
A PERFORMANCE STUDY OF

LAM AND MPICH ON AN SMP CLUSTER

by

BRIAN PATRICK KEARNS

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Portland State University
2003

ABSTRACT

An abstract of the thesis of Brian Patrick Kearns for the Master of Science in Com-

puter Science presented December 4, 2002.

Title: A Performance Study of LAM and MPICH on an SMP Cluster.

Many universities and research laboratories have developed low cost clus-

ters, built from Commodity-Off-The-Shelf (COTS) components and running mostly

free software. Research has shown that these types of systems are well-equipped to

handle many problems requiring parallel processing. The primary components of

clusters are hardware, networking, and system software. An important system soft-

ware consideration for clusters is the choice of the message passing library.

MPI (Message Passing Interface) has arguably become the most widely used

message passing library on clusters and other parallel architectures, due in part to its

existence as a standard. As a standard, MPI is open for anyone to implement, as

long as the rules of the standard are followed. For this reason, a number of propri-

etary and freely available implementations have been developed.

Of the freely available implementations, two have become increasingly pop-

ular: LAM (Local Area Multicomputer) and MPICH (MPI Chameleon). This thesis

compares the performance of LAM and MPICH in an effort to provide performance

data and analysis of the current releases of each to the cluster computing commu-

nity. Specifically, the accomplishments of this thesis are: comparative testing of the

High Performance Linpack benchmark (HPL); comparative testing of su3_rmd, an

MPI application used in physics research; and a series of bandwidth comparisons

involving eight MPI point-to-point communication constructs. All research was

performed on a partition of the Wyeast SMP Cluster in the High Performance Com-

puting Laboratory at Portland State University.

We generate a vast amount of data, and show that LAM and MPICH perform

similarly on many experiments, with LAM outperforming MPICH in the bandwidth

tests and on a large problem size for su3_rmd. These findings, along with the find-

ings of other research comparing the two libraries, suggest that LAM performs bet-

ter than MPICH in the cluster environment. This conclusion may seem surprising,

as MPICH has received more attention than LAM from MPI researchers. However,

the two architectures are very different. LAM was originally designed for the clus-

ter and networked workstation environments, while MPICH was designed to be por-

table across many different types of parallel architectures.

i

ACKNOWLEDGEMENTS

I gratefully acknowledge and thank my advisor, Dr. Karen Karavanic, for her help

and guidance, and for allowing me to explore parallel programming on the Wyeast

cluster.

This work was in part based on the MILC collaboration’s public lattice gauge theory

code. See http://media4.physics.indiana.edu/~sg/milc.htlm.

ii

TABLE OF CONTENTS

List of Tables .v

List of Figures . vi

1 Introduction .1

2 Background .8

 2.1 What is a Cluster? . 8

 2.2 Beowulf Clusters .10

 2.3 Other Types of Parallel Systems .12

 2.3.1 MPPs .12

 2.3.2 SMPs .13

 2.4 Message Passing .14

 2.5 MPI .19

 2.5.1 MPICH .23

 2.5.2 LAM .25

3 Testing Environment and Software Installation .28

 3.1 Wyeast Architecture .28

 3.2 Node Configuration .31

 3.3 Operating System and Compilers . 32

 3.4 LAM, MPICH, and MPE .32

4 Experiments and Performance Results. 36

 4.1 Linpack .37

iii

 4.1.1 Description of Experiments .38

 4.1.2 Results and Analysis .39

 4.2 su3_rmd .48

 4.2.1 Description of Experiments .48

 4.2.2 Results and Analysis .50

 4.3 Bandwidth Comparisons .60

 4.3.1 Description of Experiments .64

 4.3.2 Results and Analysis .65

 4.4 Summary .72

5 Related Work .74

 5.1 LAM-6.5.1 and MPICH-1.2.1. 75

 5.2 LAM-6.3-b1 and MPICH-1.0.9 .76

 5.3 LAM-6.3 and MPICH-1.1.2 . 78

 5.4 LAM-6.0 and MPICH-1.0.12 .79

 5.5 Summary .82

6 Conclusions and Future Work .. .84

7 References . .87

Appendix A: Sample HPL.dat Input File .90

Appendix B: Linpack Results for Fixed Problem Sizes91

Appendix C: Linpack Results for Fixed Grid Sizes .95

Appendix D: Standard Deviation for Linpack Repeated Runs100

iv

Appendix E: Standard Deviation for su3_rmd Repeated Runs102

Appendix F: Bandwidth Comparison Graphs .103

Appendix G: Bandwidth Raw Data .115

Appendix H: Bandwidth Graphs - Modified Non-Blocking Receives.127

Appendix I: Bandwidth Raw Data for Modified Non-Blocking Receives . .133

v

LIST OF TABLES

1 Wyeast Hardware Specification .30

2 Wyeast Network Specification. .30

3 Wyeast Software Specification .30

4 Linpack Data .41

5 Linpack Data, continued .42

6 Description of su3_rmd Experiments .49

7 Results of su3_rmd in Seconds .51

8 su3_rmd CPU Time and Communication/IO Time .52

9 Process Startup Time Results (seconds). .54

10 Point-to-Point MPI Bandwidth Tests .61

vi

LIST OF FIGURES

1 Point-to-Point Message Send and Receive .15

2 A Simple MPI Program, “Hello, World” .21

3 Abstract View of the Wyeast Cluster .29

4 Linpack Results for Grid Size = 4x6. .43

5 Linpack Results for N = 15k .43

6 Linpack Results for N = 2k .45

7 Linpack Results for N = 4k .45

8 Speedup for N = 6k .46

9 su3_rmd Results for Experiment 1. .55

10 su3_rmd Results for Experiment 2. .55

11 su3_rmd Results for Experiment 3. .56

12 su3_rmd Results for Experiment 4. .56

13 su3_rmd Results for Experiment 5. .57

14 Histogram of MPI Constructs in su3_rmd .59

15 Bandwidth Results for Send/Recv - Short Messages. .67

16 Bandwidth Results for Send/Recv - Medium Messages67

17 Bandwidth Results for Send/Recv - Long Messages. .68

18 Bandwidth Results for Ssend/Irecv - Short Messages .68

19 Bandwidth Results for Ssend/Irecv - Medium Messages 69

20 Bandwidth Results for Ssend/Irecv - Long Messages .69

vii

1

1 Introduction

This thesis compares the performance of two freely available implementations of

the Message Passing Interface (MPI) on a cluster of dual-CPU SMPs built from

readily available, low cost, Commodity-Off-The-Shelf (COTS) components and

running mostly free software. These types of clusters have received a lot of atten-

tion during the last decade, serving as cost-effective alternatives to Massively Paral-

lel Processors (MPPs) and Symmetric Multiprocessors (SMPs). They are

distributed memory systems typically employing some sort of message passing to

transfer data among the processes running on different processors. Laboratories,

universities, and even some high schools now have access to parallel computing

power once reserved for the private sector and a small number of affluent institu-

tions.

The main components of clusters are hardware, system software, and networking.

Hardware based decisions primarily involve aspects of individual node configura-

tion. Networking considerations include the speed and topology of the network that

will be used to connect the nodes of the cluster. System software includes, but is not

limited to, the operating system and software necessary for achieving communica-

tion among the cluster nodes. This research focuses on system software perfor-

mance, specifically the MPI message passing library layer. It compares the

performance of LAM and MPICH on: HPL, the High Performance Linpack bench-

2

mark; su3_rmd, an application based on four-dimensional SU(3) lattice gauge the-

ory; and a series of point-to-point bandwidth comparisons.

The demand for parallel processing is high. Application areas with computational

needs that require parallel processing include biomedical research, fluid dynamics,

global climate modeling, molecular modeling, nuclear test simulations, astronomic

simulations, and many others. For example, one common manner by which to

model the atmosphere is to divide it into a number of cells. Numerical computations

can be performed within each cell to analyze and predict weather patterns and atmo-

spheric changes. However, such computations are intractable with current serial

computing capabilities. Wilkinson and Allen in their 1999 text [26], for example,

note that an application forecasting the weather over the next 7 days would require

over 100 days to achieve results on a single computer operating at a rate of 100

MFLOPS (100 Million Floating Point Operations per Second). Even today’s uni-

processors capable of operating at over 500 MFLOPS fall well short of the 1.7

TFLOPS required to perform the forecasting operation in 10 minutes. Further,

assuming we could imagine a uniprocessor operating in the TeraFlop range, it is

nearly impossible to imagine memory access time not becoming a bottleneck.

Parallel applications have been and continue to be written for problems such as the

one described above, and machines exist on which to run them. Highly specialized

3

massively parallel processors (MPPs), and symmetric multiprocessors (SMPs), have

historically been used to run parallel applications, and are being developed and used

today. These machines are extremely powerful computers consisting of multiple

processors existing in a single box. MPPs are characterized by hundreds and even

thousands of processors each having its own memory and running its own operating

system. Some sort of message passing mechanism is required to transfer data

among the processors. SMPs, on the other hand, are tightly coupled machines typi-

cally with fewer processors than MPPs, all of which share the same memory and run

the same operating system. The advantage of using MPPs and SMPs is that custom

systems can be designed to run parallel applications in an optimal manner according

to the application domain. The disadvantages include extremely high cost (espe-

cially MPPs), poor scalability (especially SMPs), and difficult update and mainte-

nance characteristics.

In the mid 1990’s an effort began to see whether systems could be built from PCs

that would rectify the above problems. Thomas Sterling and Donald Becker at The

Center of Excellence in Space Data and Information Sciences (CESDIS) developed

a system they called “Beowulf” in 1994 [21], a dedicated computing cluster consist-

ing of sixteen nodes constructed from off-the-shelf PC’s (DX4 processors) con-

nected by a 10 Mbps Ethernet. Each PC, or node, had its own memory; the system

4

was truly distributed. As efforts in cluster research increased, the results showed

that these types of systems were well-suited for many parallel applications.

Today, many universities and research laboratories are building and using clusters,

and these systems have made a significant appearance (80 entries) on the most

recent list of the world’s 500 fastest computers [31]. PC clusters that are obtainable

by universities and research centers are often characterized by: inexpensive, off-the-

shelf hardware; some variant of the Unix/Linux operating system; Fast Ethernet,

Gigabit Ethernet, or Myrinet networking; and freely available, open source soft-

ware. The term Beowulf Cluster is often used to refer to these types of systems.

Other names include Pile-of-PCs (PoPCs), and Commodity-Off-The-Shelf (COTS)

clusters.

One of the latest trends in low cost, commodity cluster construction has been the

development of clusters of SMPs. For example, Portland State University maintains

an SMP cluster called Wyeast which is built from 48 dual-CPU Pentium III (866

Mhz) machines connected by a Fast Ethernet (100 Mbps). Most of these systems

use a high level message passing facility for transferring data among the processes

executing the parallel program. The underlying implementation of the message

passing facility uses shared memory for intra-node data transfer, and uses a net-

working protocol such as TCP/IP or VIA for inter-node data transfer.

5

A very important software consideration in cluster design is the choice of the mes-

sage passing facility. One attractive option is the use of message passing libraries.

At one time, PVM (Parallel Virtual Machine) was the primary library used in dis-

tributed systems. It was the first truly portable message passing library, with a large

number of users. Over the last decade, MPI (Message Passing Interface) has argu-

ably become more widely used than PVM, due in part to its existence as a standard.

As a standard, MPI is open for anyone to implement, as long as the rules of the spec-

ification (function bindings and behavior, and specific constants) are followed. As a

result, several proprietary and open source implementations of MPI exist. Since

low cost is one of the primary goals of cluster construction, many universities and

research laboratories have opted for the freely available open source implementa-

tions. Of these, two have become increasingly popular: MPICH (MPI Chameleon)

and LAM (Local Area Multicomputer).

MPICH has tracked the MPI standard from the beginning; has been the focus of

many freely available MPI profiling tools; has been installed and tested on virtually

every parallel system available (including clusters); and is the foundation for a large

number of proprietary MPI implementations. LAM has gained a following among

cluster users due to its usability, fast static process creation, and support for dynamic

process creation. Preliminary research of this thesis found that many current and

potential parallel programmers and cluster operators are interested in the perfor-

6

mance of LAM and MPICH on clusters, especially the performance of the most cur-

rent versions.

This thesis aims to compare the performance of LAM and MPICH in an effort to

provide performance data and analysis of the current releases of each to the cluster

computing community. Although other research has been performed relating to per-

formance comparisons of LAM and MPICH (see chapter 5), we feel that this

research is unique because it compares the most recent releases of each library

(LAM-6.5.6 and MPICH-1.2.4) of any studies we have found, it was conducted on

an SMP cluster, and it provides a vast amount of data gathered from three major cat-

egories of experiments. Specifically, the accomplishments of this thesis are:

• Installation and comparative testing of the High Performance Linpack (HPL)

benchmark;

• Installation and comparative analysis of a parallel physics application involving

four-dimensional SU(3) lattice gauge theory; and,

• Bandwidth comparisons on eight point-to-point MPI communication primitives.

Chapter 2 of this thesis provides background information on cluster computing,

message passing, MPI, LAM, and MPICH. The testing environment and installa-

tion of software used in this research is discussed in chapter 3. Experiments and

7

results are provided in chapter 4. Chapter 5 discusses other work related to MPI per-

formance on clusters, and chapter 6 closes with future work and conclusions.

8

2 Background

In an effort to lay a framework for the later chapters, this chapter provides a brief

background on clusters (section 2.1), Beowulf type clusters (section 2.2), two other

parallel architectures (section 2.3), message passing (section 2.4), and MPI (section

2.5), including the LAM and MPICH implementations. Throughout this discussion,

the words process and processor will be used. More than one process can run on a

single processor, but the processes will not execute concurrently - rather they will be

interleaved in a time-scheduled fashion by the operating system. If there is one pro-

cess running on each processor, however, the processes can execute concurrently. A

node can house one or more processors. Regardless of whether the systems to be

mentioned have either one or more than one processor per node, the context of this

discussion is that there is a one-to-one correspondence between processes and pro-

cessors: there is one process running on each processor, and the processes can run

concurrently.

2.1 What is a Cluster?

A cluster can be defined in very abstract terms to be a distributed computing system

that consists of a collection of whole computers connected by a network that is used

as a single computing resource [16]. Each computer, or node, contains at the very

least a motherboard, one or more processors, main memory, cache memory, one or

9

more busses, one or more network interface cards (NICs), and optionally other com-

ponents. Not all clusters have permanent storage (hard disk) on each node, although

many do. Clusters are parallel systems because they are capable of executing more

than one instructional flow of control at any given time (due to fact that there exists

more than one processor in the system) if they are programmed to do so. For exam-

ple, process A can be running on processor A at the same time as process B running

on processor B. This is in contrast to, say, a multithreaded application or a Unix

fork-exec program running on a single-CPU computer, where the operating system

interleaves the ordering of the different threads of execution (lightweight processes),

or heavyweight processes in the case of the fork-exec model, so that no two threads

or processes are running at the same time.

Clusters are also distributed systems because each process (or group of processes, in

the case of clusters of SMPs) runs on a processor (or group of processors) on a sin-

gle node, and has direct access only to its local memory. Because there are multiple

nodes in a cluster system, some sort of communication is required among processes

running on different nodes in order for all processes to have access to all of the

memory in the system. Therefore, another possible definition of clusters is that they

are loosely coupled distributed systems that are primarily used for parallel process-

ing. Not all distributed systems are used primarily for parallel processing. A spe-

cialized distributed system may be set up for a distributed database, for example,

10

where one of the primary reasons for the distributed environment is high availability

(data can be replicated across the different computers).

There is not one single type of cluster. Individual workstations that are normally

used in a serial manner by computer users have been networked at campuses and at

companies to provide parallel computing capabilities during off-peak workstation

use times. These are often referred to as “cycle harvesting” and “workstation farm”

systems. Clusters have also been developed for commercial sale by companies such

as DEC, Tandem, and IBM. In the mid 1990’s, research began to determine

whether clusters could be built from personal computers constructed from readily

available, Commodity-Off-The-Shelf (COTS) components. The research proved to

be successful, and produced a type of cluster commonly referred to as a Beowulf.

2.2 Beowulf Clusters

The first Beowulf [21] was constructed in 1994 by Thomas Sterling and Donald

Becker at The Center of Excellence in Space Data and Information Sciences (CES-

DIS). It consisted of 16 PCs with DX4 processors, connected by a 10 Mbps Ether-

net. Another Ethernet was later added to allow for channel bonding - a

configuration in which the data is striped across two networks. Due to the success

of this initial system, a lot of research has been conducted in the Beowulf realm over

11

the past eight years. Combined with better network technology and increasing pro-

cessor speeds (with lower costs for both), this research has produced systems capa-

ble of executing large parallel applications at a much less expensive price than

MPPs, and with better scaling capabilities than SMPs.

Today, Beowulf clusters are still built from PCs that are connected by a network.

Individual nodes are constructed from inexpensive, COTS hardware components,

and each node generally runs some variant of the Unix/Linux operating system, and

other free or low cost system software. Examples of networks for Beowulfs include

Fast Ethernet, Gigabit Ethernet, Myrinet, and FDDI. If a central switch is used, each

PC, or node, has a direct connection to every other node in the cluster (with the

switch acting as an intermediary). Commonly used processors for Beowulfs include

those from the Intel Pentium family, various AMD processors, and the DEC Alpha.

According to Sterling et al. [22], a Beowulf node typically has between one and four

processors. The Wyeast cluster at Portland State University, for example, is a

Beowulf type SMP cluster constructed from 48 nodes, each of which has 2 proces-

sors.

12

2.3 Other Types of Parallel Systems

Clusters are not the only types of systems used for parallel programming. Two other

categories of parallel platforms, SMPs and MPPs, are often mentioned in the paral-

lel programming literature, and are actively being developed and used today.

2.3.1 MPPs

Highly specialized MPPs (Massively Parallel Processors) have existed since the

1960’s. Examples include the Intel Paragon and the Thinking Machines CM5.

They consist of hundreds, even thousands, of processors in a single box, each having

its own memory and running its own operating system. Message passing can be

used for communication among the processes. MPPs can be fine-tuned for a spe-

cific application domain, or even for a specific application, and can therefore exe-

cute the application very quickly. A primary disadvantage of MPPs is that they are

very expensive (can cost more than $10 million dollars [32]), and therefore are gen-

erally unavailable to many universities, research laboratories, and certainly most

curious individuals. Differences between MPPs and clusters include: price (clusters

are less expensive); system layout (the workings of an MPP exist in a single box,

whereas clusters are composed of multiple boxes, or nodes, connected by a net-

work); and power (a powerful MPP can be constructed for a specific application,

13

and that application would run faster than it would on a cluster; another way to put it

is that the fastest MPPs are faster than the fastest clusters).

2.3.2 SMPs

SMPs (Symmetric Multiprocessors) have been around since the early 1970’s. They

are systems composed of multiple processors existing in a single box, all of which

share the same memory and run the same operating system. Therefore, memory

access is local to each processor. Examples of SMPs include the Intel Pentium Pro

Quad and the Sun Enterprise. If message passing is used on an SMP, it is generally

implemented by platform-specific, low level shared memory constructs. SMPs are

typically less expensive than MPPs and generally do not scale to high numbers of

processors. This means that as more processors are added to the system, the conten-

tion for memory on the bus becomes higher (due to the shared memory architec-

ture). This leads to slower memory access times, and therefore slower overall

execution time. The point at which adding more processors to an SMP becomes dis-

advantageous varies from machine to machine, though some define it to be in the

range of 16 to 24 processors. This scalability problem has somewhat been alleviated

by the NUMA (Non Uniform Memory Access) system - an SMP subtype first devel-

oped in 1997 in which the memory area is divided into different sections, resulting

in lower contention for memory among the processors. Memory access is non-uni-

14

form, meaning that some memory access times take longer than others. However,

the low average memory access time theoretically allows these systems to scale far

higher than traditional SMPs.

An interesting convergence of clusters and SMPs has been the recent proliferation

of affordable “hybrid systems”, or clusters of SMPs built from inexpensive compo-

nents and running mostly free software. The Wyeast cluster at PSU, as mentioned

earlier, is an example of such a system. It is a Beowulf-type cluster because it was

designed from Beowulf principles, and can also be referred to as an SMP cluster

because each node contains two processors. These systems are often programmed

using a message passing programming model, implemented with message passing

libraries. Message passing between processors on the same nodes is implemented

by the library with low-level shared memory constructs, while message passing

between processors on different nodes is implemented in terms of some sort of net-

working protocol (TCP/IP, for example).

2.4 Message Passing

As a process runs, it often needs to access data stored in main memory. In a shared

memory system such as an SMP, each process has access to all of the memory in the

system. However, because a cluster is a distributed system, each processor in a clus-

15

ter has direct access only to its local memory. In order for process 1 on node A to

have access to the memory of process 2 on Node B, some sort of communication is

required. One way to achieve this is with message passing. In the simplest sense,

message passing refers to one running process sending information to another run-

ning process, which receives the information (see figure 1).

Figure 1: Point-to-Point Message Send and Receive

This figure depicts an example of point-to-point communication with message passing. Process 1
running on node A sends a message to process 2 running on node B, which receives the message.
The message is not lost to process 1; it still has the data. Now process 2 has it as well. Process 1 can
wait until process 2 receives the data before continuing, or it can return immediately from the send
and execute its next instruction. The former is known as a blocking send, while the latter is a non-
blocking send.

