A PERFORMANCE STUDY OF

LAM AND MPICH ON AN SMP CLUSTER

by

BRIAN PATRICK KEARNS

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER SCIENCE

Portland State University
2003



ABSTRACT

An abstract of the thesis of Brian Patrick Keawrsthe Master of Science in Com-

puter Science presented December 4, 2002.

Title: A Performance Study of LAM and MPICH on 8MP Cluster.

Many universities and research laboratories haveldped low cost clus-
ters, built from Commodity-Off-The-Shelf (COTS) cponents and running mostly
free software. Research has shown that these ofyEgstems are well-equipped to
handle many problems requiring parallel processifige primary components of
clusters are hardware, networking, and system soffwAn important system soft-
ware consideration for clusters is the choice efrttessage passing library.

MPI (Message Passing Interface) has arguably betioenmost widely used
message passing library on clusters and otherlplaathitectures, due in part to its
existence as a standard. As a standard, MPI is fgpeanyone to implement, as
long as the rules of the standard are followed:. tltis reason, a number of propri-
etary and freely available implementations havenloks/eloped.

Of the freely available implementations, two haeedime increasingly pop-

ular: LAM (Local Area Multicomputer) and MPICH (MEhameleon). This thesis



compares the performance of LAM and MPICH in aorffo provide performance
data and analysis of the current releases of estttetcluster computing commu-
nity. Specifically, the accomplishments of thiedls are: comparative testing of the
High Performance Linpack benchmark (HPL); compuaeatésting of su3_rmd, an
MPI application used in physics research; and i@sef bandwidth comparisons
involving eight MPI point-to-point communicationmstructs. All research was
performed on a partition of the Wyeast SMP Clusteéhe High Performance Com-
puting Laboratory at Portland State University.

We generate a vast amount of data, and show thislt &d MPICH perform
similarly on many experiments, with LAM outperformgi MPICH in the bandwidth
tests and on a large problem size for su3_rmd.s& fiadings, along with the find-
ings of other research comparing the two libraseggest that LAM performs bet-
ter than MPICH in the cluster environment. Thisdasion may seem surprising,
as MPICH has received more attention than LAM fidil researchers. However,
the two architectures are very different. LAM vaaigginally designed for the clus-
ter and networked workstation environments, whileI@H was designed to be por-

table across many different types of parallel dectures.
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1 Introduction

This thesis compares the performance of two fraedilable implementations of
the Message Passing Interface (MPI) on a clustduakCPU SMPs built from
readily available, low cost, Commodity-Off-The-Shg&OTS) components and
running mostly free software. These types of elisshave received a lot of atten-
tion during the last decade, serving as cost-effeclternatives to Massively Paral-
lel Processors (MPPs) and Symmetric Multiproces&kéPs). They are
distributed memory systems typically employing s@od ofmessage passirg
transfer data among the processes running on eliffgarocessors. Laboratories,
universities, and even some high schools now hevess to parallel computing
power once reserved for the private sector andadl smmmber of affluent institu-

tions.

The main components of clusters are hardware, mystétware, and networking.
Hardware based decisions primarily involve aspetisdividual node configura-
tion. Networking considerations include the spaed topology of the network that
will be used to connect the nodes of the clusigistem software includes, but is not
limited to, the operating system and software resmgsfor achieving communica-
tion among the cluster nodes. This research fecoseystem software perfor-
mance, specifically the MPl message passing libeygr. It compares the

performance of LAM and MPICH oiiPL, the High Performance Linpack bench-



mark;su3_rmd an application based on four-dimensional SU(@ickagauge the-

ory; and a series of point-to-poibandwidth comparisons

The demand for parallel processing is high. Agtian areas with computational
needs that require parallel processing include bhoal research, fluid dynamics,
global climate modeling, molecular modeling, nuclest simulations, astronomic
simulations, and many others. For example, onencammanner by which to
model the atmosphere is to divide it into a nundfeells. Numerical computations
can be performed within each cell to analyze aedlipt weather patterns and atmo-
spheric changes. However, such computations tractable with current serial
computing capabilities. Wilkinson and Allen in th#999 text [26], for example,
note that an application forecasting the weather thve next 7 days would require
over 100 days to achieve results on a single coenfmyterating at a rate of 100
MFLOPS (100 Million Floating Point Operations pec®nd). Even today’s uni-
processors capable of operating at over 500 MFLfaP®%ell short of the 1.7
TFLOPS required to perform the forecasting operaitiol0 minutes. Further,
assuming we could imagine a uniprocessor operdatittye TeraFlop range, it is

nearly impossible to imagine memory access timeéorobming a bottleneck.

