this data to a log 

file.  In our test program, the monitor processes execute the vmstat system level utility. 

   

6.2.3  Methods 

In the vmstat monitor application, the monitor runs the vmstat utility at one second 

intervals for a specified duration.  The worker processes do a simple loop computation 

and do not perform any MPI communication operations.  By collecting vmstat data, 

we want to observe the application’s performance in view of virtual memory activities.  

The vmstat utility reports information on processes, memory, paging, block IO, traps, 

and cpu activity.  In this experiment we configured vmstat to update at one second 
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intervals, and we configured it to produce the basic vmstat report.  The kinds of things 

reported in each update, in the basic report, include the number of processes waiting, 

the number of processes in uninterruptible sleep, the amount of virtual memory used, 

the amount of idle memory, amount of memory swapped in from disk and out to disk, 

blocks received and sent to block I/O devices, the number of interrupts and context 

switches, and total CPU time percentages. 

We executed the experiment in two environments.  The first environment was 

considered the normal environment, and the second environment was the sub-optimal 

environment.  For executions in the normal environment, the wall-clock times for the 

worker processes in each execution were nearly identical.  In the sub-optimal 

environment, the wall-clock times for the worker tasks on one of the nodes was 

consistently longer over several executions than the corresponding value for the 

worker process on the other node.  This experiment utilized the LAM/MPI 7.0.6 [41] 

implementation of MPI.  The tests were conducted in the computer science Linux 

Laboratory at Portland State University on homogeneous single processor Linux 

nodes, running kernel version 2.6.9-34.0.1.ELsmp.  Each node was configured with 1 

GB of memory, one network interface card capable of 100 Mbps transmission, and a 

3.20GHz Intel Pentium 4 processor with 1 MB size cache.  The laboratory network 

environment is 100 megabit Ethernet, and every node is directly connected to the 

switch serving the laboratory. 



 

6.2.4  Results 

From the application timing results, we could see that the worker process on one of 

the nodes was taking longer to complete its simple loop computation.  This is 

unexpected behavior for the application for three reasons.  First, the application is 

deterministic.  Second, the nodes selected for execution were homogeneous.  Third, 

from previous experiences of running the application on the two nodes, we knew that 

the worker processes normally completed their tasks at about the same time. 

Table 4 presents the wall-clock times, in seconds, for the worker process on each 

node for a representative execution from the normal environment.  Table 5 presents 

similar metrics for the sub-optimal environment.  We see that the worker process on 

andrea takes about 11 seconds longer to complete than it did in the normal 

environment, resulting in a 10% slowdown for the simple loop computation of the 

application. 

 

Table 4:  Wall Clock Times.  Wall-Clock times, in seconds, for worker process 
on each node for two different executions, in the normal environment. 

 

 

Table 5:  Wall Clock Times.  Wall-Clock times, in seconds, for worker process 
on each node for two different executions, in the normal environment 
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To investigate the problem further, we inspected the monitoring information that 

was gathered during these representative executions.  Table 6 and Table 7 present the 

average values from the vmstat reports for the normal and sub-optimal environments 

respectively.  Table 8 provides an explanation of the vmstat measurements and units. 

Table 6: Vmstat reported values.  Average values, by node, from vmstat for 
two different executions in normal environment 

Table 7:  Vmstat reported values.  Average values, by node, from vmstat for 
two different executions in sub-optimal environment 

 

Table 8:  Explanation of Vmstat measurements and units 
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By inspection of Table 6 and Table 7, we noted some values that looked different 

enough to warrant further inspection.  We can see that in the sub-optimal environment 

andrea, on average, has two process waiting to run.  Normally, only one process is 

waiting to run.  We also notice an increase in blocks sent to I/O devices for andrea, in 

the sub-optimal environment.  Two dramatic changes are noticed in the number of 

interrupts and context switches logged on andrea during the application’s execution in 

the sub-optimal environment.  It is also evident that the break down of CPU time 

percentages for andrea in the sub-optimal environment changed:  the percentage of 

time spent executing user code decreased, the percentage of time spent executing 

kernel code increased, and the percentage of time spent idle decreased.  Just from the 

information presented in the averages table, we can theorize with a high degree of 

confidence that the addition of a second process on andrea is the cause of the 

performance problem.  However, we can view these metrics of interest with a simple 

time-line representation.  These views are displayed in Figure 17. 