The message includes actual data, such as a large vector or a small integer, and also

contains information commonly referred to as the envelope, which includes the

source and destination addresses, the message identification tag, the size in bytes of

the data being sent, and possibly other information.

 (MESSAGE)

 NODE A NODE B

PROCESS 1 PROCESS 2

16

The communication shown in figure 1 is an example of point-to-point communica-

tion. The message travels directly from one process to another process. After pro-

cess 1 posts the send operation, it can either wait until process 2 posts its receive

before continuing with its next instruction, or it can return immediately from the

send and go on to the next instruction. These two scenarios are referred to as a

blocking send, and a non-blocking send, respectively. The same situation holds true

for process 2 as well; it can post a blocking receive or a non-blocking receive.

Blocking guarantees that the send/receive will not complete until either the corre-

sponding receive/send has been posted, or the message has been buffered by the sys-

tem. This is advantageous because the programmer is assured that the memory

allocated for the function call arguments is safe to use after the operation completes.

Blocking operations have two primary drawbacks, however. One is that they can

lead to deadlock if the program is not written correctly and relies on the existence of

system buffering for large message sizes. The other problem with blocking opera-

tions relates to performance. If process 1 posts a blocking send and has work it

could be doing that does not depend on the arguments to the send call (call it “other

work”), time is wasted because it is blocking - waiting for process 2 to post the

receive. A non-blocking send would fix this problem. Process 1 returns immedi-

ately from the send, performs its other work, and then calls a test or wait operation

to see if the receive has begun. If it has, process 1 can now modify the memory used

17

for the send arguments. The key is that process 1 was able to perform its other work

without having to wait for process 2 to receive the message.

Point-to-point communication is not the only type of communication possible in a

message passing environment. Synchronization routines, called barriers, exist to

cause all of the processes to start or stop at the same time. Also, collective commu-

nication is possible, in which all processes (or possibly all processes within a certain

group) communicate, and data is transmitted. Some collective operations also act

implicitly as barriers. Examples of collective communication include broadcast

(one process broadcasts data to all other processes), all-to-all (each process sends

data to every other process), and aggregate operations (all processes send data to

one specific process, which adds/averages/etc. the data).

Message passing in clusters is usually available in the form of message passing

libraries. These libraries provide a collection of functions for programmers to call

in languages such as C, C++, and Fortran. For many years, PVM (Parallel Virtual

Machine) [7] was the primary message passing library used in distributed comput-

ing systems. PVM version 1 was developed at Oak Ridge National Laboratory in

1989 for use by researchers in the lab. The first official release was PVM version 2

in 1991. A complete rewrite occurred in 1992, producing PVM version 3, released

in 1993. The primary goal of PVM was to develop a portable message passing envi-

18

ronment for heterogeneous distributed systems, providing a “parallel virtual

machine” which gives the user the illusion of programming one single computer.

One of the most important features of PVM is dynamic process creation, which

refers to the ability for the program to spawn processes at run time.

PVM is still being used today. However, PVM is not an open standard in the sense

that there is really only “one PVM”. As a result, a programmer using PVM is lim-

ited. Realizing the need for a message passing API that would be accepted as an

open standard, researchers in the early 1990’s developed MPI (Message Passing

Interface). MPI became very popular as a message passing standard among parallel

programmers, and many freely available implementations have been developed.

The popularity of MPI is evident by the attention it receives in many of the current

research papers on clusters, message passing, and parallel profiling (see [1, 6, 18,

23, 24, 25] for example); and by the increasing number of proprietary and freely

available implementations. In the text, High Performance Cluster Computing [2], R.

Buyya asserts that MPI is the message passing library most widely used today at

universities and research laboratories.

19

2.5 MPI

MPI stands for Message Passing Interface. It is a message passing standard that

was developed in the early 1990’s by the MPI Forum [20] - a group of researchers

and professionals from more than forty organizations mainly from the United States

and Europe who began meeting in 1992 and continues to meet today. The primary

goal of the MPI Forum was to provide a standard, so that different research groups

and companies could develop different implementations of the library, as long as

they adhered to the rules of the standard (function bindings, specific constants, and

function definitions). As a consequence, many different implementations of MPI

exist today, but they all have the same interface. Therefore, MPI programs are por-

table among the various implementations. Aside from the possibility of a specific

implementation not supporting a specific function or set of functions (which does

occur - for example, LAM-6.5.6 does not support cancelling of sends in MPI-1.1),

an MPI program should be able to be compiled with any implementation; the only

difference at runtime should be performance.

MPI, like PVM, is truly portable across many platforms. One of the problems with

early message passing environments was that they were platform-dependent. A pro-

gram that ran on one parallel system would have to be re-written in order to run on

another parallel system. This is not the case with MPI. An MPI program compiled

20

on a cluster running Linux, for example, can be re-compiled on a workstation net-

work running Solaris Unix without being rewritten.

MPI is not a programming language. It is implemented as a collection of library

routines with bindings for C, C++, and Fortran. Although it contains many func-

tions, one commonly-heard phrase is “minimal MPI”, meaning that a programmer

familiar with any of these languages can write meaningful programs with only six

MPI functions. An example of a “Hello, World” program (not meaningful, but

demonstrative) written in C using MPI calls is shown in figure 2 (next page). In this

example, each process knows which part of the code to execute by following the

branching statement.

Both MPI implementations discussed in this thesis provide environments in which

to compile and run the programs. For compilation, wrappers are provided called

mpicc (for C programs), and mpif77 and mpif90 (for Fortran programs), which

essentially compile the program with the system’s C compiler or Fortran compiler

and link in the appropriate MPI libraries. While convenient, these wrappers are not

necessary, as one can manually link in the MPI libraries at the command line. To

run the program, a script called mpirun is provided. This script enables the creation

of the MPI processes on the various processors, and loads the executable program

onto each node.

21

#include <stdio.h>
#include <string.h>
#include “mpi.h”
#define MAX_MSG 100

main(int argc, char* argv[])
{
 int my_rank; /* rank of process */
 int num_procs; /* number of processes */
 int source; /* rank of sender */
 int dest; /* rank of receiver */
 int tag = 0; /* tag for messages */
 int size; /* size of message */
 char message [MAX_MSG]; /* storage for message */
 MPI_Status status; /* return status for re ceive */

 MPI_Init(&argc, &argv); /* st art up MPI */
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); /* lo cal rank */
 MPI_Comm_size(MPI_COMM_WORLD, &num_procs); /* to tal processes */

 /* All processes except process 0 send a hello m essage to process
 ** 0, which displays the messages.
 */
 if (my_rank != 0) {
 sprintf(message, “Hello World from process %d !”, my_rank);
 size = strlen(message) + 1;
 dest = 0;
 MPI_Send(message, size, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
 }
 else {
 for (source = 1; source < num_procs; source++) {
 MPI_Recv(message, MAX_MSG, MPI_CHAR, sourc e, tag,
 MPI_COMM_WORLD);
 printf(“%s\n”, message);
 }
 }
 MPI_Finalize();
 exit(0);
}

Figure 2: A Simple MPI Program, “Hello, World”

Shown is a simple “Hello, World” program written in C with calls to the MPI library. Each process
knows which part of the code to execute by following the branching statement. In this program,
each process except process 0 creates a “hello” message and sends it to process 0. Process 0 receives
and displays each message. If this program was named “my_hello”, to run this program with 4 pro-
cesses, one could execute at the command line:
mpirun -np 4 my_hello.

22

MPI has been developed in stages, with each version of the standard made available

in the MPI Document. This document is available at the MPI Forum web site [34].

The MPI-1.0 Document was released on May 5, 1994. This was followed by MPI-

1.1 in 1995. In 1997, the MPI-1.2 and MPI-2 documents were released (the MPI-1.2

document is contained in the MPI-2 document). The current standard supported by

most implementations is MPI-1.2. MPI-2 specifies several changes to the standard,

one of the most notable being dynamic process creation and management. Prior to

MPI-2, all MPI processes were specified before the program was run. With MPI-2,

processes can create new processes at run time. Many MPI implementations cur-

rently support part of the MPI-2 standard. LAM, for example, provides support for

dynamic process creation and management.

This research compares two freely available, open source implementations of MPI:

MPICH and LAM. MPICH has tracked the MPI standard from the beginning; has

been the focus of many freely available MPI profiling tools; has been ported to vir-

tually every parallel system available (including clusters); and is the foundation for

a large number of proprietary MPI implementations. LAM has not received as

much attention as MPICH from vendors and tool designers, and has been ported pri-

marily to homogeneous and heterogeneous clusters. However, it has gained a fol-

lowing among cluster users due to its usability, fast static process creation, and

support for dynamic process creation.

23

2.5.1 MPICH

MPICH (MPI Chameleon) [9, 10] was first developed at Argonne National Labora-

tory in 1993 in an effort to provide an implementation that could be quickly ported

to different systems and that would closely track the MPI standard definition as it

evolved. It has been ported to many different systems, including: clusters running

different Unix/Linux variants; Windows NT and Windows 2000 networks; MPPs

such as Thinking Machines CM5, IBM SP, and Intel Paragon, and SMPs. MPICH

is still being developed at Argonne today. The current release is MPICH-1.2.4. It

supports all of MPI-1.2 and part of MPI-2, but does not support dynamic process

creation. The MPICH developers are currently working on a release of MPICH that

supports all of MPI-2.

MPI process creation in MPICH is achieved by remote shell invocation upon execu-

tion of the mpirun script. There is no virtual machine to boot up as with PVM.

Message passing between processes on different nodes is achieved with TCP/IP, and

message passing between processes on the same node is implemented by platform-

specific shared memory constructs, using semaphores for process synchronization.

MPICH is built in a layered approach. All MPI functions and macros [layer 1] are

implemented by functions and macros defined in the Abstract Device Interface

(ADI) [layer 2]. Some of the ADI functions are implemented in terms of the target

24

machine, and others are implemented by another, lower layer, the Channel Interface

(CI) [layer 3]. According to the original MPICH implementation document [10],

the reasoning for the layered approach was to provide an implementation that could

be ported quickly to different platforms, using as much shared code as possible,

while maintaining a level of high performance.

The ADI is not specific to MPI. The documentation states that any higher level

message passing library can be built on top of it. Different implementations of the

ADI exist, allowing for portability across a wide variety of parallel platforms. Much

of the code in the ADI is shared among the various MPICH ADI implementations.

Code that is not shared is fine-tuned for specific implementations in an effort to

achieve high performance.

The primary purpose of the Channel Interface is to define functions for low-level

data transfer among processes. Because this interface is smaller than the ADI,

MPICH can be quickly ported from system to system in a minimal manner using the

Channel Interface, and then gradually expanded to implement the full ADI. The

channel interface most commonly used for clusters is ch_p4, where p4 stands for

Portable Programs for Parallel Processors, a small, highly portable parallel program-

ming library.

25

2.5.2 LAM

LAM (Local Area Multicomputer) [30] was originally developed at the Ohio Super-

computing Center in 1989. The project was later moved to The Laboratory for Sci-

entific Computing (LSC) at the University of Notre Dame. The LSC moved to

Indiana University in the fall of 2001, and that is where the work on LAM is being

done today. The current release of LAM is LAM-6.5.6. It supports all of MPI-1.2

except the cancellation of sends, and it supports part of MPI-2, including dynamic

process creation and management.

The primary purpose of LAM was to provide an MPI library that would run effi-

ciently on heterogeneous workstation networks and clusters. It has been tested on

clusters and networked workstations running various Unix and Unix-like operating

systems, including Solaris, OpenBSD, Linux, Mac OS X, IRIX, HP-UX, and AIX.

As dedicated clusters have gained popularity, LAM has also gained popularity.

Reasons for its popularity include the fact that it was originally developed for the

cluster architecture, and the increasing amount of evidence that it has performed

well on clusters (see [3, 13, 14, 27], for example).

LAM runs on each node as a user-level daemon. The nodes are listed in a boot file,

and the user issues the lamboot command to get the daemons started. In this way it

is similar to PVM. Because the daemons are running when the MPI program is

26

started, the MPI processes are created quickly. This is in contrast with MPICH,

where no user-level daemons are running on the nodes before the program starts. As

stated earlier, MPI process creation in MPICH is achieved with the use of a system-

level daemon or by remote shell invocation. As a result, some research has indi-

cated that process startup time is generally slower in MPICH [3].

LAM is implemented in two layers [29] which meet at an interface called the RPI

(Request Progression Interface). The upper layer is the portable MPI API, and the

lower layer consists of bindings and functions for two separate running modes,

known as lamd mode and c2c mode. A user can specify which mode to use as an

argument to the mpirun command (c2c is the default). Both implementations of the

lower layer employ user-level LAM daemon processes for MPI process creation.

However, the daemons may or may not have anything to do with the messages. The

difference between lamd mode and c2c mode is that in lamd mode, the daemons also

act as message intermediaries (an MPI process on node A sends a message to an

MPI daemon on node A; the daemon on node A then sends the message to a daemon

on node B, which finally sends the message to an MPI process on node B). In c2c

mode, no such daemon activity occurs. LAM daemons are still used for MPI pro-

cess creation, but they do not interfere with messages: a message from process 1 on

node A will be sent directly to process 2 on node B.

27

A natural question to ask is: why have the daemons interfere with messages at all?

The answer is that these daemons keep track of recoverable information about the

messages that can be used for program monitoring and debugging. The trade-off is

slower performance. Therefore, programs run in lamd mode will generally be

slower than those run in c2c mode, but they will be able to be debugged and moni-

tored directly with tools provided in the LAM environment, whereas the c2c pro-

grams will not. Interestingly, lamd mode uses UDP for message transfer, whereas

c2c mode uses TCP. In fact, for this reason, some research [3] has found lamd pro-

grams to run faster than c2c programs in previous releases of LAM. It would be

interesting to perform a full-blown study comparing the performance of lamd mode

and c2c mode.

Preliminary testing using Linpack comparing the two modes in the research of this

thesis showed that c2c mode was faster than lamd mode; therefore c2c mode for

LAM was used in the comparisons with MPICH. One theory as to why the c2c pro-

grams ran faster than the lamd programs is that the absence of the daemon interme-

diaries outweighs the use of UDP in the current version of LAM.

28

3 Testing Environment and Software Installation

This chapter outlines the test environment and software that was installed to conduct

the research of this thesis. All tests were performed on a dedicated group of nodes

on the Wyeast Cluster located in the High Performance Computing Laboratory at

Portland State University.

3.1 Wyeast Architecture

Wyeast consists of a head node and 48 dual-CPU SMP nodes (see figure 3, next

page). Two 100 Mbps Fast Ethernets are installed on the cluster, using two central

switches, and two Network Interface Cards (NICs) per compute node. The head

node has three Gigabit NICs and connects to the outside world and to each of the

two switches via Gigabit Ethernet. Each compute node has two 100 Mbps Fast

Ethernet NICs which are used to connect to the switches. There is no common file

system within the cluster.

It is not necessary to have two networks within the cluster. The benefits include

availability and channel bonding potential. With channel bonding, the data is

striped across two networks, leading to increased bandwidth. In the current config-

uration of Wyeast, the NICs on the designated MPI nodes are not set up for channel

bonding. Therefore, only one of the Fast Ethernet networks is being used within the

29

cluster for all of the MPI test runs. Channel bonding research is currently being

conducted, and MPI performance with and without channel bonding remains an

open research area within the cluster. Tables 1, 2, and 3 (next page) present specifi-

cations on Wyeast’s hardware, network, and software, respectively.

Figure 3: Abstract View of the Wyeast Cluster

This figure provides a high-level view of the Wyeast Cluster at Portland State University. Wyeast is
an SMP cluster consisting of a head node and forty-eight compute nodes. The head node contains
two 1Ghz processors and the compute nodes each contain two 866 Mhz Processors. The head node
has a Gigabit Ethernet connection to the outside world and to each of the two switches. The compute
nodes each have a 100Mbps Fast Ethernet connection to each of the two switches. Along with the
head node, twelve compute nodes were used in this research.

 GIGABIT
 ETHERNET

 100 Mbps
 FAST ETHERNET

COMPUTE

COMPUTE

COMPUTE

CENTRAL
SWITCH

(x2)

TO THE INTERNET

 HEAD NODE

 NODE

 NODE

 NODE

30

Table 1: Wyeast Hardware Specification

Number of Nodes 48

Processors Per Node 2

Processor Type Intel Pentium III

Processor Speed 866 Mhz

Motherboard ECS d6vaa

Main memory 512 MB RAM per node

Secondary Storage 20 GB per node

Table 2: Wyeast Network Specification

Type Fast Ethernet (100 mbps)

Topology Double Switched Ethernet

Network Switch (x2) Cicso 3548 with Gigabit Uplinks

Compute Node NIC (x2) 3Com 3c905c Fast Ethernet

Head Node NIC (x3) SysKonnect Gigabit

Table 3: Wyeast Software Specification

Operating System RedHat 7.2 (Linux)

Kernel Version Linux 2.4.7

C Compiler gcc 3.0

Fortran Compiler g77 2.96

LAM 6.5.6

MPICH 1.2.4

31

3.2 Node Configuration

Along with the head node, twelve compute nodes were available for the MPI exper-

iments, for a total of 26 processors. We developed scripts on the head node to facil-

itate many tasks, including copying programs and input files over to the compute

nodes, and performing system-wide resource recovery. Because these scripts were

needed frequently, we decided to use the head node as the launch node for mpirun.

Due to the absence of a common file system, the MPICH tests required the use of a

proc group file for the mpirun command to work properly. This file is created auto-

matically by mpirun under most circumstances, using information stored in an

MPICH “machines file”, and information entered on the mpirun command line.

However, for several situations (heterogeneous systems, absence of a common file

system, and others) MPICH requires the user to specifically create this file, and then

direct mpirun to read it by using the -p4pg filename option to mpirun. Each time a

new program is run or a different node configuration is used, this file must be

changed. In addition, the local node (the node from which the mpirun command is

launched) must be included in the proc group file. Therefore, with the local node

being the head node in our case, the head node was required to be one of the com-

pute nodes for the MPICH runs. For fairness in testing, it was decided to use the

head node as a compute node for LAM as well, although LAM does not require this

with our configuration.

32

3.3 Operating System and Compilers

Red Hat Linux 7.2 (Linux kernel 2.4.7) is the operating system for all nodes used in

this research. Red Hat 7.0 was originally installed on all of the nodes in the cluster.

We decided to stay with Red Hat, and update the MPI nodes to the most current

release available at the time of the MPI tests. The C compiler used for compiling

the libraries and compiling MPI programs is gcc-3.0. The Fortran compiler is g77-

2.9.6. These compiler choices were made because they were already present on the

cluster before the MPI research began; they successfully compiled both libraries;

and both libraries subsequently compiled and successfully ran large MPI test pro-

grams. Time limitations prevented an investigation and possible subsequent instal-

lation of alternative compilers to determine which compilers are optimal for MPI on

Wyeast.

3.4 LAM, MPICH, and MPE

LAM-6.5.6 was downloaded from: http://www.lam-mpi.org/download. Installation

consisted of running a supplied configure script on the head node to generate a

Makefile, executing the Makefile, and then copying the binaries over to the compute

nodes. A similar approach was taken for MPICH-1.2.4, which was downloaded

from: http://www.unix.mcs.anl.gov/mpi/mpich/download.html.

33

Configure options for LAM:

./configure --prefix=/usr/local/lam-6.5.6 --with-rpi=sysv --with-rsh=”ssh -x”

Configure Options For MPICH:

./configure --prefix=/usr/local/mpich-1.2.4 --with-comm=shared -rsh=ssh

LAM is available in three different versions of the Request Progression Interface.

(Note that these are not the same as the RPI modes discussed earlier in section 2.5.2;

each of the three RPI versions can be run in both modes). We installed the sysv RPI

version of LAM, which is one of the two RPI’s suitable for SMP clusters. The other

is usysv. Both use TCP/IP for message transfer between processes on different

nodes, and shared memory for message transfer between processes on the same

node. The difference is that the sysv RPI uses SYSV semaphores for synchroniza-

tion, and usysv uses spin locks. The LAM documentation states that the sysv RPI

likely performs better than usysv for SMP clusters. We were able to compile and

install LAM using the usysv RPI, but the programs we compiled ran erroneously, so

we decided to use the sysv RPI. A third RPI, tcp, uses TCP/IP exclusively for mes-

sage transfer, and was not installed.

MPICH is available in many implementations because it has been ported to many

different systems. We chose the ch_p4 implementation, which is recommended for

34

SMP clusters. Another cluster implementation, ch_p4mpd, provides faster process

startup but is only available for uniprocessor clusters. As with LAM’s sysv imple-

mentation, the ch_p4 implementation of MPICH uses TCP/IP for inter-node mes-

sage transfer, and shared memory (using semaphores for synchronization) for intra-

node message transfer.

All LAM programs were run in c2c mode with the -O option to mpirun. In c2c

mode, MPI messages bypass the LAM daemons. The -O option specifies to LAM

that all nodes in the system are homogeneous, eliminating the need for data conver-

sion. These choices were made based on results from preliminary testing of LAM

programs on the cluster using Linpack. For MPICH programs, mpirun by default

assumes that the system consists of homogeneous nodes. Therefore, no options

were passed to mpirun aside from the -p4pg option, which was needed due to the

absence of a common file system on Wyeast.