Parallel applications have been and continue toriigen for problems such as the

one described above, and machines exist on whinimtthem. Highly specialized



massively parallel processors (MPPs), and symmmetnidprocessors (SMPs), have
historically been used to run parallel applicaticarsd are being developed and used
today. These machines are extremely powerful coenpweonsisting of multiple
processors existing in a single box. MPPs areacit@rzed by hundreds and even
thousands of processors each having its own meamatyunning its own operating
system. Some sort of message passing mechanisuuised to transfer data
among the processors. SMPs, on the other hantightly coupled machines typi-
cally with fewer processors than MPPs, all of whsblare the same memory and run
the same operating system. The advantage of Miigs and SMPs is that custom
systems can be designed to run parallel applicaitroan optimal manner according
to the application domain. The disadvantages dekxtremely high cost (espe-
cially MPPs), poor scalability (especially SMPs)daifficult update and mainte-

nance characteristics.

In the mid 1990's an effort began to see whethstesys could be built from PCs
that would rectify the above problems. Thomasli&gand Donald Becker at The
Center of Excellence in Space Data and Inform&aficences (CESDIS) developed
a system they called “Beowulf” in 1994 [21], a d=ded computing cluster consist-
ing of sixteen nodes constructed from off-the-sHe@’s (DX4 processors) con-

nected by a 10 Mbps Ethernet. Each PC, or nodkithawn memory; the system



was truly distributed. As efforts in cluster res#saincreased, the results showed

that these types of systems were well-suited farynpearallel applications.

Today, many universities and research laborataneduilding and using clusters,
and these systems have made a significant appea@dentries) on the most
recent list of the world’s 500 fastest computerly [3PC clusters that are obtainable
by universities and research centers are ofteracteaized by: inexpensive, off-the-
shelf hardware; some variant of the Unix/Linux @y system; Fast Ethernet,
Gigabit Ethernet, or Myrinet networking; and frealyailable, open source soft-
ware. The ternBeowulf Clusters often used to refer to these types of systems.
Other names includeile-of-PCs (PoPCshandCommodity-Off-The-Shelf (COTS)

clusters

One of the latest trends in low cost, commodityst#u construction has been the
development of clusters of SMPs. For example |®uitState University maintains
an SMP cluster called Wyeast which is built fromdé&l-CPU Pentium Il (866
Mhz) machines connected by a Fast Ethernet (100sMbdost of these systems
use a high level message passing facility for feanag data among the processes
executing the parallel program. The underlyinglangentation of the message
passing facility uses shared memory for intra-ndaka transfer, and uses a net-

working protocol such as TCP/IP or VIA for interdeodata transfer.



A very important software consideration in clustesign is the choice of the mes-
sage passing facility. One attractive option esuke of message passing libraries.
At one time, PVM (Parallel Virtual Machine) was themary library used in dis-
tributed systems. It was the first truly portabiessage passing library, with a large
number of users. Over the last decade, MPI (MesPagsing Interface) has argu-
ably become more widely used than PVM, due in {oeits existence assaandard

As a standard, MPI is open for anyone to implemasntpng as the rules of the spec-
ification (function bindings and behavior, and gpeconstants) are followed. As a
result, several proprietary and open source imetaations of MPI exist. Since
low cost is one of the primary goals of clusterstaunction, many universities and
research laboratories have opted for the freelyiaMa open source implementa-
tions. Of these, two have become increasingly [@pWMPICH (MPI Chameleon)

and LAM (Local Area Multicomputer).