 

 

 

 

 



 

Figure 17:  Processes, Interrupts and Context Switches for paulus and andrea 
in the Normal and Sub-optimal Environments.  The first graph shows data for 
paulis in the normal environment.  The second graph shows data for andrea in 

the normal environment.  The third graph shows data for paulus in the sub-
optimal Environment.  The fourth graph shows data for andrea in the sub-

optimal environment. 
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6.2.5  Discussion 

We conclude that it is possible to use generally available system utilities to gain 

insight into the performance behavior of applications, however, integrating this 

information with application level data requires new tool support. 



 

 108

CHAPTER 7  CONCLUSIONS AND FUTURE WORK 

 

In this thesis we proposed a new approach for performance analysis called 

Environment-Aware Performance Analysis.  This approach focuses on improving the 

quality of diagnosis offered by performance analysis tools.  We limited the focus of 

this thesis to the investigation of environment-aware performance analysis for parallel 

applications. 

Environment-Aware Performance Analysis includes analysis of an application’s 

execution behavior and analysis of the environment in which an application executes.  

The performance diagnosis incorporates both sets of analyses, and it seeks to identify 

root causes of performance behavior.  Environment-Aware Performance Analysis 

extends traditional methods of application performance analysis, and, by doing so, has 

potential to improve the quality of performance diagnosis.   

This thesis demonstrates a need for performance analysis tools to utilize 

information about the runtime environment in the analyzing performance data and 

formulating performance diagnoses.  To support this claim we presented real 

situations in which traditional performance analysis tools either provided misleading 

diagnostic information or were unable to provide adequate guidance to analysts in 

determining the causes of performance problems.  We also provided proof of concept 

examples to show the potential for performance analysis tools to improve the quality 
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of diagnosis by incorporating analysis of the runtime environment with analysis of 

application behavior. 

We presented a layered view of the runtime environment which can be used to 

frame performance problems in terms of root causes and potential optimizations.  We 

also discussed development considerations for the design of environment-aware tools.   

The contributions of this thesis include a test suite for evaluating the ability of 

tools to accurately diagnose performance problems; experimental results showing the 

limitations of current tools; a set of case studies illustrating situations that might have 

benefited from environment-aware performance analysis; a discussion of the 

challenges and concerns for development of environment-aware tools; and a survey of 

the state of the art in parallel performance analysis tools. 

As we continue our research in this area we have identified several areas for future 

work.  We would like to conduct a tool evaluation study using the test suite, and we 

want to complete other experiments that are currently in progress.  We plan to develop 

a prototype tool that encompasses the key features of environment-aware performance 

analysis.  This effort will entail preliminary work in the development of techniques for 

integration of data collected from different layers and by different tools.  An example 

of this is integrating application performance trace data, MPI library profiling data, 

vmstat-like data collected from a system monitoring facility, and hardware counter 

performance data.  These data sets span the layers of the runtime environment and 

could potentially be collected by different tools.  We want to develop methods for 
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automated analysis of integrated data which detect performance problems and identify 

the runtime layers in which likely causes of performance problems exist.   

This work focused on performance of high end parallel applications.  Environment 

aware analysis is also applicable to other computing domains, including databases, 

server applications, operating system benchmarking, and Grid computing.  

Environment aware performance analysis can support user perspectives other than the 

application developer/user.  For example, a system engineer, designing new systems 

or benchmarking systems, is concerned with the performance of system hardware 

components, and is less concerned with improving the performance of individual 

applications. 
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