MPE (Multi-Processing Environment) [4] is a useful library for profiling parallel

MPI programs. It was developed by Argonne for MPICH, and is included with the

MPICH download, but is intended to be used with any MPI implementation. MPE

has capabilities for producing log and trace files in various formats, and includes

several viewers for log file analysis, including Jumpshot. Jumpshot is a graphical

visualizer for the SLOG files created by using the MPE logging library. MPE is

35

installed automatically when selecting the default configure options to MPICH. In

order to use MPE with LAM, the directions provided in MPE User’s Guide [4] were

followed for configuration and linkage.

36

4 Experiments and Performance Results

This chapter presents the experiments that were run and the results obtained. Three

major categories of experiments were run: High Performance Linpack (HPL), a

standard benchmark for parallel computers used by the top 500 list; su3_rmd, a pro-

gram involving four dimensional SU(3) lattice gauge theory; and a series of band-

width comparisons testing eight MPI point-to-point communication primitives.

To avoid confusion, the following definitions of commonly used abbreviations

which will be used in the proceeding discussion and in the next chapter are pro-

vided: 1 Mbps refers to 1 Megabit per second; 1 MB/sec means 1 Megabyte per

second; 1 MFLOPS is 1 million floating point operations per second, and 1

GFLOPS is 1 billion floating point operations per second. These definitions are

given because researchers in networking often refer to bits, whereas the operating

system literature mostly refers to bytes, and also because of unclear results found in

the course of this research that stressed the importance of unit and abbreviation clar-

ification. Note that Fast Ethernet has a theoretical maximum bandwidth of 100

Mbps, and Gigabit Ethernet has a theoretical maximum bandwidth of 1000 Mbps.

37

4.1 Linpack

The first set of experiments compare LAM and MPICH using the Linpack Bench-

mark [5]. Linpack is a program that solves a dense linear system of equations. It

has become the benchmark used by the top 500 list [31], which ranks the world’s

500 fastest computers. The implementation used in this research is HPL (High Per-

formance Linpack) [35], because it is appropriate for distributed systems, is freely-

available, and is the implementation used and recommended by the top 500 list.

Parallelization is achieved by distributing the data among a two-dimensional grid (P

by Q) of processors, the parameters of which are specified by the user. According to

the HPL documentation, this ensures good load balancing and scalability character-

istics. Along with the grid size, the values for a number of other parameters are left

up to the user. These are placed in an input file called “HPL.dat” and can be

changed from run to run. The only parameters that were varied for the Linpack tests

of this research were grid size and problem size. All other parameters remained

fixed, the values of which were decided upon by preliminary testing. A sample

HPL.dat input file is provided in Appendix A.

Linpack was chosen to be used in this research for several reasons. We wanted to

test the Wyeast cluster as soon as possible after the nodes were configured, and it

therefore seemed suitable to compile and run a benchmark that is widely used, freely

available, and has been accepted as a standard. Linpack provides results in terms of

38

both performance (timing results and GFLOPS performed) and correctness (the

tests either pass or they fail). Many clusters have been tested using Linpack, and so

it also gave us a reasonable gauge by which to compare the performance of Wyeast

to other clusters, as well as ensuring that all elements of the parallel environment of

Wyeast (MPI, operating system, networking, hardware) were functioning cor-

rectly. Finally, once the program was compiled and run with one of the MPI librar-

ies, it could also be compiled and run with the other, leading to an environment in

which the two could be compared running a large benchmark.

4.1.1 Description of Experiments

Linpack was compiled and executed for both LAM and MPICH on increasingly

large process grid sizes (P by Q), corresponding to increasing numbers of proces-

sors. As an example of grid size, a 3x4 grid runs on 12 processors, and a 4x4 grid

runs on 16 processors. For each grid size, tests were run with increasingly large

problem sizes (corresponding to “N” in the HPL documentation). As an example of

a problem size, N=15000 means that a matrix of 15000 by 15000 double precision

(8 byte) elements will be used by the program.

39

The grid sizes tested (with number of processors in parenthesis) were: 1x1 (1), 1x2

(2), 2x2 (4), 2x4 (8), 2x5 (10), 3x4 (12), 4x4 (16), 4x5 (20), and 4x6 (24). The prob-

lem sizes tested were: 2000, 4000, 6000, 8000, 10000, 15000, 20000, and 25000.

The memory requirements of the program dictated that not all problem sizes could

be run with all grid sizes. For example, a problem size of N = 15000 could not be

run on a 2x2 process grid because the two nodes housing the 4 processors (1 GB

total) did not have enough memory available to the program (1.8 GB required).

Running the program with such a combination would lead to memory swapping and

would therefore distort the overall execution time, and is not recommended in the

HPL documentation. All allowable grid/problem size combinations were run five

times. The final results given in the next section are mean results of the five runs for

each combination.

4.1.2 Results and Analysis

LAM and MPICH performed similarly on the Linpack benchmark, with LAM per-

forming slightly better in almost every case. Excluding the uniprocessor runs, LAM

outperformed MPICH by 2.6% on average in terms of GFLOPS. The best result

obtained was 9.18 GFLOPS. This occurred on run # 2 using LAM on a 4x6 process

grid (24 processors) with a problem size of N = 25000. Tables 4 and 5 (pages 41

40

and 42) display the results of all combinations tested in terms of both GFLOPS and

execution time. Each number reflects the mean result of five runs. We did not

experience a high level of variation among the five repeated runs for each problem

size / grid size combination. Appendix D contains the standard deviation numbers

for all combinations tested.

Figure 4 (page 43) displays the results as a function of problem size for a fixed grid

size of 4x6 (24 processors), the highest number of processors used. In figure 5

(page 43), the results for a fixed problem size of N=15k are displayed as a function

of grid size. This is a good representative figure because it is a respectable problem

size that was able to fit into almost all grid sizes. Further, the trends of the other

problem size runs are similar, with the exception of the N=2k and N=4k problem

sizes. Appendices B and C contains graphs of all results. In Appendix B, the results

are shown as a function of grid size with respect to the various problem sizes. The

graphs in Appendix C display the results as a function of problem size by keeping

the various grid sizes fixed.

41

Table 4 displays the Linpack data for all problem sizes tested with 1, 2, 4, 8, and 10 processors. Each
number reflects the mean result of 5 runs.

Table 4: Linpack Data

Grid
 Size

Problem
 Size

LAM
GFLOPS

MPICH
GFLOPS

LAM
Seconds

MPICH
Seconds

1x1 2,000
 4,000
 6,000

0.611
0.637
0.651

0.602
0.637
0.650

 8.75
 66.99
221.39

 8.88
 67.10
221.54

1x2 2,000
 4,000
 6,000

0.986
1.089
1.132

0.991
1.096
1.112

 5.38
 39.28
127.34

 5.37
 38.94
129.59

2x2 2,000
 4,000
 6,000
 8,000
10,000

1.077
1.464
1.682
1.781
1.858

1.056
1.454
1.670
1.777
1.851

 4.96
 29.25
 85.65
191.81
358.81

 5.09
 29.45
 86.35
192.17
360.51

2x4 2,000
 4,000
 6,000
 8,000
10,000
15,000

1.086
1.987
2.492
2.838
3.044
3.410

1.057
1.914
2.413
2.789
3.016
3.017

 4.90
 21.53
 57.68
119.42
218.50
660.43

 5.06
 22.24
 59.58
122.25
221.13
725.37

2x5 2,000
 4,000
 6,000
 8,000
10,000
15,000

0.991
1.918
2.690
3.161
3.524
4.032

0.955
1.838
2.581
3.049
3.467
3.992

 5.39
 22.30
 52.98
108.83
189.35
558.65

 5.55
 23.25
 55.83
111.65
192.28
563.68

42

Table 5 displays the Linpack data for all problem sizes tested with 12, 16, 20, and 24 processors.
Each number reflects the mean result of 5 runs.

Table 5: Linpack Data, continued

Grid
Size

Problem
Size

LAM
GFLOPS

MPICH
GFLOPS

LAM
Seconds

MPICH
Seconds

3x4 2,000
 4,000
 6,000
 8,000
10,000
15,000

1.059
2.112
2.855
3.423
3.848
4.435

1.036
2.092
2.809
3.446
3.786
4.370

 5.10
 20.31
 51.02
 99.75
173.96
507.70

 5.16
 20.35
 51.22
 99.37
177.15
511.55

4x4 2,000
 4,000
 6,000
 8,000
10,000
15,000
20,000

1.219
2.593
3.435
4.186
4.805
5.715
6.295

1.142
2.414
3.283
4.147
4.729
5.560
6.221

 4.33
 16.78
 42.21
 81.66
138.75
395.52
849.37

 4.62
 17.66
 43.29
 82.79
141.10
403.66
858.18

4x5 2,000
 4,000
 6,000
 8,000
10,000
15,000
20,000

1.144
2.636
3.725
4.774
5.432
6.496
7.418

1.093
2.555
3.605
4.654
5.313
6.371
7.338

 4.76
 16.30
 37.78
 71.05
123.45
345.63
719.61

 4.86
 16.73
 39.91
 73.84
125.05
355.04
728.22

4x6 2,000
 4,000
 6,000
 8,000
10,000
15,000
20,000
25,000

1.113
2.590
3.789
4.998
5.833
7.236
8.448
9.077

1.125
2.514
3.653
4.843
5.803
7.076
8.276
8.980

 4.72
 16.46
 38.66
 68.14
 114.21
 311.77
 624.96
1154.81

 4.68
 16.93
 39.45
 70.98
 115.03
 314.68
 642.97
1161.37

43

Figure 4: Linpack Results for Grid Size = 4x6

Figure 5: Linpack Results for N = 15k

Figures 4 and 5 display representative Linpack data in two different ways. In figure 4, results are
shown as a function of problem size by keeping the grid size fixed. The 4x6 grid (24 processors) was
the largest grid size tested, and the results displayed in figure 4 are representative of the results for
the other grid sizes. In figure 5, the results are shown as a function of grid size for a fixed problem
size of N=15k. This problem size was too large to fit into the 2x2 grid. All problem sizes except
N=2k and N=4k resulted in patterns similar to the ones shown in figures 4 and 5.

0

2

4

6

8

10

2k 4k 6k 8k 10k 15k 20k 25k

G
flo

ps

Problem Size (N)

LAM MPICH

0
1
2
3
4
5
6
7
8

2x4 2x5 3x4 4x4 4x5 4x6

G
flo

ps

Grid Size

LAM MPICH

44

In nearly every case, LAM and MPICH scaled for both increasing problem sizes and

increasing grid sizes (processor counts). Two exceptions are for the N=2k and N=

4k problem sizes (see figures 6 and 7, next page). The conclusion here is that these

problem sizes were likely too small to ensure that communication time would not

become a bottleneck in overall execution time. The fact that a parallel program can

be written for a problem does not always mean that it is advantageous to use the

highest number of processors available. For some programs with small problem

sizes, the communication time incurred by adding more processors outweighs the

concurrency benefits. The Linpack 2k and 4k problem sizes appear to fall into this

category.

For the other problem sizes, LAM and MPI scaled, but neither achieved linear

speedup. Speedup is defined by equation: (Time on 1 processor) / (Time on N pro-

cessors). Linear speedup is N for N processors. The largest problem size that fit

into 1 node was N=6k; therefore, we were able to calculate the parallel speedup of

LAM and MPICH with respect to serial execution for this problem size. The results

are shown in figure 8 (page 46). While we were unable to get the uniprocessor time

for the larger problem sizes due to memory requirements, the timing results for these

problem sizes suggest that Linpack scales better for larger problem than for smaller

problem sizes using both LAM and MPICH.

45

Figure 6: Linpack Results for N = 2k

Figure 7: Linpack Results for N = 4k

Figures 6 and 7 display the performance of LAM and MPICH as a function of processor count for
fixed problem sizes of N=2k and N=4k, respectively. Neither LAM nor MPICH scale consistently
for these small problem sizes. The reason is likely that the communication cost incurred by adding
processors begins to outweigh the benefits of parallel processing. These were the only problem sizes
in which this characteristic was noticed.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

1 2 4 8 10 12 16 20 24

G
flo

ps

Number of Processors

LAM MPICH

0.0
0.5
1.0
1.5
2.0
2.5
3.0

1 2 4 8 10 12 16 20 24

G
flo

ps

Number of Processors

LAM MPICH

46

Figure 8: Speedup for N = 6k

Figure 8 displays the speedup of LAM and MPICH for a problem size of N=6k, the largest problem
size that would fit in to the memory of 1 node. Speedup is defined by dividing the execution time
using 1 processor by the execution time using N processors. Linear speedup is achieved when the
time is N for N processors. Neither LAM nor MPICH achieve linear speedup for any of the problem
sizes; however the speedup for both appears to be better for the larger problem sizes.

The Linpack results build confidence that the parallel environment is set up to prop-

erly compile and execute large MPI programs (all tests passed), they give us a way

to compare the performance of the cluster with other clusters, and provide a legiti-

mate starting point in comparing LAM and MPICH. If we were going to spend time

Speedup for N=6k

0

5

10

15

20

25

0 4 8 12 16 20 24

S
pe

ed
up

Number of Processors

Linear Speedup LAM Speedup MPICH Speedup

47

fine-tuning the Linpack input parameters and optimizing the parallel environment

(MPI configure options, compiler choice, network options, etc.) with the goal of

achieving the highest possible Linpack score, the results of this research indicate

that the library to focus on would be LAM. This indication, however, is not over-

whelming. The highest LAM score was 9.184 GFLOPS (4x6 grid; N = 25000). The

highest MPICH score was 9.014 GFLOPS (4x6 grid; N = 25000).

48

4.2 su3_rmd

In an effort to strengthen the comparison of LAM and MPICH, we decided to test

the performance of the libraries on another parallel program. Linpack is certainly a

legitimate parallel program, but it is primarily used as a benchmark, and provides

only one basis for comparison. The su3_rmd program is a simulation program used

in physics research. It is the pure gauge variant of a variety of programs available

from the MIMD Lattice Computation (MILC) Collaboration [36] involving a con-

cept known as four-dimensional SU(3) lattice gauge theory. Parallelization is

achieved by distributing lattice sites across nodes, and exchanging information

among sites.

4.2.1 Description of Experiments

The overall problem size can be increased in su3_rmd by increasing the lattice

dimensions (nx, ny, nz, nt) and increasing the number of trajectories (traj). The

number of processors used must be a power of 2. We ran experiments with 5 prob-

lem sizes, shown in table 6 (next page). Since the number of processors used in

su3_rmd must be a power of 2, we were able to use a maximum of 16 processors.

For experiments 1, 2, and 3 we used 2, 4, 8, and 16 processors. Experiment 4 was

not run with 2 processors because its problem size was too large to fit into the mem-

ory of 1 node. Similarly, experiment 5 was run only with 16 processors because its

49

problem size would not fit into the memory of 4 nodes, which is the number needed

for an 8 processor run on our SMP cluster.

Table 6 displays the five problem sizes tested for su3_rmd. The number or processors used in
su3_rmd must be a power of 2. Experiment 4 was not run with 2 processors because its problem size
exceeded the memory of 1 node. Likewise, experiment 5 was run only with 16 processors because it
would not fit into the memory of 4 nodes (8 processor run).

Table 6: Description of su3_rmd Experiments

Experiment Problem Size Processors Used

1 nx=ny=nz=4,
nt=8,
traj=50

2, 4, 8, 16

2 nx=ny=nz=6
nt=12
traj=75

2, 4, 8, 16

3 nx=ny=nz=8
nt=16
traj=100

2, 4, 8, 16

4 nx=ny=nz=12
nt=24
traj=150

4, 8, 16

5 nx=ny=nz=16
nt=32
traj=200

16

50

4.2.2 Results and Analysis

We measured wall clock time (total execution time) at the shell, and the program

provides timing results for CPU time. LAM and MPICH performed similarly in

terms of total execution time on all problem sizes tested except for the smallest and

largest sizes. Table 7 (next page) presents the data for each combination tested in

terms of wall clock time and CPU time versus the number of processors used. Fig-

ures 9 through 13 (pages 55 through 57) display these results graphically. In both

the table and the graphs, the numbers shown are mean times of five runs for each

combination. Standard deviation results of all repeated runs are provided in Appen-

dix E.

One interesting observation from the timing results is that, in many cases, the CPU

time for LAM is less than the CPU time for MPICH, but the total execution time is

longer. For example, in experiment 4, with 8 processors, the total execution time for

LAM is 759 seconds versus 752 seconds for MPICH, but the CPU time is 559 sec-

onds versus 673 seconds. In the same experiment, using 16 processors, the execu-

tion time for LAM finally becomes less than that of MPICH, but only by 10

seconds. The difference in CPU time is 100 seconds. Table 8 (page 52) displays the

results in terms of CPU time percentage versus communication/IO time percentage

for all experiments.

51

Table 7 displays the results of the su3_rmd tests. Results are displayed as execution time and CPU
time in seconds. The only situation where the program did not scale occurred in the smallest problem
size for MPICH. One reason for this is that process startup is slower in MPICH than in LAM, and
with 16 processes this characteristic plays an important role for small problem sizes, in which startup
time can be a large portion of overall execution time.

Table 7: Results of su3_rmd in Seconds

Problem Size Processors
LAM
Wall
Time

LAM
CPU
Time

MPICH
Wall
Time

MPICH
CPU
Time

Experiment 1
nx=ny=nz=4,
nt=8,
traj=50

 2
 4
 8
16

 7.46
 6.19
 4.32
 3.88

 6.48
 4.07
 2.13
 1.55

 6.94
 6.79
 6.41
 8.55

 6.68
 5.56
 5.04
 5.76

Experiment 2
nx=ny=nz=6,
nt=12,
traj=75

 2
 4
 6
16

 67.50
 37.68
 23.11
 15.61

 64.42
 31.73
 14.72
 7.85

 65.05
 38.08
 24.78
 22.08

 64.75
 36.52
 21.88
 18.31

Experiment 3
nx=ny=nz=8,
nt=16,
traj=100

 2
 4
 8
16

 294.47
 174.31
 97.95
 58.94

 293.23
 152.45
 69.88
 35.77

 288.28
 173.85
 94.77
 60.42

 287.82
 166.40
 88.19
 53.95

Experiment 4
nx=ny=nz=12
nt=24
traj=150

 4
 8
16

1284.57
 759.38
 428.93

1133.50
 559.25
 290.74

1284.34
 752.49
 438.01

1231.44
 672.81
 390.62

Experiment 5
nx=ny=nz=16
nt=32
traj=200

16 1683.32 1203.04 1830.65 1576.82

52

Table 8 displays the breakdown of the su3_rmd experiments in terms of percentage CPU time and
percentage communication/IO time. The su3_rmd program provides timing results for CPU time.
We timed overall execution time at the shell, and show the difference of execution time and CPU
time here as percentage communication/IO time.

Table 8: su3_rmd CPU Time and Communication/IO Time

Experiment
LAM
CPU

LAM
comm/IO

MPICH
CPU

MPICH
comm/IO

1: 2 procs
 4 procs
 8 procs
 16 procs

86.9%
65.7%
49.3%
39.9%

13.1%
34.3%
50.7%
60.1%

96.3%
81.9%
78.6%
67.4%

 3.7%
18.1%
21.4%
32.6%

2: 2 procs
 4 procs
 8 procs
 16 procs

95.4%
84.2%
63.7%
50.3%

 4.6%
15.8%
36.3%
49.7%

99.6%
95.9%
88.3%
82.9%

 0.4%
 4.1%
11.7%
17.1%

3: 2 procs
 4 procs
 8 procs
 16 procs

99.6%
87.5%
71.3%
60.7%

0.4%
12.5%
28.7%
39.3%

99.8%
95.7%
93.1%
89.3%

 0.2%
 4.3%
 6.9%
10.7%

4: 4 procs
 8 procs
 16 procs

88.2%
73.6%
67.8%

11.8%
26.4%
32.2%

95.9%
89.4%
89.2%

 4.1%
10.6%
10.8%

5: 16 procs 71.5% 28.5% 86.1% 13.9%

53

For the largest problem size tested (experiment 5), the total execution time for LAM

is 1,683 seconds versus a total execution time of 1,831 seconds for MPICH. This

indicates that LAM performs better than MPICH on larger problem sizes with a

large number of processors. Unfortunately we were unable to test su3_rmd with a

higher number of processors because the next allowable number for this program is

32, and we did not have 32 processors available for the MPI experiments. It would

be interesting to see if the performance difference increases as both the problem size

and the number of processors are increased.

For 16 processors on the smallest problem size, LAM is 2.2 times faster than

MPICH. This is likely in part due to the fact that process startup time is faster in

LAM than in MPICH. As discussed in section 2.5.2, LAM runs as a user level dae-

mon on each node. These daemons are responsible for MPI process startup, and

optionally for intercepting messages to collect trace data. Because the daemons are

already running before the MPI program is executed, process startup time is fast.

Conversely, process startup time in MPICH is slow because MPICH uses a remote

shell invocation for each MPI process created (see Carns et. al. [3]). Startup time

can become an important factor in the execution time of programs with small prob-

lem sizes as the number of processors is increased. This partially explains the

54

extreme performance difference of LAM and MPICH in experiment 1 using 16 pro-

cessors.

We conducted a simple experiment to measure MPI process startup time in LAM

and MPICH. In this experiment, all processes except process 0 sends a single inte-

ger (4 bytes) to process 0. Table 9 displays the results of the startup time experi-

ment.

Table 9 displays results from our process startup time experiments. Process startup time is high in
MPICH due to the fact that MPICH uses remote shell invocation for MPI process creation. In con-
trast, LAM uses daemons on each node to start MPI processes. These daemons are already running
when the LAM MPI program is executed.