MPICH has tracked the MPI standard from the begigninas been the focus of
many freely available MPI profiling tools; has basestalled and tested on virtually
every parallel system available (including clusteasd is the foundation for a large
number of proprietary MPI implementations. LAM tgened a following among
cluster users due to its usability, fast staticpss creation, and support for dynamic
process creation. Preliminary research of thisighi®und that many current and

potential parallel programmers and cluster opesadoe interested in the perfor-



mance of LAM and MPICH on clusters, especially peeformance of the most cur-

rent versions.

This thesis aims to compare the performance of Lakid MPICH in an effort to
provide performance data and analysis of the cursed@ases of each to the cluster
computing community. Although other research heenlperformed relating to per-
formance comparisons of LAM and MPICH (see chabjewe feel that this
research is unique because it compares the masitrexieases of each library
(LAM-6.5.6 and MPICH-1.2.4) of any studies we h&wend, it was conducted on
an SMP cluster, and it provides a vast amount t& dathered from three major cat-
egories of experiments. Specifically, the acconmphients of this thesis are:
» Installation and comparative testing of the HigitfBrmance Linpack (HPL)
benchmark;
» Installation and comparative analysis of a paraltgsics application involving
four-dimensional SU(3) lattice gauge theory; and,

* Bandwidth comparisons on eight point-to-point MBMmmunication primitives.

Chapter 2 of this thesis provides background inédrom on cluster computing,
message passing, MPI, LAM, and MPICH. The testingronment and installa-

tion of software used in this research is discussethapter 3. Experiments and



results are provided in chapter 4. Chapter 5 dsesiother work related to MPI per-

formance on clusters, and chapter 6 closes witlréutvork and conclusions.



2 Background

In an effort to lay a framework for the later chexgt this chapter provides a brief
background on clusters (section 2.1), Beowulf tgjosters (section 2.2), two other
parallel architectures (section 2.3), message pgigsection 2.4), and MPI (section
2.5), including the LAM and MPICH implementationBhroughout this discussion,
the wordsprocessand processomwill be used. More than one process can run on a
single processor, but the processes will not execoncurrently - rather they will be
interleaved in a time-scheduled fashion by the aijosy system. If there is one pro-
cess running on each processor, however, the mesean execute concurrently. A
nodecan house one or more processors. Regardledsedher the systems to be
mentioned have either one or more than one procpssmode, the context of this
discussion is that there is a one-to-one correspurelbetween processes and pro-
cessors: there is one process running on eachgsmc@nd the processes can run

concurrently.

2.1 What is a Cluster?

A cluster can be defined in very abstract terniseta distributed computing system
that consists of a collection of whole computensraxted by a network that is used
as a single computing resource [16]. Each compoteode contains at the very

least a motherboard, one or more processors, maimony, cache memory, one or



more busses, one or more network interface cartss)iNand optionally other com-
ponents. Not all clusters have permanent stofzayel disk) on each node, although
many do. Clusters aparallel systems because they are capable of executing more
than one instructional flow of control at any givene (due to fact that there exists
more than one processor in the system) if theypargrammed to do so. For exam-
ple, process A can be running on processor A atdhee time as process B running
on processor B. This is in contrast to, say, dithutaded application or a Unix
fork-exec program running on a single-CPU computéere the operating system
interleaves the ordering of the different threaidsx@cution ljghtweight processes),

or heavyweight processes in the case of the fodc-exodel, so that no two threads

or processes are running at the same time.

Clusters are alsgistributedsystems because each process (or group of precéesse
the case of clusters of SMPSs) runs on a process@roup of processors) on a sin-
gle node, and has direct access only to its loemhary. Because there are multiple
nodes in a cluster system, some sort of commupit#irequired among processes
running on different nodes in order for all pro@sst have access to all of the
memory in the system. Therefore, another posdigiimition of clusters is that they
are loosely coupled distributed systems that aregsily used for parallel process-
ing. Not all distributed systems are used pringefol parallel processing. A spe-

cialized distributed system may be set up for &iblisted database, for example,



where one of the primary reasons for the distridhet@vironment is high availability

(data can be replicated across the different coenput

There is not one single type of cluster. Individuarkstations that are normally
used in a serial manner by computer users haveremrked at campuses and at
companies to provide parallel computing capabditiering off-peak workstation
use times. These are often referred to as “cyeedsting” and “workstation farm”
systems. Clusters have also been developed fameooml sale by companies such
as DEC, Tandem, and IBM. In the mid 1990’s, rese&egan to determine
whether clusters could be built from personal comapsuconstructed from readily
available, Commodity-Off-The-Shelf (COTS) comporgenthe research proved to

be successful, and produced a type of cluster cartymeferred to as a Beowulf.