Table 9: Process Startup Time Results (seconds)

Processors LAM MPICH

2 0.51 0.23

4 0.53 0.63

8 0.54 1.42

12 0.55 2.24

16 0.57 3.04

20 0.58 3.93

24 0.60 4.79

55

Figure 9: su3_rmd Results for Experiment 1

Figure 10: su3_rmd Results for Experiment 2

Figures 9 and 10 display the timing results for su3_rmd on the first two problem sizes. For the small-
est size tested (shown in figure 9), it is evident that MPICH does not scale as processors are added.
The reason for this is likely the fact that MPI process startup time is slow in MPICH.

su3_rmd Experiment 1
nx=ny=nz=4, nt=8, traj=50

0

2

4

6

8

10

2 4 8 16

Ti
m

e
in

 S
ec

on
d

Number of Processors

LAM wall LAM cpu
MPICH wall MPICH cpu

su3_rmd Experiment 2
nx=ny=nz=6, nt=12, traj=75

0
10
20
30
40
50
60
70

2 4 8 16

S
ec

on
ds

Number of Processors

lam wall lam cpu
mpich wall mpich cpu

56

Figure 11: su3_rmd Results for Experiment 3

Figure 12: su3_rmd Results for Experiment 4

Figures 11 and 12 display the timing results for su3_rmd on larger problem sizes. One interesting
observation is that, while the LAM programs use less CPU time, the overall execution time is nearly
even for LAM and MPICH for these problem sizes.

su3_rmd Experiment 3
nx=ny=nz=8, nt=16, traj=100

0
50

100
150
200
250
300

2 4 8 16

S
ec

on
ds

Number of Processors

lam wall lam cpu
mpich wall mpich cpu

su3_rmd Experiment 4
nx=ny=nz=12, nt=24, traj=150

0
200
400
600
800

1000
1200
1400

4 8 16

S
ec

on
ds

Number of Processors

LAM wall LAM cpu
MPICH wall MPICH cpu

57

Figure 13: su3_rmd Results for Experiment 5

Figure 13 displays the timing results for su3_rmd on the largest problem size tested. This problem
size was only tested with 16 processors because it would not fit onto the memory of the node config-
urations for fewer processors. Unlike experiments 1 through 4, LAM clearly outperforms MPICH in
terms of both CPU time and overall execution time in this experiment.

su3_rmd Experiment 5
nx=ny=nz=16, nt=32, traj=200

0
250
500
750

1000
1250
1500
1750
2000

16

S
ec

on
ds

Number of Processors

LAM wall LAM cpu
MPICH wall MPICH cpu

58

We studied the performance of su3_rmd using the MPE library and Jumpshot, the

visualization tool distributed with MPE (discussed in section 3.4). The tools fell

short, however, in not providing information about the breakdown of CPU time, I/O

time, and communication time. MPE and Jumpshot were helpful, however, for

clearly logging and displaying every MPI function that su3_rmd uses, and also for

providing an overall view of the communication pattern. For MPI point-to-point

communication, the only construct used was MPI_Ssend/MPI_Irecv, a synchronous

send with a non-blocking receive.

As can be seen from the MPE/Jumpshot histogram in figure 14 (next page),

MPI_Ssend and MPI_Wait (which corresponds to MPI_Irecv) dominate communi-

cation time. Jumpshot uses a heuristic based on the number of function calls and the

duration of each call to determine the relative importance of each MPI construct in

the histogram display. We decided to take a closer look at MPI_Ssend/MPI_Irecv,

along with seven other MPI point-to-point combinations. The results are presented

in the next section. LAM performed better than MPICH in terms of bandwidth for

Ssend/Irecv, providing a partial explanation as to why LAM performed better than

MPICH on su3_rmd for the large problem size.

59

Figure 14: Histogram of MPI Constructs in su3_rmd

Shown in figure 14 is a screen shot of the Jumpshot graphical visualizer which is used to view the
SLOG trace files generated by the MPE logging library. The SLOG file used for this screen shot
contains information for an execution of su3_rmd using the problem size of experiment 2 with 16
processors. The histogram displays the relative importance of MPI functions as time elapses using a
heuristic that involves the number of function calls made and the time spent in each call. Note that
MPI_Barrier is only called at the beginning of the program. The histogram clearly shows that
MPI_Ssend and the MPI_Wait corresponding to MPI_Irecv clearly dominate communication time in
su3_rmd.

60

4.3 Bandwidth Comparisons

This section discusses the performance of LAM and MPICH on eight MPI point-to-

point communication pairs using a traditional “ping-pong” bandwidth test program,

in which a message is passed from process A to process B, which passes it back to

process A. The source code can be obtained by viewing the on-line version of a

paper entitled “MPI Performance Topics” [28].

The bandwidth program tests round-trip performance of the MPI point-to-point

communication pairs shown in table 10 (next page). MPI provides both blocking

and non-blocking sends and receives. Additionally, for sends, four communication

modes are provided: standard, synchronous, buffered, and ready. Therefore, there

are eight possible send operations and two possible receive operations. This results

in sixteen point-to-point communication pairs possible in MPI. The bandwidth pro-

gram tests eight of them, including many of the ones commonly found in MPI pro-

grams.

Detailed information regarding the various point-to-point communication options

available in MPI can be found in the texts by Gropp and Lusk [12], and Pacheco

[15]. A brief description of the operations in table 10 is presented here. Blocking

operations do not return until the function arguments are safe to reuse. The argu-

61

ments are safe to reuse if the system has buffered the message and/or the matching

operation has been posted.

Table 10 displays the MPI point-to-point communication combinations tested by the bandwidth pro-
gram. The MPI_Ssend/MPI_Irecv combination was used in the su3_rmd program. See the text for a
brief discussion of blocking, non-blocking, and synchronous communication.

Therefore, a blocking send may or may not block while waiting for a corresponding

receive to be posted. It depends on whether or not the system provides temporary

Table 10: Point-To-Point MPI Bandwidth Tests

Pair Description

MPI_Send / MPI_Recv Blocking Send
Blocking Receive

MPI_Send / MPI_Irecv Blocking Send
Non-blocking Receive

MPI_Isend / MPI_Recv Non-blocking Send
Blocking Receive

MPI_Isend / MPI_Irecv Non-blocking Send
Non-blocking Receive

MPI_Ssend / MPI_Recv Synchronous Send
Blocking Receive

MPI_Ssend / MPI_Irecv Synchronous Send
Non-blocking Receive

MPI_Issend / MPI_Recv Non-blocking Synchronous Send
Blocking Receive

MPI_Issend / MPI_Irecv Non-blocking Synchronous Send
Non-blocking Receive

62

buffering of messages. Most systems provide buffering up to a certain message

size. For example, LAM provides buffering for messages up to 65 KB in size.

Note that blocking communication is different from synchronous communication in

MPI terminology. Synchronous communication is more restrictive: it does not rely

on system buffering but rather demands that the matching operation has been

posted, and data transmission has begun. For example, a process executing a syn-

chronous send will block until the corresponding receiving process has actually

posted the receive and begun receiving the data into its argument buffer. For this

reason, synchronous sends can be used to ensure the safety of MPI programs. If the

program does not deadlock when all blocking sends are replaced with synchronous

sends, one can be assured that the send and receive pairs have been coded in a cor-

rect order in terms of avoiding deadlock.

Non-blocking calls return immediately, and require the programmer to call a sepa-

rate wait or test operation to determine if the corresponding operation has com-

pleted. When it has, the function arguments are safe to reuse. Non-blocking

communication can be used to avoid deadlock and to improve performance by over-

lapping communication with computation.

63

The bandwidth program can be configured to test any range of message sizes, using

any size for a step interval. For example, one can specify to test message sizes in the

range [100, 1000], incrementing the message size every 100 bytes. The number of

round-trip iterations can also be configured, and the program keeps track of the best,

worst, and average times, using MPI_Wtime for each iteration. MPI_Wtime returns

the time in seconds from some arbitrary time in the past. This arbitrary time is guar-

anteed not to change during the lifetime of a process, so a timing of some activity

can be taken by surrounding the activity with timing calls and subtracting the differ-

ence.

We decided to perform bandwidth experiments to provide a fine-grained view of the

point-to-point performance of LAM and MPICH. Most MPI programs are written

using at least one of the eight point-to-point combinations shown in table 10, and

testing the performance of the libraries on some of the commonly used combina-

tions strengthened the overall comparison of LAM and MPICH in this research.

Specifically, the su3_rmd application discussed in section 4.2 uses the MPI_Ssend/

MPI_Irecv combination, and we decided to take a closer look at this pair. The spe-

cific bandwidth program used in this research was used because it tests this pair,

along with the others listed in table 10. Further, it can be easily configured to reset

the different parameters, and the timing results are provided in a clear, understand-

able form.

64

4.3.1 Description of Experiments

Each pair listed in table 10 was tested for three message ranges: “small” [300 to

4,800 bytes], “ medium” [5,000 to 100,000 bytes], and “large” [200,000 to

2,000,000 bytes]. The message sizes were increased in increments of 300 bytes,

5,000 bytes, and 100,000 bytes, respectively. For each communication pair, for

each message size tested, one hundred iterations were performed. The reported

results are mean times. The tests were conducted using two processors, one on each

of two nodes. Therefore, the tests reflect node-to-node performance over the net-

work, rather than shared memory performance.

We noticed we were getting results that exceeded the theoretical maximum (12.5

MB/sec) for round trip bandwidth on a 100 Mbps Fast Ethernet for many of the tests

involving non-blocking receives. A close examination of the bandwidth program

revealed that the tests which involve non-blocking receives were not properly mea-

suring round trip bandwidth, due to the ordering of MPI_Irecv and MPI_Wait. Pro-

cess 1 correctly sends the message to process 2. However, process 2 does not wait

for the non-blocking receive to complete before sending the message back to pro-

cess 1. It does call MPI_Wait, but only after it sends the message back. At this

point, it is too late - there is no reason to wait. The message has been sent back

without ensuring that it has been correctly received in the first place, and so what is

really happening is that two messages are being sent across the network at the same

65

time. This is possible because our switches are configured to run in full-duplex

mode. Therefore, we were exceeding the theoretical maximum for round trip band-

width on our 100 Mbps Fast Ethernet.

We modified the program to correctly wait before sending the message back in the

cases involving non-blocking receives. When we did this, the results were under

12.5 MB/sec. In addition, there was less data skew. In the remainder of this thesis,

we will refer to the original program and the modified program when discussing

bandwidth results for non-blocking receives. We provide all data for both catego-

ries of results.

4.3.2 Results and Analysis

LAM performed better than MPICH on the Wyeast Cluster for the communication

pairs tested between two nodes. This was expected for the Ssend/Irecv combina-

tion, because the su3_rmd application uses this pair for point-to-point communica-

tion, and LAM outperformed MPICH on the su3_rmd test for the large problem

size. However, the overwhelming performance gains of LAM over MPICH for

nearly all of the bandwidth experiments was not expected. Appendix F contains

graphs displaying the results for every bandwidth experiment conducted (original

program). The graphs represent the bandwidth of LAM and MPICH on the eight

66

communication pairs tested for each of the three message size ranges. They reflect

the mean bandwidth results of one-hundred iterations for each combination tested.

Raw data showing best, average, and worst times for each communication pair/mes-

sage size combination is provided in Appendix G. Similarly, Appendix H contains

graphs of results for pairs involving non-blocking receives for the modified pro-

gram, and Appendix I contains the raw data for these results.

Figures 15 through 17 on the following pages display the results of LAM and

MPICH on MPI_Send/MPI_Recv, the MPI blocking send and receive pair. This is

the most basic of the point-to-point communication constructs in MPI, and one that

is found in many MPI programs. LAM slightly outperformed MPICH on this com-

bination for every message size. In figures 18 through 20, the results are presented

for MPI_Ssend/MPI_Irecv (modified program) - a synchronous send with a non-

blocking receive. This is the construct used by the su3_rmd application, discussed

in section 4.2. The results clearly show that LAM performs better than MPICH for

this construct, which is one reason why LAM performed better on su3_rmd on the

large problem size.

67

Figure 15: Bandwidth Results for Send/Recv - Short Messages

Figure 16: Bandwidth Results for Send/Recv - Medium Messages

Figures 15 and 16 display the bandwidth performance of LAM and MPICH on Send/Recv for short
and medium range messages, respectively. Send/Recv is the basic blocking point-to-point blocking
construct in MPI.

Send/Recv - Short Messages

2
3
4
5
6
7
8
9

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

M
B

/s
ec

Message Size (X 100 Bytes)

LAM MPICH

Send/Recv - Med. Messages

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

M
B

/s
ec

Message Size (X 1000 bytes)

LAM MPICH

68

Figure 17: Bandwidth Results for Send/Recv - Long Messages

Figures 17 displays the bandwidth performance of LAM and MPICH on Send/Recv for long mes-
sages. Send/Recv is the basic blocking point-to-point blocking construct in MPI.

Figure 18: Bandwidth Results for Ssend/Irecv - Short Messages

Figure 18 displays the bandwidth performance of LAM and MPICH on Ssend/Irecv (modified pro-
gram) for short range message sizes. Ssend/Irecv is a synchronous send with a non-blocking
receive. This is the construct used in the su3_rmd application.

S end/Rec v - Long M es s ages

2
3
4
5
6
7
8
9

10
11
12

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
B

/s
ec

M es s age S iz e (X 100k B y tes)

LA M M P ICH

Ssend/Irecv - Short Messages

0

2

4

6

8

10

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

M
B

/s
ec

Message Size (X 100 Bytes)

LAM MPICH

69

Figure 19: Bandwidth Results for Ssend/Irecv - Medium Messages

Figure 20: Bandwidth Results for Ssend/Irecv - Long Messages

Figures 19 and 20 display the bandwidth performance of LAM and MPICH on Ssend/Irecv (modi-
fied program) for medium and long range message sizes, respectively. Ssend/Irecv is a synchronous
send with a non-blocking receive. This is the construct used in the su3_rmd application.

Ssend/Irecv - Med. Messages

6

7

8

9

10

11

12

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

M
B

/s
ec

Message size (X 1000 Bytes)

LAM MPICH

Ssend/Irecv - Long Messages

10.0

10.5

11.0

11.5

12.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
B

/s
ec

Message Size (X 100k Bytes)

LAM MPICH

70

One interesting conclusion that can be made from the results is that MPICH narrows

the gap in many cases when the message size exceeds 65 KB. This can clearly be

seen in figures 16 and 19, and on most of the graphs for the medium size messages.

The reason for this is that LAM switches from a short to long protocol at 65 KB by

default. Although we used the default configuration, this setting can be changed by

setting the environmental variable LAM_TCPSHORTMSGLEN. LAM’s short pro-

tocol specifies that the message is sent in its entirety, using a system buffer if the

matching receive has not yet been posted. With the long protocol, a “handshake”

occurs. The sending process first sends the message envelope, which includes the

source and destination addresses, message size, message tag, communicator, and

possibly other information. A small amount of the actual data might also be sent.

The sender then waits for the receiving process to send back an acknowledgement

indicating that it has received the envelope. Upon acknowledgement from the

receiver, the sending process then proceeds to send the actual data.

It may seem tempting to set the cutoff limit between short and long messages as

high as possible in order to avoid the handshake, but there is a trade-off between the

extra communication of the long protocol and the copying required in order to use

the short protocol. The short protocol relies on system buffering. For messages up

to the short limit, LAM buffers messages on the receiver’s node in an address space

71

separate from the receive buffer argument if the receive has not yet been posted .

Therefore, a blocking send can return without the matching receive being posted

because the data has been buffered for the receiver, which must copy the data into its

receive buffer. As message sizes increase, the time spent copying the buffer out-

weighs the time spent during the handshake of the long protocol. The specific size

is system dependent. Thus, an interesting future experiment for Wyeast would be to

try different settings for the short limit and run bandwidth tests to determine the

optimal setting.

MPICH implements three protocols for node-to-node communication: short, eager,

and rendezvous, depending on the message size [11]. In each case, the message

envelope is sent immediately. With short protocol, the data is sent along with the

envelope. With eager protocol, the data is delivered whether or not the receiver

acknowledges the receipt of the envelope, implying some sort of system buffering.

In contrast, rendezvous protocol requires that the receiver requests the data by

acknowledging receipt of the envelope. Eager protocol and rendezvous protocol

seem analogous to LAM’s short and long protocol, respectively. Although we were

unable to determine the short/eager crossover size, we found the crossover size for

eager/rendezvous to be 128 KB by performing fine-grained tests in the 100 KB to

200 KB range. For MPICH, the drop-off in bandwidth at the eager/rendezvous

crossover size is not as severe as it is for LAM at the short/long crossover size.

72

4.4 Summary

We tested the performance of LAM and MPICH using three major categories of

experiments: High Performance Linpack; su3_rmd, an MPI application used in

physics research; and a series of round trip bandwidth comparisons. The perfor-

mance of the libraries was most similar on Linpack, with LAM outperforming

MPICH by 2.6% on average. LAM and MPICH also performed similarly on

su3_rmd. However, for the largest problem size, the execution time for LAM was

1,683 seconds versus 1,831 seconds for MPICH. Using the MPE logging library

and the Jumpshot visualization tool, we saw that the point-to-point communication

construct used by su3_rmd was MPI_Ssend/MPI_Irecv, a synchronous send with a

non-blocking receive. We took a close look at this combination, along with seven

other MPI point-to-point combinations, using a series of bandwidth comparisons.

LAM outperformed MPICH on all of the bandwidth comparisons, including

MPI_Ssend/MPI_Irecv. These bandwidth results partially explain why LAM out-

performed MPICH on the su3_rmd application on the large problem size.

The results show that LAM is at least as fast as MPICH, and generally faster, on the

Wyeast cluster - especially for larger problem sizes. LAM was originally designed

for the cluster and networked workstation environments, while MPICH was

designed to be able to be quickly ported to many different types of parallel systems.

73

For this reason, MPICH relies on a heavily layered architecture, which might

explain why MPICH generally ran slower than LAM on our tests.

74

5 Related Work

This chapter discusses previous studies related to the comparison of LAM and

MPICH. Three of the studies were conducted on clusters, and one was conducted

using two PCs. Each study is different in terms of platform, LAM and MPICH ver-

sions, and experiments. With a few exceptions, the common result is that LAM out-

performs MPICH. It should be noted that none of the studies in this chapter

compare the most recent version (at the time of this writing) of either library. How-

ever, several primary features of each have not changed dramatically during the

courses of their respective evolutions. For example, LAM has always operated in a

“virtual machine” environment with LAM daemon processes running on each node,

whereas MPICH never has. Therefore, it is useful to examine the comparative per-

formance of past versions of both libraries when performing a current study such as

this to see if any of the performance trends have continued.

The studies are presented in order of latest to oldest version numbers of the libraries.

Section 5.1 discusses a study that compares the bandwidth performance (Mbps) of

LAM-6.5.1 and MPICH-1.2.1 on a 16 node Beowulf cluster with Fast Ethernet

using the NAS-2.3 benchmark suite. Section 5.2 summarizes a comparison of

LAM-6.3, MPICH-1.1.2, and MVICH (an MPI implementation based on MPICH

using VIA technology for network protocol processing) on 2 PCs connected by

Gigabit Ethernet using the NetPIPE-2.3 benchmark. In section 5.3, a study of the

75

performance (MFLOPS) of LAM6.3-b1 and MPICH-1.0.9 is discussed. The testing

environment is a 16 node Beowulf Cluster with Fast Ethernet, and the program

tested is a parallel N-body application conducted by researchers in the field of

astronomy. Results are given in terms of MOPS (Millions of Operations Per Sec-

ond). Section 5.4 discusses a bandwidth comparison of LAM-6.0 and MPICH-

1.0.12 on an 8 node DEC workstation cluster connected by an FDDI network. This

study was conducted using six “in house” benchmarks, and the results are given in

terms of seconds versus message size (exact Mbps calculations not provided).

5.1 LAM-6.5.1 and MPICH-1.2.1

A 2001 report on the 16 node Beowulf cluster Grendel [1] at Uppsala University in

Linkoping, Sweden provides a comparison of LAM-6.5.1 and MPICH-1.2.1 using

the NAS Parallel Benchmark (NPB) 2.3 suite with a class B problem size. NAS-2.3

contains eight benchmarks based on computational fluid dynamics. Six of the

benchmarks were used by the researchers. Grendel’s nodes each contain 1 CPU (1

Ghz) and are connected by Fast Ethernet. The LAM tests were run in lamd mode,

which employs user-level daemons as message intermediaries. In lamd mode, a

message travels from an MPI process on node A to a LAM daemon process on node

A; the daemon on node A then sends the message to a LAM daemon process on

node B, which finally sends the message to an MPI process on node B. Also notable

76

about lamd mode is that UDP (as opposed to TCP in c2c mode) is used for data

transfer. MPICH always uses TCP for data transfer between nodes and sends mes-

sages from MPI process to MPI process directly. Recall that our LAM results show

that c2c mode performed better than lamd mode. This could be due to improve-

ments of the c2c mode with the release of LAM-6.5.6.

The Grendel researchers found that MPI programs compiled with the LAM libraries

provided 4.26% more MOPS than those compiled with MPICH. The report con-

cluded that the LAM programs performed better because they exhibited faster com-

munication over the network, primarily due to the use of UDP packets for data

transfer. The study did not test the c2c mode, and cited research presented in the

paper of Carns et al. [3] as one reason to use lamd mode. The NAS test was the

extent of the comparison of LAM and MPICH in this report; due to the NAS results

all further experiments used LAM (lamd mode) to test various aspects of the cluster.