2.2 Beowulf Clusters

The first Beowulf [21] was constructed in 1994 dyomas Sterling and Donald
Becker at The Center of Excellence in Space Dafdr@ormation Sciences (CES-
DIS). It consisted of 16 PCs with DX4 processom)nected by a 10 Mbps Ether-
net. Another Ethernet was later added to allowcf@nnel bonding - a
configuration in which the data is striped acraess hetworks. Due to the success

of this initial system, a lot of research has bemmducted in the Beowulf realm over

10



the past eight years. Combined with better netwecknology and increasing pro-
cessor speeds (with lower costs for both), thisassh has produced systems capa-
ble of executing large parallel applications atuchless expensive price than

MPPs, and with better scaling capabilities than SMP

Today, Beowulf clusters are still built from PCsatlare connected by a network.
Individual nodes are constructed from inexpenst@;TS hardware components,
and each node generally runs some variant of te/llinux operating system, and
other free or low cost system software. Exampfestworks for Beowulfs include
Fast Ethernet, Gigabit Ethernet, Myrinet, and FDDh central switch is used, each
PC, or node, has a direct connection to every atbde in the cluster (with the
switch acting as an intermediary). Commonly usedgssors for Beowulfs include
those from the Intel Pentium family, various AMDopessors, and the DEC Alpha.
According to Sterling et al. [22], a Beowulf noggitally has between one and four
processors. The Wyeast cluster at Portland Shaiteersity, for example, is a
Beowulf type SMP cluster constructed from 48 no@esh of which has 2 proces-

SOrs.
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2.3 Other Types of Parallel Systems

Clusters are not the only types of systems usepldiallel programming. Two other
categories of parallel platforms, SMPs and MPRspétien mentioned in the paral-

lel programming literature, and are actively beileyeloped and used today.

2.3.1 MPPs

Highly specialized MPPs (Massively Parallel Prooesshave existed since the
1960's. Examples include the Intel Paragon andtiieking Machines CM5.

They consist of hundreds, even thousands, of psoce a single box, each having
its own memory and running its own operating systéftessage passing can be
used for communication among the processes. M&kbe fine-tuned for a spe-
cific application domain, or even for a specifiphpation, and can therefore exe-
cute the application very quickly. A primary disadtage of MPPs is that they are
very expensive (can cost more than $10 millionatsI[32]), and therefore are gen-
erally unavailable to many universities, reseaatiofatories, and certainly most
curious individuals. Differences between MPPsd@uosters include: price (clusters
are less expensive); system layout (the workingandfIPP exist in a single box,
whereas clusters are composed of multiple boxesoades, connected by a net-

work); and power (a powerful MPP can be construtbed specific application,

12



and that application would run faster than it wonhda cluster; another way to put it

is that the fastest MPPs are faster than the tadtesters).

2.3.2 SMPs

SMPs (Symmetric Multiprocessors) have been arourwtghe early 1970’s. They
are systems composed of multiple processors egistia single box, all of which
share the same memory and run the same operastegrsy Therefore, memory
access is local to each processor. Examples ofsSMiRude the Intel Pentium Pro
Quad and the Sun Enterprise. If message passusgdon an SMP, it is generally
implemented by platform-specific, low level sharedmory constructs. SMPs are
typically less expensive than MPPs and generallgatscale to high numbers of
processors. This means that as more processoag@ee to the system, the conten-
tion for memory on the bus becomes higher (dubécshared memory architec-
ture). This leads to slower memory access times tlaerefore slower overall
execution time. The point at which adding morecpssors to an SMP becomes dis-
advantageous varies from machine to machine, theagte define it to be in the
range of 16 to 24 processors. This scalabilitypjfgnm has somewhat been alleviated
by the NUMA (Non Uniform Memory Access) system -@¥P subtype first devel-
oped in 1997 in which the memory area is divided different sections, resulting

in lower contention for memory among the processdfemory access is hon-uni-

13



form, meaning that some memory access times taigefdhan others. However,
the lowaveragememory access time theoretically allows theseesystto scale far

higher than traditional SMPs.

An interesting convergence of clusters and SMPdbkas the recent proliferation
of affordable “hybrid systems”, or clusters of S$ABuilt from inexpensive compo-
nents and running mostly free software. The Wyelaster at PSU, as mentioned
earlier, is an example of such a system. It igaviilf-type cluster because it was
designed from Beowulf principles, and can alsodferred to as an SMP cluster
because each node contains two processors. Tysteens are often programmed
using a message passing programming model, implechenth message passing
libraries. Message passing between processotseosaine nodes is implemented
by the library with low-level shared memory consts) while message passing
between processors on different nodes is implerdanteerms of some sort of net-

working protocol (TCP/IP, for example).

2.4 Message Passing

As a process runs, it often needs to access datdsh main memory. In a shared
memory system such as an SMP, each process has &o@dl of the memory in the

system. However, because a cluster is a distdlaystem, each processor in a clus-

14



ter has direct access only to its local memoryortier for process 1 on node A to
have access to the memory of process 2 on Nodenie sort of communication is
required. One way to achieve this is witlessage passindn the simplest sense,
message passing refers to one running processngeinfrmation to another run-

ning process, which receives the information (sgparé¢ 1).

NODE A NODE B

PROCESS 1 (MESSAGE) PROCESS 2

Figure 1: Point-to-Point Message Send and Receive

This figure depicts an example of point-to-pointntounication with message passing. Process 1
running on node A sends a message to process iguoim node B, which receives the message.

The message is not lost to process 1, it stillthaglata. Now process 2 has it as well. Process 1

wait until process 2 receives the data before nairtg, or it can return immediately from the send
and execute its next instruction. The former iswn as a blocking send, while the latter is a non-
blocking send.

The message includes actdata such as a large vector or a small integer, aswl al
contains information commonly referred to asehgelopewhich includes the
source and destination addresses, the messag#iaaddion tag, the size in bytes of

the data being sent, and possibly other information

15



The communication shown in figure 1 is an examplgoint-to-pointcommunica-
tion. The message travels directly from one pretesnother process. After pro-
cess 1 posts the send operation, it can eitheruméltprocess 2 posts its receive
before continuing with its next instruction, océn return immediately from the
send and go on to the next instruction. Thesestvemarios are referred to as a
blocking sendand anon-blocking sendespectively. The same situation holds true
for process 2 as well; it can pogblacking receiveor anon-blocking receive
Blocking guarantees that the send/receive willaoohplete until either the corre-
sponding receive/send has been posted, or the geekaa been buffered by the sys-
tem. This is advantageous because the progransmassured that the memory

allocated for the function call arguments is safade after the operation completes.

Blocking operations have two primary drawbacks, @eosv. One is that they can
lead to deadlock if the program is not written eatly and relies on the existence of
system buffering for large message sizes. The qitsdriem with blocking opera-
tions relates to performance. If process 1 posiseking send and has work it
could be doing that does not depend on the arguterihe send call (call it “other
work”), time is wasted because it is blocking - tivey for process 2 to post the
receive. A non-blocking send would fix this praible Process 1 returns immedi-
ately from the send, performs its other work, dr&htcalls destor wait operation

to see if the receive has begun. Ifit has, p&esan now modify the memory used

16



for the send arguments. The key is that procegsslable to perform its other work

without having to wait for process 2 to receive thessage.

Point-to-point communication is not the only tydecommunication possible in a
message passing environment. Synchronizationneaitcalledarriers, exist to
cause all of the processes to start or stop aahe time. Alsocollective commu-
nicationis possible, in which all processes (or possiblgracesses within a certain
group) communicate, and data is transmitted. Szotlective operations also act
implicitly as barriers. Examples of collective commnication includéoroadcast
(one process broadcasts data to all other progeafieés-all (each process sends
data to every other process), agtjregate operation@ll processes send data to

one specific process, which adds/averages/etdatzg.