5.2 LAM-6.3-b1 and MPICH-1.0.9

Astrolab is a cluster at the University of Washington which was used in a 1999

study [27] by the UW Department of Astronomy comparing LAM-6.3-b1 and

MPICH-1.0.9. The cluster is composed of 16 single-CPU nodes (300 Mhz each)

connected by Fast Ethernet. The program tested was PKDGRAV, a parallel N-body

77

program. The program was run on 2, 4, 8, 12, and 16 nodes using executables com-

piled with both libraries.

The performance of LAM and MPICH was very similar on the runs using up to 4

processors. As the number of processors increased, the performance of LAM

became better than that of MPICH. With 12 processors, the MPICH program pro-

duced approximately 775 MFLOPS, while LAM achieved approximately 925

MFLOPS. After this point, MPICH experienced a steady decline, whereas the per-

formance of LAM scaled at a near linear rate. Using 16 processors (the maximum

tested), LAM achieved nearly 1200 MFLOPS, and MPICH achieved approximately

550 MFLOPS.

The conclusion of the Astrolab researchers was that LAM performed better than

MPICH because in their opinion it is more suited for the Beowulf cluster architec-

ture by design. They stated that LAM does not rely as heavily on the layered

approach (Application Interface, Abstract Device Interface, Channel Interface) as

MPICH, producing what they believe is a trade-off of speed on Beowulfs versus

versatility in porting to other systems. As stated in the introduction, MPICH has

been ported to nearly every parallel system imaginable (primarily due to its layered

construction). For example, MPICH has been ported to the systems utilizing the

VIA communication technology, whereas such ports have only recently begun with

78

LAM. Although there is no direct proof in the paper that the layered construction of

MPICH is entirely the cause of its slower speed, the argument is believable and the

reasoning is sound.

5.3 LAM-6.3 and MPICH-1.1.2

Ong and Farrell [14] conducted a study published in 2000 comparing LAM-6.3,

MPICH-1.1.2, and MVICH (an MPI implementation utilizing VIA as the communi-

cation protocol). The tests were conducted using 2 PCs (450 Mhz each) connected

by a Gigabit Ethernet using various NICs (Network Interface Cards). The primary

finding of the study was that MVICH using VIA technology was superior to both

LAM and MPICH, which rely on traditional TCP/IP for data transfer. The motiva-

tion of the study is very interesting, as the authors point out that the increasing avail-

ability of Gigabit Ethernet technology has shifted the bottleneck of message passing

communication from the network media to network protocol processing. VIA (Vir-

tual Interface Architecture) bypasses layers of the TCP/IP protocol stack, and

reduces intermediate copies of data transfer during message transmission.

As far as the LAM and MPICH comparisons are concerned, LAM was reported to

achieve superior bandwidth using NetPIPE-2.3 [19]. Three NICs were tested:

Packet Engine GNIC-II, Alteon ACEnic, and SysKonnect SK-NET. LAM achieved

79

a maximum bandwidth of approximately 298 Mbps versus a maximum of 249 Mbps

for MPICH. These numbers are reported for the SK-NET NIC. All LAM tests were

conducted in fast client to client (c2c) mode, which uses daemons for MPI process

creation but bypasses them for message transfer from MPI process to MPI process.

It is worth repeating that in c2c mode, TCP (as opposed to UDP used in lamd mode)

is used to transfer messages. Also, as stated earlier, MPICH does not use user-level

daemons. Process startup is achieved by remote shell invocation, and TCP is

always used for communication among nodes. Both LAM and MPICH show a drop

in performance (moreso with LAM) at 128KB - the crossover size between “short”

and “long” messages. The 128 KB size is the default setting in MPICH-1.1.2.

LAM-6.3 has a default of 64 KB; the researchers changed this setting during the

installation to 128 KB.

5.4 LAM-6.0 and MPICH-1.0.12

A 1996 report from the Ohio Supercomputer Center [13] compares the performance

of LAM-6.0 and MPICH-1.0.12 on an 8 node DEC workstation cluster connected by

a FDDI (Fiber-Distributed Data Interface) network. FDDI is capable of 100 Mbps

bandwidth. The LAM tests were conducted using c2c mode. Six (presumably “in

house”) benchmarks were used in the comparison. Results were obtained by sur-

rounding timing statements around a loop of communication and then dividing the

80

result by the number of iterations. Twenty of these observations (as the author

called them) were performed for each benchmark and for each message size (mes-

sage sizes ranged from 0 to 16,384 bytes), with the average of each set of twenty

reported as final results. The LAM tests were run in c2c mode with the -O option to

mpirun. This option specifies to LAM that the nodes of the parallel system are

homogeneous, thus eliminating the need for data conversion. Note that our tests

with LAM also used this option. It is unclear whether any other work (besides the

DEC experiment) discussed in this chapter used or did not use the -O option (no ref-

erences were made in any of the other published research results). MPICH requires

no such mpirun option; it conveniently detects that the parallel system is homoge-

neous. In fact, in order to run MPICH in heterogeneous mode, a proc group file, as

mentioned in chapter 3, is required.

Two tests, ping and ping-pong, were run with 2 processors (1 per node) and mea-

sured non-blocking, point-to-point communication. For message sizes up to 8,192

bytes in the ping test (one-way message transfer), LAM outperformed MPICH. For

example, the time reported for LAM on a 2,000 byte message transfer is approxi-

mately 0.00051 seconds versus an MPICH time of approximately 0.00081 seconds.

MPICH outperformed LAM in the ping test for message sizes greater than 8,192

bytes. The reported time for MPICH is approximately 0.0024 seconds versus

approximately 0.0040 seconds for LAM for a message size of 10,200 bytes. The

81

8192 byte size discrepancy is also evident in the ping-pong (round trip message

transfer) test, although the differences are not as dramatic, and the performance of

both libraries is the same at 15,000 bytes, with LAM actually performing slightly

faster between 15,000 and 16,384 bytes.

The author concluded that MPICH outperformed LAM for message sizes greater

than 8,192 bytes because this is precisely the size at which LAM-6.0 distinguishes

between “short” and “long” messages, and therefore switches from eager to rendez-

vous protocol. Recall that with eager protocol, a send is allowed to complete before

a matching receive is posted, whereas a rendezvous protocol requires an acknowl-

edgement from the receive before the send can complete. One common way in

which to implement rendezvous protocol is to send the MPI message envelope first

(containing information such as the source and destination addresses, ranks of the

sender/receiver, and message tag), receive the acknowledgement, and then proceed

by sending the actual data part of the message. In MPICH-1.0.12, the protocol

change occurs at 16,384 bytes. Unfortunately, this was the longest message size

tested for any of the experiments. It would be interesting to see the performance of

both libraries for longer messages on the DEC cluster.

The four other benchmarks compared LAM and MPICH for MPI_Barrier,

MPI_Broadcast, MPI_Gather, and MPI_Alltoall. MPI_Barrier is a synchronization

82

routine, and the other three are various forms of collective communication. Note

that these are not the only forms of collective communication in MPI. The tests

were conducted with 1 processor on each node of the cluster (8 total processors).

The broadcast and all-to-all benchmarks tested message sizes in the range of 0 to

4,096 bytes. The range in the gather test was 4,000 to 16,384 bytes. No messages

are sent with a barrier call. LAM outperformed MPICH for the barrier test

(0.005185 seconds mean time versus 0.007268 seconds). For the broadcast test,

LAM outperformed MPICH for all message sizes tested except those under 400

bytes. In the gather test, LAM outperformed MPICH for message sizes under

approximately 9,500 bytes, with MPICH performing better between 9,500 bytes and

15,000 bytes. Between 15,000 bytes and 16,384 bytes, the performance of the

libraries is approximately equal. LAM consistently outperformed MPICH (at least

3X faster for all sizes tested) in the all-to-all test.

5.5 Summary

This chapter has presented results of past research relating to the performance of

LAM and MPICH. The studies are all unique in that they involve different plat-

forms, different MPICH and LAM versions, and different test programs. While it

was not possible to find a study comparing the same versions of LAM and MPICH

that were compared in this thesis, the studies mentioned here are useful in under-

83

standing the performance of previous versions of the two libraries. Another reason

the studies are useful is that they present different researchers’ ideas as to why one

library might perform better than the other on a given platform.

With a few exceptions, LAM outperformed MPICH in all of the studies. This com-

mon result does not imply that LAM is faster than MPICH in general. Rather, the

studies (including this study) indicate that LAM runs faster on clusters. It is very

probable that there are clusters running MPICH programs faster than they run LAM

programs, especially considering the tuning potential and numerous configure

options of both libraries. However, this thesis, along with the studies presented

here, show that LAM is generally faster than MPICH on the clusters tested.

84

6 Conclusions and Future Work

We tested the performance of LAM and MPICH on three different categories of

experiments: High Performance Linpack (HPL), the benchmark used by the top 500

list; su3_rmd, an MPI application used in physics research; and a series of band-

width comparisons. LAM outperformed MPICH in nearly every Linpack test.

Overall, LAM outperformed MPICH on Linpack by 2.6 % on average. The highest

LAM score was 9.184 GFLOPS (4x6 grid; N = 25000). The highest MPICH score

was 9.014 GFLOPS (4x6 grid; N = 25000). Both applications scaled as the number

of processors was increased for all problem sizes except for the smallest two, N = 2k

and N = 4k. This suggests that communication time becomes an unnecessary over-

head for these problem sizes.

LAM and MPICH performed similarly on su3_rmd for most of the problem sizes

tested. For the largest problem size, with the highest number of processors used, the

execution time of LAM was 1,683 seconds versus an execution time of 1,831 sec-

onds for MPICH, which is clearly significant. Because we experienced little varia-

tion among the repeated runs, the difference can be viewed as statistically

significant. The MPI point-to-point construct used by su3_rmd is MPI_Ssend/

MPI_Irecv. We tested this combination, along with seven other point-to-point com-

binations. In every case, LAM outperformed MPICH. The performance difference

85

on MPI_Ssend/MPI_Irecv partially explains why LAM performed better than

MPICH on su3_rmd for the large problem size.

One area of future research involves tuning and optimizing the LAM and MPICH

libraries. The libraries were tested here without changing any of the configuration

options, except that we used ssh (secure shell) instead of the default choice of rsh for

both libraries. We did not change constants such as socket buffer sizes or protocol

crossover sizes. The MPICH developers are in the process of developing a fully

MPI-2 compliant implementation, and the frequency of LAM releases and the fact

that LAM already provides dynamic process creation suggest that the LAM team

will release a MPI-2 compliant implementation as well. It would be interesting to

tune and optimize future MPI-2 compliant LAM and MPICH releases using pro-

grams involving MPI-2 functions.

Another area of future work involves detailed profiling of LAM and MPICH on

su3_rmd and other “real life” applications. We attempted to profile using MPE and

Jumpshot, but were unable to obtain aggregate function call times, and the trace files

produced for LAM seemed to be erroneous. MPE and Jumpshot were valuable,

however, for clearly displaying all MPI functions used by su3_rmd. It would be

valuable to further analyze the performance of LAM and MPICH using a tool that

provides trace file data and profiling information such as CPU time, communication

time, and I/O time, as well as finer-grained information.

86

Running applications on the entire cluster remains to be done. With 48 nodes (96

processors), we would be able to more fully examine the scaling characteristics of

the applications and of the cluster itself. Also, it would be interesting to examine a

variety of MPI applications, each having a different communication pattern, to be

able to determine empirically those kinds of MPI applications that scale well on the

cluster architecture.

87

7 References

1. K. Andersson, D. Aronsson, and P. Karlsson. “An Evaluation of the System
Performance of a Beowulf Cluster”. National Supercomputer Centre in Linkop-
ing Sweden, Internal Report No. 2001:4. http://www.nsc.liu.se/support/articles/
benchmarking.pdf. 2001.

2. R. Buyya (ed) High Performance Cluster Computing: Programming and Appli-
cations, Volume 2. Prentice Hall, NJ, USA, 1999.

3. P.H Carns, W.B Ligon III, S.P. McMillan, and R.B. Ross. “An Evaluation of
Message Passing Implementations on Beowulf Workstations”. Proceedings of
the 1999 Extreme Linux Workshop. June, 1999.

4. A. Chan, W. Gropp, and E. Lusk. “User’s Guide for MPE: Extensions for MPI
Programs”. Mathematics and Computer Science Division, Argonne National
Laboratory.

5. J. Dongarra, J. Bunch, C. Moller, and G.W. Stewart. “LINPACK User’s Guide”.
SIAM Publications. Philadelphia, PA. 1979.

6. S. Browne, J. Dongarra, and K. London. “Review of Performance Analysis
Tools for MPI Parallel Programs”. http://www.cs.utk.edu/~browne/perftools-
review. December, 1997.

7. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine - A User’s Guide and Tutorial for Network Par-
allel Computing. MIT Press, 1994.

8. W. Gropp and E. Lusk. “Reproducible Measurements of MPI Performance
Characteristics”. Argonne National Laboratory, 1999 PVM MPI Meeting. http:/
/www.mcs.anl.gov/~gropp/bib/papers/1999/pvmmpi99/mpptest.pdf. 1999.

9. W. Gropp, E. Lusk, N. Doss, and A. Skellum. “A High-Performance, Portable
Implementation of the MPI Message Passing Interface Standard”. Parallel Com-
puting, 22(6):789-828, September, 1996.

10. W. Gropp and E. Lusk. “User’s Guide for mpich, a Portable Implementation of
MPI”. Mathematics and Computer Science Division, Argonne National Labora-
tory. 1996.

88

11. W. Gropp and E. Lusk. “MPICH Working Note: The Second-Generation ADI
for the MPICH Implementation of MPI”. Mathematics and Computer Science
Division, Argonne National Laboratory. 1996.

12. W. Gropp and E. Lusk. Using MPI: Portable Parallel Programming with the
Message Passing Interface. Second Edition, MIT Press, 1999.

13. N. Nevin, “The Performance of LAM 6.0 and MPICH 1.0.12 on a Workstation
Cluster”. Ohio Supercomputing Center, Technical Report OSC-TR-1196-4,
Columbus, Ohio, 1996.

14. H. Ong, and P. Farrell. “Performance Comparison of LAM/MPI, MPICH, and
MVICH on a Linux Cluster connected by a Gigabit Ethernet Network”. Pro-
ceedings of the 4th Annual Linux Showcase & Conference, Atlanta, GA, October
10-14, 2000.

15. P. Pacheco. Parallel Programming With MPI. Morgan Kaufman Publishers,
Inc. San Francisco, CA. 1997.

16. G. F. Pfister. In Search of Clusters (second edition). Prentice Hall, NJ. 1998.

17. W. Saphir. “A Survey of MPI Implementations”. Lawrence Berkeley National
Laboratory, University of California, Berkeley, CA, Nov. 6, 1997. Available
from: http://www-library.lbl.gov/docs/LBNL/410/25/PDF/LBNL-41205.pdf.

18. S. Sistare and C. Jackson. “Ultra-High Performance Communication with MPI
and the Sun Fire Link interconnect”. Proceedings of the IEEE/ACM SC2002
Conference, 2002.

19. Q. Snell, A Mikler, and J. Gustafson. “NetPIPE: Network Protocol Independent
Performance Evaluator”. Ames Laboratory, Scalable Computing Lab. Iowa
State, 1997.

20. M. Snir, S. Otto, S Huss-Lederman, D. Walker and J. Dongarra. MPI: The Com-
plete Reference. MIT Press, 1995.

21. T. Sterling, D. Becker, D. Savarese, J. Dorband, U. Ranawake, and C. Packer.
“BEOWULF: A Parallel Workstation for Scientific Computation”. Proceedings
of the 1995 International Conference on Parallel Processing (IPCC), Aug.
1995, Vol. 1, pp. 11-14.

89

22. T. Sterling, J. Salmon, D. Becker, and D. Savarese. How to Build a Beowulf: A
Guide to the Implementation and Application of PC Clusters. MIT Press, 1999.

23. J. Traff. “Implementing the MPI Process Topology”. Proceedings of the IEEE/
ACM SC2002 Conference, 2002.

24. J. Vetter. “Performance Analysis of Distributed Applications using Automatic
Classification of Communication Inefficiencies”. ACM International Confer-
ence on Supercomputing, 2000 (Santa Fe, N.M.).

25. J. Vetter and A. Yoo. “An Empirical Performance Evaluation of Scalable Scien-
tific Applications.” Proceedings of the IEEE/ACM SC2002 Conference, 2002.

26. B. Wilkinson and M. Allen. Parallel Programming: Techniques and Applica-
tions Using Networked Workstations and Parallel Computers. Prentice Hall,
N.J. 1999.

27. “MPICH and LAM Performance on Astrolab”. http://www-hpcc.astro.washing-
ton.edu/faculty/trq/brandon/perform.html/. 1999.

28. “MPI Performance Topics”. http://www.llnl.gov/computing/tutorials/work-
shops/workshop/ mpi_performance/MAIN.html. July, 2002.

29. “Porting the LAM-MPI 6.3 Communication Layer”. Document authored by the
“LAM Team”, available from the http://www.lam-mpi.org. March 8, 2000.

30. http://www.lam-mpi.org

31. http://www.top500.org/

32. http://www.netlib.org/pvm3/book/node8.html.

33. http://www-unix.mcs.anl.gov/mpi/mpich/

34. http://www.mpi-forum.org

35. HPL Linpack Benchmark: http://www.netlib.org/benchmark/hpl/

36. The su3_rmd program was obtained from the MIMD Lattice Computation
(MILC) Collaboration: http://media4.physics.indiana.edu/~sg/milc.html

90

Appendix A: Sample HPL.dat Input File

 HPLinpack benchmark input file
 Innovative Computing Laboratory, University of Te nnessee
 HPL.out output file name (if any)
 1 device out (6=stdout,7=stderr,file)
 6 # of problems sizes (N)
 2000 4000 6000 8000 10000 15000 Ns
 1 # of NBs
 150 NBs
 1 # of process grids (P x Q)
 4 Ps
 6 Qs
 16.0 threshold
 1 # of panel fact
 2 PFACTs (0=left, 1=Crout, 2=Right)
 1 # of recursive stopping criterium
 4 NBMINS (>= 1)
 1 # of panels in recursion
 2 NDIVs
 1 # of recursive panel fact.
 2 RFACTs (0=left, 1=Crout, 2=Right)
 1 # of broadcast
 1 BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Ln g,5=LnM)
 1 # of lookahead depth
 1 DEPTHs (>=0)
 2 SWAP (0=bin-exch,1=long,2=mix)
 80 swapping threshold
 0 L1 in (0=transposed,1=no-transposed) form
 0 U in (0=transposed,1=no-transposed) form
 1 Equilibration (0=no,1=yes)
 8 memory alignment in double (> 0)

91

Appendix B: Linpack Results for Fixed Problem Sizes

Fixed Problem Size (N = 2k)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

1 2 4 8 10 12 16 20 24

G
flo

ps

Number of Processors

LAM MPICH

Fixed Problem Size (N = 4k)

0.0

0.5
1.0

1.5

2.0
2.5

3.0

1 2 4 8 10 12 16 20 24

G
flo

ps

Number of Processors

LAM MPICH

92

Fixed Problem Size (N = 6k)

0

1

2

3

4

1 2 4 8 10 12 16 20 24

G
flo

ps

Number of Processors

LAM MPICH

Fixed Problem Size (N = 8k)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

2x2 (4) 2x4 (8) 2x5 (10)3x4 (12)4x4 (16)4x5 (20)4x6 (24)

G
flo

ps

Grid Size (Number of Processors)

LAM MPICH

93

Fixed Problem Size (N = 10k)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

2x2 (4) 2x4 (8) 2x5 (10)3x4 (12)4x4 (16)4x5 (20) 4x6 (24)

G
flo

ps

Grid Size (Number of Processors)

LAM MPICH

Fixed Problem Size (N = 15k)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5

2x4 (8) 2x5 (10) 3x4 (12) 4x4 (16) 4x5 (20) 4x6 (24)

G
flo

ps

Grid Size (Number of Processors)

LAM MPICH

94

Fixed Problem Size (N = 20k)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

4x4 (16) 4x5 (20) 4x6 (24)

G
flo

ps

Grid Size (Number of Processors)

LAM MPICH

Fixed Problem Size (N = 25k)

5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0

4x6 (24)

G
flo

ps

Grid Size (Number of Processors)

LAM MPICH

95

Appendix C: Linpack Results for Fixed Grid Sizes

Fixed Grid Size 1x1 (1 processor)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

2k 4k 6k

G
flo

ps

Problem Size (N)

LAM MPICH

Fixed Grid Size 1x2 (2 processors)

0.0

0.2
0.4

0.6

0.8
1.0

1.2

2k 4k 6k

G
flo

ps

Problem Size (N)

LAM MPICH

96

Fixed Grid Size 2x2 (4 processors)

0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2k 4k 6k 8k 10k

G
flo

ps

Problem Size (N)

LAM MPICH

Fixed Grid Size 2x4 (8 processors)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2k 4k 6k 8k 10k 15k

G
flo

ps

Problem Size (N)

LAM MPICH

97

Fixed Grid Size 2x5 (10 processors)