Message passing in clusters is usually availabtearform ofmessage passing
libraries. These libraries provide a collection of funcgdor programmers to call
in languages such as C, C++, and Fortran. Foyryaars, PVM (Parallel Virtual
Machine) [7] was the primary message passing §ouaed in distributed comput-
ing systems. PVM version 1 was developed at Odig&National Laboratory in
1989 for use by researchers in the lab. Thedifatial release was PVM version 2
in 1991. A complete rewrite occurred in 1992, madg PVM version 3, released

in 1993. The primary goal of PVM was to develgpoatable message passing envi-

17



ronment for heterogeneous distributed systems,igirgya “parallel virtual
machine” which gives the user the illusion of pagming one single computer.
One of the most important features of PVMIygamic process creatiomhich

refers to the ability for the program to spawn psses at run time.

PVM is still being used today. However, PVM is aotopen standard in the sense
that there is really only “one PVM”. As a resatprogrammer using PVM is lim-
ited. Realizing the need for a message passingh#®would be accepted as an
open standard, researchers in the early 1990'dajese MPI (Message Passing
Interface). MPI became very popular as a messaggny standard among parallel
programmers, and many freely available implememiathave been developed.
The popularity of MPI is evident by the attentibmaceives in many of the current
research papers on clusters, message passingaiaiielprofiling (see [1, 6, 18,
23, 24, 25] for example); and by the increasing benof proprietary and freely

available implementations. In the text, High Parfance Cluster Computirig], R.

Buyya asserts that MPI is the message passingyibrast widely used today at

universities and research laboratories.
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2.5 MPI

MPI stands foMessage Passing InterfacH.is a message passing standard that
was developed in the early 1990’s by the MPI Fo[R@]} - a group of researchers
and professionals from more than forty organizatiorainly from the United States
and Europe who began meeting in 1992 and contittue®et today. The primary
goal of the MPI Forum was to providestandard,so that different research groups
and companies could develop different implementatiof the library, as long as
they adhered to the rules of the standard (fundiindings, specific constants, and
function definitions). As a consequence, manyedght implementations of MPI
exist today, but they all have the same interfaldeerefore, MPI programs are por-
table among the various implementations. Asidmftbe possibility of a specific
implementation not supporting a specific functigrset of functions (which does
occur - for example, LAM-6.5.6 does not supportaedimg of sends in MPI-1.1),
an MPI program should be able to be compiled wity ienplementation; the only

difference at runtime should be performance.

MPI, like PVM, is truly portable across many platfts One of the problems with
early message passing environments was that theyplaform-dependent. A pro-
gram that ran on one parallel system would hav®etce-written in order to run on

another parallel system. This is not the case M. An MPI program compiled
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on a cluster running Linux, for example, can beoapiled on a workstation net-

work running Solaris Unix without being rewritten.

MPI is not a programming language. It is impleneeirs a collection of library
routines with bindings for C, C++, and Fortran.th®lugh it contains many func-
tions, one commonly-heard phrase is “minimal MB#&aning that a programmer
familiar with any of these languages can write niegfal programs with only six
MPI functions. An example of a “Hello, World” pragm (not meaningful, but
demonstrative) written in C using MPI calls is simow figure 2 (next page). In this
example, each process knows which part of the tmd&ecute by following the

branching statement.

Both MPI implementations discussed in this thesiviole environments in which

to compile and run the programs. For compilatrappers are provided called
mpicc(for C programs), anchpif77andmpif90(for Fortran programs), which
essentially compile the program with the systemto@piler or Fortran compiler
and link in the appropriate MPI libraries. Whilenwenient, these wrappers are not
necessary, as one can manually link in the MPatibs at the command line. To
run the program, a script calletpirunis provided. This script enables the creation
of the MPI processes on the various processorsloaid the executable program

onto each node.
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#include <stdio.h>
#include <string.h>
#include “mpi.h”
#define MAX_MSG 100

main(int argc, char* argv[])