0.0
0.5

1.0
1.5
2.0

2.5
3.0
3.5

4.0
4.5

2k 4k 8k 10k 15k 20k

G
flo

ps

Problem Size (N)

LAM MPICH

Fixed Grid Size 3x4 (12 processors)

0.0
0.5

1.0
1.5
2.0

2.5
3.0
3.5

4.0
4.5

2k 4k 6k 8k 10k 15k

G
flo

ps

Problem Size (N)

LAM MPICH

98

Fixed Grid Size 4x4 (16 processors)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

2k 4k 6k 8k 10k 15k 20k

G
flo

ps

Problem Size (N)

LAM MPICH

Fixed Grid Size 4x5 (20 Processors)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5

2k 4k 6k 8k 10k 15k 20k

G
flo

ps

Problem Size (N)

LAM MPICH

99

Fixed Grid Size 4x6 (24 processors)
Fixed Grid Size (4x6)

0
1
2
3
4

5
6
7
8
9

10

2k 4k 6k 8k 10k 15k 20k 25k

G
flo

ps

P roblem Size (N)

LAM MPICH

100

Appendix D: Standard Deviation for Linpack Repeated Runs

Grid Size Problem Size LAM MPICH

1x1
1x1
1x1

 2,000
 4,000
 6,000

0.00067
0.00039
0.00037

0.00010
0.00024
0.00019

1x2
1x2
1x2

 2,000
 4,000
 6,000

0.00745
0.00303
0.00098

0.00422
0.00040
0.00426

2x2
2x2
2x2
2x2
2x2

 2,000
 4,000
 6,000
 8,000
 10,000

0.01503
0.00759
0.00133
0.00089
0.00407

0.00818
0.00402
0.00102
0.00075
0.00387

2x4
2x4
2x4
2x4
2x4
2x4

 2,000
 4,000
 6,000
 8,000
 10,000
 15,000

0.01127
0.01858
0.01559
0.02128
0.00821
0.00934

0.00150
0.01977
0.00811
0.01376
0.01076
0.08515

2x5
2x5
2x5
2x5
2x5
2x5

 2,000
 4,000
 6,000
 8,000
 10,000
 15,000

0.01243
0.00997
0.02681
0.02042
0.01124
0.00299

0.01273
0.00492
0.01374
0.01269
0.00595
0.02693

3x4
3x4
3x4
3x4
3x4
3x4

 2,000
 4,000
 6,000
 8,000
 10,000
 15,000

0.01028
0.02926
0.03099
0.03187
0.01525
0.04227

0.00174
0.01991
0.00582
0.01266
0.01105
0.04408

101

Grid Size Problem Size LAM MPICH

4x4
4x4
4x4
4x4
4x4
4x4

 2,000
 4,000
 6,000
 8,000
 10,000
 15,000

0.03306
0.04882
0.04596
0.02209
0.07670
0.02822

0.04468
0.02836
0.07677
0.02657
0.03000
0.01927

4x5
4x5
4x5
4x5
4x5
4x5
4x5

 2,000
 4,000
 6,000
 8,000
 10,000
 15,000
 20,000

0.03929
0.06208
0.09246
0.05180
0.07972
0.03672
0.02682

0.02527
0.01474
0.03542
0.06016
0.08071
0.06141
0.07099

4x6
4x6
4x6
4x6
4x6
4x6
4x6
4x6

 2,000
 4,000
 6,000
 8,000
 10,000
 15,000
 20,000
 25,000

0.04023
0.02420
0.07464
0.03081
0.05695
0.05854
0.08662
0.06681

0.02713
0.03581
0.04133
0.05022
0.06211
0.06190
0.03569
0.02211

102

Appendix E: Standard Deviation for su3_rmd Repeated Runs

Problem Size Processors
LAM
Wall

LAM
CPU

MPICH
WALL

MPICH
CPU

Experiment 1
nx=ny=nz=4,
nt=6,
traj=50

 2
 4
 8
16

0.09287
0.07950
0.13691
0.07782

0.10419
0.05083
0.10315
0.16228

0.03929
0.25492
0.35704
0.38370

0.00800
0.25492
0.35704
0.38370

Experiment 2
nx=ny=nz=6,
nt=12,
traj=75

 2
 4
 8
16

1.39872
0.33223
0.24848
0.34971

0.19906
0.62933
0.10778
0.11825

0.08405
0.18203
0.11016
1.08901

0.09091
0.20675
0.09988
1.18567

Experiment 3
nx=ny=nz=8,
nt=16,
traj=100

 2
 4
 8
16

0.09209
0.29842
0.52518
0.41639

0.09330
0.66479
0.45579
0.30688

0.17577
0.41761
0.34681
0.35491

0.16017
0.42544
0.43961
0.44512

Experiment 4
nx=ny=nz=12,
nt=24,
traj=150

 4
 8
16

0.83731
0.45913
0.29600

1.13228
2.56203
0.39520

0.88773
1.17123
1.39421

0.66028
0.88490
0.52378

Experiment 5
nx=ny=nz=16,
nt=32,
traj=200

16 1.61788 0.61788 0.63312 1.06683

103

Appendix F: Bandwidth Comparison Graphs

Send/Recv - Short Messages

2

3

4

5

6

7

8

9

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

M
B

/s
ec

Message Size (X 100 Bytes)

LAM MPICH

Send/Recv - Medium Messages

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

M
B

/s
ec

Message Size (X 1000 bytes)

LAM MPICH

104

Send/Recv - Long Messages

2
3
4
5
6
7
8
9

10
11
12

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
B

/s
ec

Message Size (X 100k Bytes)

LAM MPICH

Send/Irecv - Short Messages

4

6

8

10

12

14

16

18

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

M
B

/s
ec

Message Size (X 100 Bytes)

LAM MPICH

105

Send/Irecv - Medium Messages

10

12

14

16

18

20

22

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

M
B

/s
ec

Message Size (X 1000)

LAM MPICH

Send/Irecv - Long Messages

2

3

4

5

6

7

8

9

10

11

12

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
B

/s
ec

Message Size (X 100k Bytes)

LAM MPICH

106

Isend/Recv - Short Messages

0
1
2

3
4
5
6

7
8
9

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

M
B

/s
ec

Message Size (X 100 Bytes)

LAM MPICH

Isend/Recv - Meduim Messages

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

M
B

/s
ec

Message Size (X 1000 Bytes)

LAM MPICH

107

Isend/Recv - Long Messages

2

4

6

8

10

12

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
B

/s
ec

Message Size (X 100k Bytes)

LAM MPICH

Isend/Irecv - Short Messages

4

6

8

10

12

14

16

18

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

M
B

/s
ec

Message Size (X 100 Bytes)

LAM MPICH

108

Isend/Irecv - Medium Messages

10

12

14

16

18

20

22

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

M
B

/s
ec

Message Size (X 1000 Bytes)

LAM MPICH

Isend/Irecv - Long Messages

10
11
12

13
14
15
16

17
18
19

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
B

/s
ec

Message Size (X 100k Bytes)

LAM MPICH

109

Ssend/Recv - Short Messages

0

1

2

3

4

5

6

7

8

9

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

M
B

/s
ec

Message Size (X 100 Bytes)

LAM MPICH

Ssend/Recv - Medium Messages

6

7

8

9

10

11

12

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

M
B

/s
ec

Message Size (X 1000 Bytes)

LAM MPICH

110

Ssend/Recv - Long Messages

2
3
4
5
6
7
8
9

10
11
12

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
B

/s
ec

Message size (X 100k Bytes)

LAM MPICH

Ssend/Irecv - Short Messages

0

2

4

6

8

10

12

14

16

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

M
B

/s
ec

Message Size (X 100 Bytes)

LAM MPICH

111

Ssend/Irecv - Medium Messages

6

8

10

12

14

16

18

20

22

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

M
B

/s
ec

Message size (X 1000 Bytes)

LAM MPICH

Ssend/Irecv - Long Messages

11.0

11.5

12.0

12.5

13.0

13.5

14.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
B

/s
ec

Message Size (X 100k Bytes)

LAM MPICH

112

Issend/Recv - Short Messages

0
1
2
3
4
5
6
7
8
9

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

M
B

/s
ec

Message Size (X 100 Bytes)

LAM MPICH

Issend/Recv - Medium Messages

6

7

8

9

10

11

12

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

M
B

/s
ec

Message Size (X 1000 Bytes)

LAM MPICH

113

Issend/Recv - Long Messages

10

11

12

13

14

15

16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
B

/s
ec

Message Size (X 100k Bytes)

LAM MPICH

Issend/Irecv - Short Messages

0

2

4

6

8

10

12

14

16

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

M
B

/s
ec

Message Size (X 100 Bytes)

LAM MPICH

114

Issend/Irecv - Medium Messages

10

12

14

16

18

20

22

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

M
B

/s
ec

Message Size (X 1000 Bytes)

LAM MPICH

Issend/Irecv - Long Messages

10
11
12
13
14
15
16
17
18
19

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
B

/s
ec

Message Size (X 1000k Bytes)

LAM MPICH

115

Appendix G: Bandwidth Raw Data

Short Messages

Construct
Message
Size

LAM
Best Avg Worst

MPICH
Best Avg Worst

Send/Recv 300
600
900

1,200
1,500
1,800
2,100
2,400
2,700
3,000
3,300
3,600
3,900
4,200
4,500
4,800

2.79
3.86
4.42
4.75
4.98
5.80
6.46
6.62
6.78
7.14
7.69
8.04
8.08
8.10
8.22
8.59

2.76
3.83
4.39
4.74
4.93
5.72
6.39
6.56
6.72
7.04
7.59
7.98
8.05
8.05
8.16
8.53

2.63
3.73
4.28
4.60
4.79
5.61
6.25
6.43
6.57
6.77
7.44
7.84
7.89
7.85
8.05
8.43

2.35
3.41
4.00
4.37
4.71
5.55
6.10
6.37
6.51
6.80
7.33
7.68
7.72
7.80
7.92
8.26

2.30
3.34
3.95
4.33
4.64
5.44
6.01
6.24
6.42
6.70
7.26
7.62
7.68
7.74
7.85
8.17

2.08
3.08
3.71
3.89
4.50
5.33
5.80
6.02
6.24
6.53
7.10
7.49
7.54
7.59
7.57
7.70

Send/Irecv 300
600
900

1,200
1,500
1,800
2,100
2,400
2,700
3,000
3,300
3,600
3,900
4,200
4,500
4,800

8.00
14.12
12.33
12.31
24.58
38.72
33.59
28.24
26.21
24.00
28.94
28.58
25.74
25.45
25.94
28.23

5.40
8.13
8.93
9.60

13.51
14.81
15.59
15.92
16.20
16.21
16.86
17.36
17.53
17.60
17.62
17.96

3.73
4.86
6.23
7.29
5.72
6.37
7.17
7.96
8.68
9.01
9.85

10.51
11.10
11.31
11.26
11.52

12.24
21.82
25.00
24.49
24.19
29.03
29.37
22.75
23.28
23.44
27.97
26.18
24.45
24.28
25.50
25.81

5.66
10.62
12.68
13.37
13.61
14.45
15.01
15.09
15.56
14.37
16.56
17.03
17.11
17.23
17.16
17.57

2.79
3.69
4.51
4.88
5.49
6.23
7.28
8.19
8.49
8.53
9.19

10.27
10.86
10.87
10.88
11.37

116

Construct
Message
Size

LAM
Best Avg Worst

MPICH
Best Avg Worst

Isend/Recv 300
600
900

1,200
1,500
1,800
2,100
2,400
2,700
3,000
3,300
3,600
3,900
4,200
4,500
4,800

2.67
3.73
4.32
4.66
4.93
5.75
6.42
6.64
6.79
7.09
7.61
7.97
8.00
8.08
8.19
8.56

2.64
3.70
4.28
4.63
4.84
5.66
6.30
6.55
6.71
6.99
7.52
7.92
7.95
8.03
8.10
8.46

2.44
3.52
4.10
4.49
4.65
5.15
5.95
6.37
6.54
6.84
7.28
7.78
7.72
7.90
7.94
6.83

2.36
3.41
4.00
4.40
4.74
5.56
6.11
6.36
6.51
6.79
7.37
7.71
7.72
7.76
7.92
8.28

2.31
3.35
3.95
4.34
4.66
5.44
6.00
6.24
6.41
6.70
7.26
7.63
7.68
7.72
7.86
8.18

2.11
3.20
3.74
4.20
4.55
5.26
5.32
5.99
6.25
6.56
7.07
7.47
7.55
7.59
7.73
7.99

Isend/Irecv 300
600
900

1,200
1,500
1,800
2,100
2,400
2,700
3,000
3,300
3,600
3,900
4,200
4,500
4,800

7.15
15.61
22.77
24.00
24.39
33.93
33.33
26.23
25.96
26.66
29.20
28.57
25.57
25.76
25.94
27.66

5.24
8.22

11.89
11.89
13.95
14.81
15.49
15.85
16.21
16.33
16.77
17.36
17.43
17.58
17.58
17.97

3.85
4.67
5.03
5.58
5.62
6.59
7.33
8.23
8.64
8.97
9.61

10.36
11.24
11.14
11.14
11.62

11.54
20.00
24.66
24.00
23.44
28.13
28.19
23.65
23.58
26.20
23.91
23.92
24.00
23.86
24.06
23.65

5.98
10.45
12.99
13.34
13.67
14.45
15.06
15.13
15.56
14.44
16.50
16.97
17.09
17.19
17.12
17.53

2.78
3.70
4.51
5.03
5.55
6.41
7.25
7.96
8.40
8.24

10.03
10.79
11.03
11.13
11.19
11.97

117

Construct
Message
Size

LAM
Best Avg Worst

MPICH
Best Avg Worst

Ssend/Recv 300
600
900

1,200
1,500
1,800
2,100
2,400
2,700
3,000
3,300
3,600
3,900
4,200
4,500
4,800

2.54
3.48
4.06
4.43
4.76
5.59
6.34
6.61
6.76
6.95
7.47
7.75
7.77
7.84
8.09
8.48

2.42
3.43
4.03
4.40
4.68
5.53
6.27
6.55
6.70
6.86
7.34
7.65
7.68
7.75
7.98
8.37

2.24
3.33
3.92
4.02
4.55
5.31
6.12
6.44
6.58
6.74
7.14
7.51
7.54
7.64
7.80
8.23

1.08
1.81
2.37
2.82
3.15
3.73
4.18
4.48
4.70
4.98
5.41
5.75
5.93
6.06
6.22
6.52

1.05
1.77
2.33
2.76
3.08
3.65
4.10
4.40
4.64
4.91
5.33
5.67
5.86
5.98
6.13
6.43

0.97
1.66
2.21
2.05
2.91
3.42
3.74
4.26
4.49
4.75
5.17
5.47
5.60
5.72
5.92
6.27

Ssend/Irecv 300
600
900

1,200
1,500
1,800
2,100
2,400
2,700
3,000
3,300
3,600
3,900
4,200
4,500
4,800

3.19
5.04
6.27
7.12
7.64
9.00
9.86

10.50
11.07
11.63
12.52
13.14
13.47
13.70
13.95
14.46

3.09
4.91
6.17
6.96
7.50
8.77
9.62

10.30
10.86
11.48
12.28
12.99
13.16
13.53
13.64
14.32

2.87
4.62
5.96
6.70
7.25
8.43
9.31

10.02
10.31
11.15
11.85
12.61
12.79
13.23
13.29
12.40

1.42
2.30
2.92
3.37
3.65
4.34
4.86
5.16
5.39
5.69
6.13
6.50
6.67
6.76
6.88
7.20

1.33
2.21
2.80
3.26
3.56
4.21
4.72
5.04
5.26
5.52
6.01
6.36
6.55
6.65
6.77
7.10

1.19
2.04
2.54
3.07
3.33
3.95
4.44
4.84
5.07
5.20
5.65
6.11
6.20
6.39
6.39
6.95

118

Construct
Message
Size

LAM
Best Avg Worst

MPICH
Best Avg Worst

Issend/Recv 300
600
900

1,200
1,500
1,800
2,100
2,400
2,700
3,000
3,300
3,600
3,900
4,200
4,500
4,800

2.47
3.56
4.16
4.52
4.70
5.56
6.29
6.56
6.72
6.92
7.42
7.74
7.80
7.84
8.06
8.44

2.42
3.54
4.14
4.48
4.64
5.48
6.21
6.50
6.66
6.84
7.31
7.62
7.67
7.73
7.96
8.32

2.30
3.44
4.07
4.38
4.48
5.34
6.07
6.38
6.58
6.68
7.17
7.44
7.53
7.59
7.81
8.14

1.09
1.85
2.41
2.84
3.15
3.76
4.20
4.49
4.74
5.02
5.43
5.78
5.95
6.06
6.23
6.52

1.06
1.80
2.37
2.80
3.10
3.67
4.11
4.41
4.65
4.93
5.36
5.69
5.88
6.00
6.15
6.45

0.96
1.70
2.24
2.62
2.92
3.48
3.66
4.28
4.50
4.70
5.14
5.39
5.64
5.77
5.94
6.20

Issend/Irecv 300
600
900

1,200
1,500
1,800
2,100
2,400
2,700
3,000
3,300
3,600
3,900
4,200
4,500
4,800

3.43
5.33
6.64
7.50
7.92
9.12
9.77

10.55
11.34
12.17
12.67
13.14
13.76
14.12
14.29
14.52

3.13
5.06
6.06
7.12
7.58
8.78
9.64

10.39
10.99
11.65
12.38
13.01
13.51
13.96
13.83
14.25

2.79
4.49
5.84
6.72
7.37
8.53
9.19

10.02
10.67
11.21
11.93
12.57
12.96
13.46
13.41
13.78

2.39
3.99
5.17
6.03
6.83
8.11
9.35
9.82

10.04
10.56
11.62
12.41
12.62
12.65
12.93
13.83

2.10
3.57
4.67
5.55
6.04
7.13
7.94
8.49
9.20
9.67

10.53
11.00
11.53
11.83
12.02
12.54

1.67
2.92
3.91
4.89
3.54
3.93
4.49
4.81
8.08
8.00
5.86
6.15
6.23
6.50

10.65
6.79

119

Medium Messages

Construct
Message
Size

LAM
Best Avg Worst

MPICH
Best Avg Worst

Send/Recv 5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000
55,000
60,000
65,000
70,000
75,000
80,000
85,000
90,000
95,000

100,000

8.73
9.89

10.58
10.74
10.97
11.10
11.16
11.24
11.26
11.36
11.33
11.41
11.42
11.24
11.24
11.28
11.31
11.32
11.35
11.35

8.66
9.86

10.54
10.71
10.95
11.09
11.14
11.22
11.24
11.35
11.31
11.40
11.41
11.22
11.23
11.27
11.30
11.31
11.34
11.34

7.39
9.62

10.46
10.67
10.88
11.02
11.11
11.20
11.22
11.33
11.29
11.38
11.39
11.20
11.21
11.25
11.29
11.30
11.33
11.27

8.39
9.51

10.14
10.50
10.69
10.75
10.83
10.94
10.91
10.98
10.95
11.03
10.99
11.02
11.03
11.05
11.04
11.04
11.06
11.03

8.27
9.45

10.10
10.46
10.65
10.72
10.80
10.91
10.89
10.95
10.92
11.01
10.97
11.00
11.01
11.03
11.02
11.03
11.05
11.01

7.49
9.12
9.93

10.25
10.58
10.65
10.76
10.78
10.84
10.78
10.89
10.97
10.88
10.98
10.93
11.00
11.01
10.99
11.01
10.90

Send/Irecv 5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000
55,000
60,000
65,000
70,000
75,000
80,000
85,000
90,000
95,000

100,000

44.62
23.84
24.33
23.05
23.53
22.26
22.91
22.98
22.91
22.65
22.74
23.39
22.53
11.33
11.33
11.36
11.39
11.39
11.42
11.42

18.29
19.72
20.64
20.85
21.25
21.54
21.27
19.64
21.45
21.76
21.42
19.77
19.96
11.30
11.31
11.35
11.38
11.38
11.41
11.41

9.89
16.04
17.74
17.56
19.06
20.01
11.43
11.49
11.44
11.51
11.51
11.46
11.96

9.80
11.29
11.33
11.36
11.37
11.39
11.33

43.86
23.64
23.53
21.31
20.33
20.15
18.05
17.06
16.07
15.70
14.42
14.83
15.08
13.80
13.84
13.52
13.68
13.13
13.28
13.63

17.88
19.21
19.76
20.31
19.47
17.83
16.47
15.64
15.25
14.77
14.31
14.15
13.91
13.67
13.60
13.46
13.29
13.09
13.14
12.97

9.50
14.87
16.46
19.37
18.47
17.13
16.27
15.28
14.87
14.40
13.46
13.77
12.79
13.29
13.44
12.96
12.92
12.86
13.10
12.28

120

Construct
Message
Size

LAM
Best Avg Worst

MPICH
Best Avg Worst

Isend/Recv 5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000
55,000
60,000
65,000
70,000
75,000
80,000
85,000
90,000
95,000

100,000

8.70
9.84

10.53
10.70
10.91
11.07
11.12
11.21
11.22
11.33
11.30
11.38
11.39
11.19
11.19
11.22
11.26
11.27
11.30
11.31

8.63
9.81

10.49
10.66
10.89
11.05
11.10
11.19
11.20
11.32
11.28
11.37
11.38
11.17
11.17
11.21
11.25
11.26
11.29
11.29

8.33
9.72

10.41
10.59
10.85
11.01
11.06
11.16
11.17
11.30
10.99
11.33
11.23
11.15
11.13
11.20
11.23
11.24
11.27
11.25

8.38
9.51

10.14
10.51
10.67
10.75
10.83
10.94
10.91
10.97
10.93
11.02
10.99
11.01
11.03
11.04
11.03
11.04
11.06
11.02

8.28
9.46

10.09
10.45
10.65
10.72
10.80
10.91
10.89
10.95
10.91
11.00
10.97
11.00
11.01
11.02
11.01
11.02
11.04
11.01

7.61
9.27
9.93

10.37
10.61
10.69
10.65
10.86
10.84
10.86
10.62
10.84
10.94
10.97
10.99
11.00
10.93
10.96
11.02
10.97

Isend/Irecv 5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000
55,000
60,000
65,000
70,000
75,000
80,000
85,000
90,000
95,000

100,000

48.55
23.56
24.19
23.16
23.73
23.38
23.22
23.18
22.77
22.79
22.86
23.38
23.49
22.26
22.12
22.13
22.05
22.15
22.31
22.07

18.34
19.71
20.65
20.92
21.27
21.56
20.97
20.21
21.38
21.93
21.58
19.49
20.56
17.90
17.92
18.48
18.34
19.13
18.65
19.79

9.76
16.08
17.64
18.64
19.13
19.91
11.43
11.49
11.83
21.19
11.52
11.46
11.99

8.19
8.74
9.15
9.30
9.58

10.04
10.15

23.92
23.56
22.44
22.79
20.33
18.61
18.06
17.03
15.85
15.81
14.40
14.79
15.05
14.15
13.87
13.53
13.75
13.13
13.34
13.63

17.62
19.16
19.72
20.31
19.45
17.82
16.46
15.62
15.25
14.77
14.31
14.17
13.90
13.67
13.60
13.46
13.28
13.08
13.14
12.97

3.89
14.93
17.49
17.48
18.59
17.35
16.04
15.31
15.06
14.46
13.44
13.77
12.82
13.53
13.43
12.95
12.90
12.89
13.09
12.28

121

Construct
Message
Size

LAM
Best Avg Worst

MPICH
Best Avg Worst

Ssend/Recv 5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000
55,000
60,000
65,000
70,000
75,000
80,000
85,000
90,000
95,000

100,000

8.66
9.73

10.46
10.70
10.91
11.00
11.09
11.22
11.21
11.29
11.31
11.38
11.35
11.22
11.23
11.26
11.30
11.30
11.33
11.34

8.59
9.65

10.39
10.67
10.88
10.98
11.06
11.20
11.19
11.28
11.29
11.37
11.35
11.21
11.21
11.25
11.29
11.29
11.32
11.32

8.21
9.51

10.31
10.63
10.82
10.93
11.03
11.17
11.16
11.24
11.26
11.34
11.32
11.18
11.19
11.23
11.27
11.27
11.31
11.26

6.70
8.37
9.29
9.65

10.01
10.19
10.30
10.43
10.48
10.59
10.56
10.65
10.67
10.71
10.73
10.75
10.78
10.78
10.80
10.80

6.56
8.32
9.24
9.59
9.94

10.16
10.25
10.38
10.43
10.56
10.52
10.61
10.64
10.68
10.69
10.72
10.75
10.75
10.77
10.77

2.91
8.13
9.03
9.46
9.81

10.05
10.15
10.32
10.36
10.49
10.47
10.54
10.57
10.61
10.58
10.68
10.69
10.70
10.74
10.71

Ssend/Irecv 5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000
55,000
60,000
65,000
70,000
75,000
80,000
85,000
90,000
95,000

100,000

14.68
17.76
19.19
19.78
20.26
20.53
20.71
20.87
20.88
21.02
20.92
21.05
20.68
11.32
11.32
11.36
11.38
11.39
11.41
11.42

14.52
17.58
19.00
19.64
20.06
20.42
20.57
20.21
20.52
20.89
20.40
20.55
19.64
11.31
11.30
11.35
11.37
11.38
11.40
11.40

13.42
17.23
18.60
19.34
17.04
20.25
19.79
11.83
11.78
20.60
18.33
19.93
11.74
11.29
11.29
11.32
11.35
11.36
11.39
11.34

7.36
8.94
9.76

10.08
10.37
10.57
10.64
10.76
10.84
10.92
10.88
10.97
10.99
11.04
11.05
11.08
11.10
11.11
11.12
11.11

7.22
8.86
9.68
9.99

10.31
10.50
10.59
10.70
10.76
10.88
10.84
10.93
10.95
10.99
10.99
11.03
11.06
11.06
11.08
11.08

6.62
8.61
9.49
9.89
9.79

10.37
10.49
10.61
10.69
10.79
10.75
10.84
10.87
10.90
10.93
10.97
10.99
11.00
11.03
11.01

122

Construct
Message
Size

LAM
Best Avg Worst

MPICH
Best Avg Worst

Issend/Recv 5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000
55,000
60,000
65,000
70,000
75,000
80,000
85,000
90,000
95,000

100,000

8.62
9.69

10.40
10.68
10.88
10.98
11.06
11.20
11.18
11.28
11.28
11.36
11.34
11.19
11.19
11.23
11.26
11.27
11.30
11.31

8.54
9.60

10.35
10.64
10.85
10.96
11.04
11.17
11.16
11.26
11.27
11.35
11.33
11.17
11.17
11.22
11.25
11.26
11.29
11.30

8.06
9.47

10.28
10.57
10.79
10.93
11.02
11.15
11.14
11.23
11.25
11.33
11.31
11.15
11.15
11.20
11.23
11.25
11.28
11.28

6.70
8.37
9.29
9.64
9.99

10.19
10.29
10.41
10.48
10.58
10.55
10.65
10.68
10.69
10.71
10.76
10.78
10.78
10.80
10.79

6.51
8.31
9.23
9.58
9.94

10.15
10.25
10.37
10.44
10.55
10.52
10.61
10.64
10.67
10.68
10.72
10.75
10.74
10.77
10.76

3.54
8.12
8.52
9.27
9.84

10.05
10.18
10.07
10.34
10.45
10.46
10.55
10.57
10.61
10.60
10.65
10.70
10.70
10.70
10.71

Issend/Irecv 5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000
55,000
60,000
65,000
70,000
75,000
80,000
85,000
90,000
95,000

100,000

14.64
18.12
19.48
20.06
20.56
20.99
21.17
21.37
21.43
21.66
21.71
21.80
21.63
22.17
22.11
22.15
22.20
22.17
22.20
22.12

14.43
17.94
19.23
19.87
20.38
20.81
21.02
21.18
21.27
21.49
20.75
20.96
19.51
18.02
18.10
17.89
18.40
19.51
18.43
19.68

13.40
17.54
19.01
19.64
20.21
20.68
20.33
21.00
21.09
21.28
11.96
11.90
12.09

8.39
8.57
9.16
9.45
9.77

10.04
10.35

14.14
16.95
18.82
19.18
18.88
18.67
17.48
16.26
15.37
15.79
13.84
14.27
13.43
13.71
13.87
13.04
13.55
12.81
13.06
12.62

12.72
16.33
17.97
18.67
17.76
16.00
15.13
14.65
14.11
13.89
13.50
13.41
13.16
13.06
12.95
12.83
12.74
12.64
12.60
12.53

3.76
15.23

9.44
17.31

9.73
13.25
13.42
13.12
12.61
12.27
12.89
12.94
12.83
12.78
12.14
12.48
11.99
12.35
12.34
12.25

123

Long Messages

Construct
Message
Size

LAM
Best Avg Worst

MPICH
Best Avg Worst

Send/Recv 200k
300k
400k
500k
600k
700k
800k
900k

1,000k
1,100k
1,200k
1,300k
1,400k
1,500k
1,600k
1,700k
1,800k
1,900k
2,000k

11.55
11.62
11.66
11.68
11.70
11.71
11.72
11.72
11.73
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74
11.75
11.75

11.55
11.62
11.66
11.68
11.70
11.71
11.72
11.72
11.73
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74
11.74
11.75

11.54
11.62
11.65
11.67
11.68
11.70
11.71
11.72
11.72
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74
11.70
11.75

10.93
11.01
11.05
11.08
11.10
11.11
11.12
11.12
11.13
11.13
11.13
11.14
11.14
11.14
11.14
11.14
11.14
11.14
11.15

10.91
11.00
11.05
11.08
11.10
11.11
11.11
11.12
11.12
11.13
11.13
11.13
11.13
11.14
11.14
11.14
11.14
11.14
11.14

10.85
10.99
10.94
11.06
11.08
11.10
11.10
11.11
11.11
11.12
11.12
11.13
11.13
11.13
11.13
11.13
11.13
11.13
10.88

Send/Irecv 200k
300k
400k
500k
600k
700k
800k
900k

1,000k
1,100k
1,200k
1,300k
1,400k
1,500k
1,600k
1,700k
1,800k
1,900k
2,000k

11.59
11.65
11.68
11.70
11.71
11.72
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74
11.74
11.75
11.75
11.75
11.75

11.58
11.64
11.68
11.70
11.71
11.72
11.72
11.73
11.73
11.74
11.74
11.74
11.74
11.74
11.74
11.75
11.75
11.75
11.75

11.57
11.64
11.67
11.69
11.71
11.69
11.72
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74
11.74
11.74
11.75
11.75

11.29
11.36
11.38
11.40
11.42
11.43
11.43
11.44
11.45
11.45
11.45
11.45
11.46
11.46
11.46
11.46
11.46
11.46
11.46

11.27
11.35
11.37
11.40
11.41
11.42
11.43
11.43
11.44
11.44
11.45
11.45
11.45
11.45
11.45
11.45
11.46
11.46
11.46

10.73
11.33
11.34
11.37
11.39
11.40
11.41
11.43
11.43
11.44
11.44
11.44
11.37
11.42
11.44
11.45
11.45
11.45
11.46

124

Construct
Message
Size

LAM
Best Avg Worst

MPICH
Best Avg Worst

Isend/Recv 200k
300k
400k
500k
600k
700k
800k
900k

1,000k
1,100k
1,200k
1,300k
1,400k
1,500k
1,600k
1,700k
1,800k
1,900k
2,000k

11.53
11.61
11.65
11.67
11.69
11.70
11.71
11.72
11.72
11.72
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74
11.74

11.52
11.60
11.64
11.67
11.69
11.70
11.71
11.71
11.72
11.72
11.73
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74

11.51
11.60
11.64
11.67
11.69
11.69
11.71
11.71
11.72
11.70
11.73
11.73
11.73
11.73
11.74
11.73
11.74
11.74
11.74

10.92
11.01
11.05
11.09
11.10
11.11
11.12
11.12
11.13
11.13
11.13
11.14
11.14
11.14
11.14
11.14
11.14
11.15
11.15

10.91
11.00
11.04
11.08
11.10
11.10
11.11
11.12
11.12
11.12
11.13
11.13
11.13
11.14
11.14
11.14
11.14
11.14
11.14

10.86
10.96
11.03
11.07
11.08
11.09
11.10
11.11
11.11
11.12
11.12
11.13
11.13
11.13
11.13
11.13
11.13
11.13
11.14

Isend/Irecv 200k
300k
400k
500k
600k
700k
800k
900k

1,000k
1,100k
1,200k
1,300k
1,400k
1,500k
1,600k
1,700k
1,800k
1,900k
2,000k

22.64
22.74
22.80
22.84
22.84
22.85
22.82
22.88
22.95
22.92
23.08
22.93
22.93
22.96
23.05
23.01
23.00
22.94
22.90

18.27
18.61
18.53
18.20
18.48
18.16
18.13
17.84
18.21
17.75
17.89
17.75
17.71
17.49
17.46
17.62
17.33
17.71
17.49

9.84
10.76
10.44
10.65
10.81
10.94
11.09

7.10
11.18
11.23
10.16
11.30
11.34
11.31
11.40
11.42
11.43
11.45
11.47

12.19
11.79
11.69
11.72
11.62
11.64
11.58
11.56
11.58
11.53
11.53
11.55
11.51
11.53
11.51
11.50
11.52
11.49
11.55

11.89
11.74
11.66
11.63
11.60
11.58
11.56
11.55
11.53
11.52
11.51
11.51
11.50
11.50
11.50
11.49
11.49
11.49
11.48

11.62
11.68
11.61
11.60
11.57
11.51
11.54
11.52
11.48
11.51
11.50
11.50
11.49
11.47
11.48
11.48
11.46
11.48
11.41

125

Construct
Message
Size

LAM
Best Avg Worst

MPICH
Best Avg Worst

Ssend/Recv 200k
300k
400k
500k
600k
700k
800k
900k

1,000k
1,100k
1,200k
1,300k
1,400k
1,500k
1,600k
1,700k
1,800k
1,900k
2,000k

11.54
11.62
11.66
11.68
11.70
11.71
11.72
11.72
11.73
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74
11.74
11.75

11.54
11.61
11.65
11.68
11.69
11.70
11.71
11.72
11.72
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74
11.74
11.75

11.51
11.61
11.65
11.67
11.69
11.70
11.71
11.72
11.72
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74
11.74
11.75

10.93
11.01
11.05
11.08
11.10
11.11
11.12
11.12
11.13
11.13
11.13
11.14
11.14
11.14
11.14
11.14
11.14
11.14
11.15

10.91
11.00
11.04
11.08
11.10
11.10
11.11
11.12
11.12
11.12
11.13
11.13
11.14
11.14
11.14
11.14
11.14
11.14
11.15

10.89
10.99
11.01
11.06
11.07
11.09
11.10
11.11
11.11
11.11
11.12
11.13
11.13
11.13
11.13
11.13
11.13
11.14
11.14

Ssend/Irecv 200k
300k
400k
500k
600k
700k
800k
900k

1,000k
1,100k
1,200k
1,300k
1,400k
1,500k
1,600k
1,700k
1,800k
1,900k
2,000k

11.58
11.65
11.68
11.70
11.71
11.72
11.72
11.73
11.73
11.74
11.74
11.74
11.74
11.74
11.74
11.75
11.75
11.75
11.75

11.58
11.64
11.67
11.69
11.71
11.72
11.72
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74
11.74
11.75
11.75
11.75

11.57
11.64
11.65
11.69
11.71
11.71
11.72
11.73
11.73
11.73
11.68
11.74
11.74
11.74
11.74
11.74
11.74
11.75
11.75

11.30
11.36
11.38
11.41
11.42
11.43
11.44
11.44
11.44
11.45
11.45
11.45
11.45
11.46
11.46
11.46
11.46
11.46
11.46

11.27
11.35
11.37
11.39
11.41
11.42
11.43
11.43
11.44
11.44
11.45
11.45
11.45
11.45
11.45
11.45
11.46
11.46
11.46

11.03
11.33
11.34
11.39
11.39
11.41
11.41
11.43
11.43
11.43
11.44
11.44
11.45
11.45
11.42
11.45
11.45
11.45
11.46

126

Construct
Message
Size

LAM
Best Avg Worst

MPICH
Best Avg Worst

Issend/Recv 200k
300k
400k
500k
600k
700k
800k
900k

1,000k
1,100k
1,200k
1,300k
1,400k
1,500k
1,600k
1,700k
1,800k
1,900k
2,000k

11.53
11.61
11.65
11.67
11.69
11.70
11.71
11.72
11.72
11.72
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74
11.74

11.52
11.60
11.65
11.67
11.69
11.70
11.71
11.71
11.72
11.72
11.73
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74

11.42
11.60
11.64
11.67
11.69
11.70
11.71
11.71
11.72
11.65
11.73
11.73
11.73
11.73
11.73
11.74
11.74
11.74
11.74

10.93
11.01
11.05
11.08
11.10
11.11
11.12
11.12
11.13
11.13
11.13
11.14
11.14
11.14
11.14
11.14
11.14
11.14
11.15

10.91
11.00
11.04
11.08
11.10
11.10
11.11
11.12
11.12
11.13
11.13
11.13
11.13
11.14
11.14
11.14
11.14
11.14
11.12

10.86
10.96
11.02
11.07
11.08
11.09
11.10
11.11
11.11
11.12
11.12
11.13
11.13
11.13
11.13
11.04
11.13
11.09

8.44

Issend/Irecv 200k
300k
400k
500k
600k
700k
800k
900k

1,000k
1,100k
1,200k
1,300k
1,400k
1,500k
1,600k
1,700k
1,800k
1,900k
2,000k

22.70
22.72
22.80
22.77
22.90
22.86
22.86
22.84
22.86
22.92
22.94
22.91
22.88
22.94
22.97
22.96
22.90
22.95
22.98

17.94
18.98
18.59
18.05
18.55
18.49
18.19
18.19
18.06
17.68
18.00
17.78
18.18
17.69
17.54
17.47
18.03
17.77
17.58

9.59
10.71
10.56
10.65
10.92
10.93

9.74
11.11
11.21
11.23
11.27
11.30
11.34
11.37
11.39
11.42
11.43
11.46
11.43

12.21
11.79
11.69
11.72
11.62
11.65
11.58
11.56
11.58
11.54
11.53
11.55
11.51
11.54
11.51
11.50
11.52
11.49
11.49

11.90
11.74
11.67
11.63
11.60
11.58
11.56
11.55
11.53
11.52
11.51
11.51
11.50
11.50
11.50
11.49
11.49
11.49
11.49

11.61
11.67
11.62
11.60
11.57
11.51
11.54
11.53
11.48
11.50
11.50
11.50
11.49
11.47
11.48
11.48
11.46
11.48
11.48

127

Appendix H: Bandwidth Graphs - Modified Non-Blocking Receives

Send/Irecv - Short Messages
(Modified Program)

2
3
4
5
6
7
8
9

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

M
B

/s
ec

Message Size (X 100 Bytes)

LAM MPICH

Send/Irecv - Medium Messages
(Modified Program)

8.0
8.5
9.0
9.5

10.0
10.5
11.0
11.5

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

M
B

/s
ec

Message Size (X 1000)

LAM MPICH

128

Send/Irecv - Long Messages
(Modified Program)

10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
B

/s
ec

Message Size (X 100k Bytes)

LAM MPICH

Isend/Irecv - Short Messages
(Modified Program)

2

3

4

5

6

7

8

9

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

M
B

/s
ec

Message Size (X 100 Bytes)

LAM MPICH

129

Isend/Irecv - Medium Messages
(Modified Program)

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

M
B

/s
ec

Message Size (X 1000 Bytes)

LAM MPICH

Isend/Irecv - Long Messages
(Modified Program)

10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
B

/s
ec

Message Size (X 100k Bytes)

LAM MPICH

130

Ssend/Irecv - Short Messages
(Modified Program)

0

2

4

6

8

10

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

M
B

/s
ec

Message Size (X 100 Bytes)

LAM MPICH

Ssend/Irecv - Medium Messages
(Modified Program)

6

7

8

9

10

11

12

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

M
B

/s
ec

Message size (X 1000 Bytes)

LAM MPICH

131

Ssend/Irecv - Long Messages
(Modified Program)

10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
B

/s
ec

Message Size (X 100k Bytes)

LAM MPICH

Issend/Irecv - Short Messages
(Modified Program)

0

2

4

6

8

10

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

M
B

/s
ec

Message Size (X 100 Bytes)

LAM MPICH

132

Issend/Irecv - Medium Messages
(Modified Program)

8.0
8.5
9.0
9.5

10.0
10.5
11.0
11.5
12.0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

M
B

/s
ec

Message Size (X 1000 Bytes)

LAM MPICH

Issend/Irecv - Long Messages
(Modified Program)

10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
B

/s
ec

Message Size (X 1000k Bytes)

LAM MPICH

133

Appendix I: Bandwidth Raw Data for Modified Non-Blocking Receives

Short Messages

Construct
Message
Size

LAM
Best Avg Worst

MPICH
Best Avg Worst

Send/Irecv 300
600
900

1,200
1,500
1,800
2,100
2,400
2,700
3,000
3,300
3,600
3,900
4,200
4,500
4,800

2.70
3.77
4.34
4.69
4.96
5.77
6.46
6.65
6.80
7.13
7.67
8.02
8.09
8.12
8.23
8.60

2.66
3.74
4.29
4.64
4.90
5.70
6.36
6.55
6.71
7.03
7.57
7.97
8.02
8.10
8.12
8.52

2.07
3.58
4.03
4.23
4.68
5.56
5.83
6.41
6.51
6.82
7.36
7.85
7.81
8.05
7.98
8.33

2.37
3.40
4.03
4.39
4.74
5.58
6.13
6.37
6.51
6.81
7.38
7.73
7.75
7.78
7.95
8.28

2.31
3.37
3.97
4.34
4.67
5.46
6.02
6.26
6.43
6.73
7.29
7.64
7.70
7.74
7.89
8.21

2.16
3.17
3.81
4.16
4.57
5.25
5.78
6.05
6.30
6.55
7.12
6.74
7.59
7.57
7.73
8.02

Isend/Irecv 300
600
900

1,200
1,500
1,800
2,100
2,400
2,700
3,000
3,300
3,600
3,900
4,200
4,500
4,800

2.63
3.75
4.33
4.67
4.85
5.73
6.40
6.59
6.74
7.08
7.60
7.95
8.00
8.05
8.18
8.54

2.61
3.68
4.31
4.63
4.80
5.64
6.31
6.51
6.68
6.97
7.51
7.91
7.94
8.02
8.14
8.47

2.49
3.39
4.22
4.52
4.62
5.45
6.16
6.27
6.52
6.67
7.35
7.77
7.73
7.91
8.05
8.36

2.38
3.41
4.00
4.39
4.72
5.58
6.12
6.35
6.55
6.81
7.37
7.73
7.77
7.81
7.94
8.30

2.31
3.36
3.96
4.32
4.66
5.45
6.02
6.24
6.43
6.73
7.29
7.66
7.71
7.76
7.88
8.20

2.14
3.18
3.81
3.92
4.51
5.28
5.73
6.07
6.24
6.59
7.14
7.48
7.55
7.57
7.73
7.97

134

Construct
Message
Size

LAM
Best Avg Worst

MPICH
Best Avg Worst

Ssend/Irecv 300
600
900

1,200
1,500
1,800
2,100
2,400
2,700
3,000
3,300
3,600
3,900
4,200
4,500
4,800

2.49
3.49
4.08
4.40
4.72
5.55
6.29
6.57
6.72
6.90
7.38
7.71
7.73
7.79
8.01
8.44

2.38
3.46
4.01
4.36
4.65
5.48
6.21
6.51
6.64
6.78
7.29
7.60
7.65
7.71
7.94
8.31

2.23
3.35
3.89
4.29
4.53
5.35
6.03
6.34
6.49
6.54
7.10
7.45
7.49
7.59
7.83
8.14

1.09
1.85
2.41
2.85
3.16
3.76
4.23
4.49
4.73
5.00
5.42
5.75
5.95
6.07
6.22
6.55

1.06
1.81
2.37
2.79
3.10
3.67
4.14
4.42
4.65
4.94
5.36
5.68
5.87
6.01
6.16
6.46

0.95
1.70
2.24
2.65
2.94
3.50
3.97
4.29
4.49
4.78
5.13
5.47
5.63
5.77
5.93
6.28

Issend/Irecv 300
600
900

1,200
1,500
1,800
2,100
2,400
2,700
3,000
3,300
3,600
3,900
4,200
4,500
4,800

2.42
3.46
4.14
4.49
4.70
5.52
6.26
6.53
6.63
6.84
7.34
7.65
7.71
7.69
7.99
8.42

2.34
3.42
4.05
4.42
4.61
5.45
6.20
6.45
6.58
6.76
7.27
7.57
7.61
7.66
7.92
8.32

2.21
3.28
3.97
4.35
4.06
5.32
6.09
6.31
6.48
6.59
7.11
7.29
7.51
7.53
7.80
8.12

1.09
1.84
2.41
2.82
3.16
3.74
4.23
4.49
4.72
5.01
5.44
5.77
5.95
6.08
6.23
6.54

1.06
1.80
2.36
2.78
3.10
3.68
4.14
4.42
4.66
4.93
5.36
5.69
5.88
6.01
6.15
6.46

0.86
1.65
2.22
2.63
2.94
3.50
3.98
4.29
4.52
4.78
5.20
5.47
5.62
5.77
5.96
6.21

135

Medium Messages

Construct
Message
Size

LAM
Best Avg Worst

MPICH
Best Avg Worst

Send/Irecv 5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000
55,000
60,000
65,000
70,000
75,000
80,000
85,000
90,000
95,000

100,000

8.74
9.89

10.56
10.72
10.94
11.09
11.14
11.23
11.24
11.35
11.31
11.40
11.40
11.22
11.22
11.26
11.30
11.30
11.33
11.33

8.67
9.86

10.51
10.69
10.91
11.07
11.12
11.21
11.22
11.34
11.30
11.38
11.39
11.20
11.21
11.25
11.28
11.28
11.32
11.32

8.40
9.79

10.45
10.66
10.86
11.05
11.07
11.18
11.20
11.31
11.28
11.36
11.37
11.17
11.18
11.22
11.24
11.26
11.30
11.30

8.38
9.50

10.11
10.50
10.67
10.74
10.84
10.95
10.92
10.99
10.95
11.05
11.00
11.03
11.03
11.03
11.04
11.03
11.05
11.02

8.26
9.45

10.06
10.46
10.65
10.72
10.81
10.92
10.90
10.97
10.93
11.02
10.98
11.01
11.01
11.02
11.02
11.01
11.04
11.01

7.56
9.23
9.94

10.35
10.52
10.56
10.65
10.89
10.88
10.93
10.91
11.00
10.97
10.97
10.99
11.00
10.82
10.98
10.98
10.99

Isend/Irecv 5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000
55,000
60,000
65,000
70,000
75,000
80,000
85,000
90,000
95,000

100,000

8.70
9.84

10.53
10.69
10.93
11.07
11.13
11.21
11.22
11.33
11.29
11.38
11.38
11.18
11.19
11.23
11.27
11.26
11.30
11.31

8.62
9.80

10.48
10.65
10.90
11.05
11.11
11.19
11.20
11.32
11.28
11.36
11.37
11.16
11.17
11.21
11.25
11.25
11.29
11.29

8.31
9.73

10.40
10.60
10.83
11.01
11.07
11.17
11.18
11.29
11.26
11.35
11.36
11.14
11.15
10.97
11.18
11.22
11.27
11.27

8.42
9.48

10.12
10.49
10.67
10.75
10.84
10.94
10.91
10.98
10.95
11.04
11.00
11.02
11.03
11.03
11.03
11.02
11.05
11.01

8.27
9.43

10.06
10.45
10.65
10.73
10.82
10.92
10.89
10.96
10.92
11.02
10.98
11.01
11.01
11.01
11.01
11.01
11.03
11.00

7.56
9.25
9.93

10.39
10.60
10.70
10.70
10.88
10.86
10.94
10.90
11.00
10.95
10.99
10.98
10.75
10.98
10.94
10.98
10.99

136

Construct
Message
Size

LAM
Best Avg Worst

MPICH
Best Avg Worst

Ssend/Irecv 5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000
55,000
60,000
65,000
70,000
75,000
80,000
85,000
90,000
95,000

100,000

8.64
9.68

10.41
10.68
10.88
10.98
11.07
11.20
11.18
11.28
11.29
11.37
11.34
11.20
11.21
11.25
11.28
11.29
11.32
11.32

8.56
9.62

10.36
10.65
10.86
10.95
11.05
11.18
11.17
11.26
11.27
11.35
11.33
11.19
11.19
11.24
11.27
11.27
11.31
11.31

8.15
9.55

10.30
10.61
10.82
10.80
10.99
11.14
11.11
11.24
11.25
11.33
11.31
11.17
11.15
11.21
11.26
11.26
11.30
11.25

6.68
8.38
9.29
9.65

10.00
10.19
10.31
10.43
10.47
10.58
10.56
10.67
10.68
10.71
10.71
10.75
10.77
10.76
10.78
10.78

6.59
8.31
9.23
9.60
9.94

10.15
10.27
10.39
10.44
10.56
10.52
10.63
10.65
10.68
10.67
10.71
10.74
10.72
10.75
10.75

5.97
8.07
9.09
9.53
9.35

10.00
10.17
10.35
10.36
10.49
10.46
10.55
10.57
10.61
10.64
10.64
10.68
10.69
10.71
10.65

Issend/Irecv 5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000
55,000
60,000
65,000
70,000
75,000
80,000
85,000
90,000
95,000

100,000

8.60
9.68

10.40
10.67
10.87
10.97
11.06
11.20
11.18
11.27
11.28
11.36
11.33
11.18
11.19
11.23
11.26
11.27
11.30
11.31

8.52
9.63

10.35
10.64
10.85
10.95
11.04
11.17
11.16
11.26
11.26
11.35
11.32
11.17
11.17
11.22
11.25
11.26
11.29
11.29

8.14
9.52

10.24
10.40
10.81
10.90
10.98
11.09
11.10
11.22
11.24
11.32
11.30
11.13
11.15
11.19
11.18
11.24
11.28
11.28

6.70
8.38
9.30
9.65

10.01
10.19
10.31
10.43
10.48
10.59
10.56
10.67
10.68
10.72
10.71
10.74
10.77
10.76
10.79
10.78

6.56
8.31
9.23
9.60
9.95

10.15
10.26
10.38
10.45
10.56
10.52
10.63
10.65
10.68
10.68
10.70
10.74
10.73
10.76
10.75

2.94
8.13
9.05
9.49
9.85

10.06
10.12
10.18
10.38
10.47
10.43
10.55
10.58
10.63
10.63
10.66
10.69
10.69
10.72
10.70

137

Long Messages

Construct
Message
Size

LAM
Best Avg Worst

MPICH
Best Avg Worst

Send/Irecv 200k
300k
400k
500k
600k
700k
800k
900k

1,000k
1,100k
1,200k
1,300k
1,400k
1,500k
1,600k
1,700k
1,800k
1,900k
2,000k

11.55
11.62
11.66
11.68
11.70
11.71
11.71
11.72
11.73
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74
11.74
11.75

11.54
11.62
11.65
11.68
11.69
11.70
11.71
11.72
11.72
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74
11.74
11.75

11.54
11.61
11.65
11.67
11.69
11.67
11.71
11.72
11.72
11.72
11.73
11.73
11.73
11.73
11.73
11.74
11.74
11.74
11.74

10.94
11.00
11.03
11.06
11.08
11.08
11.09
11.10
11.10
11.14
11.14
11.14
11.14
11.14
11.14
11.14
11.14
11.15
11.15

10.92
10.99
11.02
11.05
11.07
11.08
11.09
11.09
11.10
11.13
11.13
11.13
11.13
11.14
11.14
11.14
11.14
11.15
11.15

10.90
10.97
10.99
11.04
11.06
11.06
11.07
11.09
11.09
11.13
11.12
11.12
11.13
11.13
11.13
11.14
11.14
11.14
11.14

Isend/Irecv 200k
300k
400k
500k
600k
700k
800k
900k

1,000k
1,100k
1,200k
1,300k
1,400k
1,500k
1,600k
1,700k
1,800k
1,900k
2,000k

11.53
11.61
11.65
11.67
11.69
11.70
11.71
11.71
11.72
11.72
11.73
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74

11.52
11.60
11.64
11.67
11.69
11.70
11.71
11.71
11.72
11.72
11.73
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74

11.51
11.60
11.46
11.67
11.68
11.70
11.70
11.71
11.71
11.72
11.72
11.72
11.73
11.73
11.72
11.74
11.74
11.74
11.74

10.94
11.00
11.03
11.06
11.08
11.08
11.09
11.10
11.10
11.13
11.14
11.13
11.14
11.14
11.14
11.14
11.14
11.15
11.15

10.92
10.99
11.03
11.05
11.07
11.08
11.09
11.09
11.10
11.13
11.13
11.13
11.13
11.14
11.14
11.14
11.14
11.15
11.15

10.90
10.95
10.99
11.03
11.06
11.07
11.07
11.09
11.09
11.13
11.12
11.13
11.13
11.05
11.13
11.14
11.14
11.14
11.14

138

Construct
Message
Size

LAM
Best Avg Worst

MPICH
Best Avg Worst

Ssend/Irecv 200k
300k
400k
500k
600k
700k
800k
900k

1,000k
1,100k
1,200k
1,300k
1,400k
1,500k
1,600k
1,700k
1,800k
1,900k
2,000k

11.54
11.61
11.65
11.68
11.69
11.70
11.71
11.72
11.72
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74
11.74
11.75

11.53
11.61
11.65
11.67
11.69
11.70
11.71
11.72
11.72
11.72
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74
11.74

11.53
11.60
11.60
11.67
11.69
11.70
11.71
11.71
11.72
11.72
11.73
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74

10.94
11.00
11.03
11.06
11.08
11.08
11.09
11.10
11.10
11.13
11.14
11.14
11.14
11.14
11.14
11.14
11.14
11.15
11.15

10.92
10.99
11.02
11.05
11.07
11.08
11.09
11.09
11.10
11.13
11.13
11.13
11.13
11.14
11.14
11.14
11.14
11.15
11.15

10.87
10.97
10.99
11.04
11.05
11.06
11.08
11.09
11.09
11.13
11.12
11.12
11.13
11.13
11.14
11.13
11.13
11.14
11.14

Issend/Irecv 200k
300k
400k
500k
600k
700k
800k
900k

1,000k
1,100k
1,200k
1,300k
1,400k
1,500k
1,600k
1,700k
1,800k
1,900k
2,000k

11.53
11.61
11.65
11.67
11.69
11.70
11.71
11.71
11.72
11.72
11.73
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74

11.52
11.60
11.64
11.67
11.69
11.70
11.71
11.71
11.72
11.72
11.73
11.73
11.73
11.73
11.74
11.74
11.74
11.74
11.74

11.51
11.60
11.64
11.67
11.68
11.70
11.71
11.71
11.72
11.72
11.72
11.73
11.73
11.73
11.73
11.74
11.74
11.74
11.74

10.95
11.00
11.04
11.06
11.08
11.08
11.09
11.10
11.10
11.13
11.13
11.13
11.14
11.14
11.14
11.14
11.14
11.15
11.15

10.92
10.99
11.02
11.05
11.07
11.08
11.09
11.09
11.10
11.13
11.13
11.13
11.13
11.14
11.14
11.14
11.14
11.15
11.15

10.90
10.96
11.01
11.04
11.05
11.07
11.08
11.08
11.09
11.11
11.12
11.13
11.13
11.13
11.13
11.11
11.13
11.14
11.14

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	2 Background
	2.1 What is a Cluster?
	2.2 Beowulf Clusters
	2.3 Other Types of Parallel Systems
	2.3.1 MPPs
	2.3.2 SMPs
	2.4 Message Passing
	2.5 MPI
	2.5.1 MPICH
	2.5.2 LAM
	3 Testing Environment and Software Installation
	3.1 Wyeast Architecture
	Table 1: Wyeast Hardware Specification
	Table 2: Wyeast Network Specification
	Table 3: Wyeast Software Specification

	3.2 Node Configuration
	3.3 Operating System and Compilers
	3.4 LAM, MPICH, and MPE
	4 Experiments and Performance Results
	4.1 Linpack
	4.1.1 Description of Experiments
	4.1.2 Results and Analysis
	Table 4: Linpack Data
	Table 5: Linpack Data, continued

	4.2 su3_rmd
	4.2.1 Description of Experiments
	Table 6: Description of su3_rmd Experiments

	4.2.2 Results and Analysis
	Table 7: Results of su3_rmd in Seconds
	Table 8: su3_rmd CPU Time and Communication/IO Time
	Table 9: Process Startup Time Results (seconds)

	4.3 Bandwidth Comparisons
	Table 10: Point-To-Point MPI Bandwidth Tests

	4.3.1 Description of Experiments
	4.3.2 Results and Analysis
	4.4 Summary
	5 Related Work
	5.1 LAM-6.5.1 and MPICH-1.2.1
	5.2 LAM-6.3-b1 and MPICH-1.0.9
	5.3 LAM-6.3 and MPICH-1.1.2
	5.4 LAM-6.0 and MPICH-1.0.12
	5.5 Summary
	6 Conclusions and Future Work
	7 References
	1. K. Andersson, D. Aronsson, and P. Karlsson. “An Evaluation of the System Performance of a Beowulf Cluster”. National Supercomputer Centre in Linkoping Sweden, Internal Report No. 2001:4. http://www.nsc.liu.se/support/articles/ benchmarking.pdf. 2001.
	2. R. Buyya (ed) High Performance Cluster Computing: Programming and Applications, Volume 2. Prentice Hall, NJ, USA, 1999.
	3. P.H Carns, W.B Ligon III, S.P. McMillan, and R.B. Ross. “An Evaluation of Message Passing Implementations on Beowulf Workstations”. Proceedings of the 1999 Extreme Linux Workshop. June, 1999.
	4. A. Chan, W. Gropp, and E. Lusk. “User’s Guide for MPE: Extensions for MPI Programs”. Mathematics and Computer Science Division, Argonne National Laboratory.
	5. J. Dongarra, J. Bunch, C. Moller, and G.W. Stewart. “LINPACK User’s Guide”. SIAM Publications. Philadelphia, PA. 1979.
	6. S. Browne, J. Dongarra, and K. London. “Review of Performance Analysis Tools for MPI Parallel Programs”. http://www.cs.utk.edu/~browne/perftools- review. December, 1997.
	7. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek, and V. Sunderam. PVM: Parallel Virtual Machine - A User’s Guide and Tutorial for Network Parallel Computing. MIT Press, 1994.
	8. W. Gropp and E. Lusk. “Reproducible Measurements of MPI Performance Characteristics”. Argonne National Laboratory, 1999 PVM MPI Meeting. http:/ /www.mcs.anl.gov/~gropp/bib/papers/1999/pvmmpi99/mpptest.pdf. 1999.
	9. W. Gropp, E. Lusk, N. Doss, and A. Skellum. “A High-Performance, Portable Implementation of the MPI Message Passing Interface Standard”. Parallel Computing, 22(6):789-828, September, 1996.
	10. W. Gropp and E. Lusk. “User’s Guide for mpich, a Portable Implementation of MPI”. Mathematics and Computer Science Division, Argonne National Laboratory. 1996.
	11. W. Gropp and E. Lusk. “MPICH Working Note: The Second-Generation ADI for the MPICH Implementation of MPI”. Mathematics and Computer Science Division, Argonne National Laboratory. 1996.
	12. W. Gropp and E. Lusk. Using MPI: Portable Parallel Programming with the Message Passing Interface. Second Edition, MIT Press, 1999.
	13. N. Nevin, “The Performance of LAM 6.0 and MPICH 1.0.12 on a Workstation Cluster”. Ohio Supercomputing Center, Technical Report OSC-TR-1196-4, Columbus, Ohio, 1996.
	14. H. Ong, and P. Farrell. “Performance Comparison of LAM/MPI, MPICH, and MVICH on a Linux Cluster connected by a Gigabit Ethernet Network”. Proceedings of the 4th Annual Linux Showcase & Conference, Atlanta, GA, October 10-14, 2000.
	15. P. Pacheco. Parallel Programming With MPI. Morgan Kaufman Publishers, Inc. San Francisco, CA. 1997.
	16. G. F. Pfister. In Search of Clusters (second edition). Prentice Hall, NJ. 1998.
	17. W. Saphir. “A Survey of MPI Implementations”. Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, Nov. 6, 1997. Available from: http://www-library.lbl.gov/docs/LBNL/410/25/PDF/LBNL-41205.pdf.
	18. S. Sistare and C. Jackson. “Ultra-High Performance Communication with MPI and the Sun Fire Link interconnect”. Proceedings of the IEEE/ACM SC2002 Conference, 2002.
	19. Q. Snell, A Mikler, and J. Gustafson. “NetPIPE: Network Protocol Independent Performance Evaluator”. Ames Laboratory, Scalable Computing Lab. Iowa State, 1997.
	20. M. Snir, S. Otto, S Huss-Lederman, D. Walker and J. Dongarra. MPI: The Complete Reference. MIT Press, 1995.
	21. T. Sterling, D. Becker, D. Savarese, J. Dorband, U. Ranawake, and C. Packer. “BEOWULF: A Parallel Workstation for Scientific Computation”. Proceedings of the 1995 International Conference on Parallel Processing (IPCC), Aug. 1995, Vol. 1, pp. 11-14.
	22. T. Sterling, J. Salmon, D. Becker, and D. Savarese. How to Build a Beowulf: A Guide to the Implementation and Application of PC Clusters. MIT Press, 1999.
	23. J. Traff. “Implementing the MPI Process Topology”. Proceedings of the IEEE/ ACM SC2002 Conference, 2002.
	24. J. Vetter. “Performance Analysis of Distributed Applications using Automatic Classification of Communication Inefficiencies”. ACM International Conference on Supercomputing, 2000 (Santa Fe, N.M.).
	25. J. Vetter and A. Yoo. “An Empirical Performance Evaluation of Scalable Scientific Applications.” Proceedings of the IEEE/ACM SC2002 Conference, 2002.
	26. B. Wilkinson and M. Allen. Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers. Prentice Hall, N.J. 1999.
	27. “MPICH and LAM Performance on Astrolab”. http://www-hpcc.astro.washington.edu/faculty/trq/brandon/perform.html/. 1999.
	28. “MPI Performance Topics”. http://www.llnl.gov/computing/tutorials/workshops/workshop/ mpi_performance/MAIN.html. July, 2002.
	29. “Porting the LAM-MPI 6.3 Communication Layer”. Document authored by the “LAM Team”, available from the http://www.lam-mpi.org. March 8, 2000.
	30. http://www.lam-mpi.org
	31. http://www.top500.org/
	32. http://www.netlib.org/pvm3/book/node8.html.
	33. http://www-unix.mcs.anl.gov/mpi/mpich/
	34. http://www.mpi-forum.org
	35. HPL Linpack Benchmark: http://www.netlib.org/benchmark/hpl/
	36. The su3_rmd program was obtained from the MIMD Lattice Computation (MILC) Collaboration: http://media4.physics.indiana.edu/~sg/milc.html

	Appendix A: Sample HPL.dat Input File
	Appendix B: Linpack Results for Fixed Problem Sizes
	Appendix C: Linpack Results for Fixed Grid Sizes
	Appendix D: Standard Deviation for Linpack Repeated Runs
	Appendix E: Standard Deviation for su3_rmd Repeated Runs
	Appendix F: Bandwidth Comparison Graphs
	Appendix G: Bandwidth Raw Data
	Appendix H: Bandwidth Graphs - Modified Non-Blocking Receives
	Appendix I: Bandwidth Raw Data for Modified Non-Blocking Receives