{
int my_rank; /* rank of process */
int num_procs; /* number of processes
int source; /* rank of sender */
int dest; /* rank of receiver */
int tag = 0; /* tag for messages */
int size; /* size of message */

char message [MAX_MSG]; /* storage for message
MPI_Status status; /* return status for re

MPI_Init(&argc, &argv); /* st
MPI_Comm_rank(MPI_COMM_WORLD, &my rank); /*lo
MPI_Comm_size(MPI_COMM_WORLD, &num_procs); /* to

/* All processes except process 0 send a hellom
** 0, which displays the messages.
*/
if (my_rank !=0) {
sprintf(message, “Hello World from process %d
size = strlen(message) + 1;
dest = 0;
MPI_Send(message, size, MPI_CHAR, dest, tag,
}
else {
for (source = 1; source < num_procs; source++
MPI_Recv(message, MAX_MSG, MPI_CHAR, sourc
MPI_COMM_WORLD);
printf(“%s\n”, message);
}
}
MPI_Finalize();
exit(0);
}

*/

*/

ceive */

art up MPI| */
cal rank */

tal processes */

essage to process

I”, my_rank);

MPI_COMM_WORLD);

)

e, tag,

Figure 2: A Simple MPI Program, “Hello, World”

Shown is a simple “Hello, World” program written @with calls to the MPI library. Each process
knows which part of the code to execute by follegvihe branching statement. In this program,
each process except process O creates a “hellsagesnd sends it to process 0. Process 0 receives
and displays each message. If this program wagddmy hello”, to run this program with 4 pro-

cesses, one could execute at the command line:
mpirun -np 4 my_hello

21



MPI has been developed in stages, with each vedithre standard made available
in theMPI Document This document is available at the MPI Forum i [34].
The MPI-1.0 Document was released on May 5, 1994s was followed by MPI-
1.1in1995. In 1997, the MPI-1.2 and MPI-2 docutsavere released (the MPI-1.2
document is contained in the MPI-2 document). Gimeent standard supported by
most implementations is MPI-1.2. MPI-2 specifieseral changes to the standard,
one of the most notable being dynamic processioreahd management. Prior to
MPI-2, all MPI processes were specified beforepitugram was run. With MPI-2,
processes can create new processes at run timey WRI implementations cur-
rently support part of the MPI-2 standard. LAMi, &xample, provides support for

dynamic process creation and management.

This research compares two freely available, opeince implementations of MPI:
MPICH and LAM. MPICH has tracked the MPI standftain the beginning; has
been the focus of many freely available MPI profilitools; has been ported to vir-
tually every parallel system available (includigsters); and is the foundation for
a large number of proprietary MPI implementatioh&M has not received as
much attention as MPICH from vendors and tool desig, and has been ported pri-
marily to homogeneous and heterogeneous clusttraever, it has gained a fol-
lowing among cluster users due to its usabilitgt &atic process creation, and

support for dynamic process creation.
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2.5.1 MPICH

MPICH (MPI Chameleon) [9, 10] was first developédegonne National Labora-
tory in 1993 in an effort to provide an implemeidatthat could be quickly ported
to different systems and that would closely trdek MP1 standard definition as it
evolved. It has been ported to many differentesyst including: clusters running
different Unix/Linux variants; Windows NT and Winge 2000 networks; MPPs
such as Thinking Machines CM5, IBM SP, and Intelllgan, and SMPs. MPICH
is still being developed at Argonne today. Thaenirrelease is MPICH-1.2.4. It
supports all of MPI-1.2 and part of MPI-2, but does$ support dynamic process
creation. The MPICH developers are currently wagkon a release of MPICH that

supports all of MPI-2.

MPI process creation in MPICH is achieved by rensbiell invocation upon execu-
tion of the mpirun script. There is no virtual rhaee to boot up as with PVM.
Message passing between processes on differens rodehieved with TCP/IP, and
message passing between processes on the samis mogkemented by platform-

specific shared memory constructs, using semaphorgsocess synchronization.

MPICH is built in a layered approach. All MPI furems and macros [layer 1] are
implemented by functions and macros defined inAthstract Device Interface

(ADI) [layer 2]. Some of the ADI functions are itemented in terms of the target
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machine, and others are implemented by anotheerltayer, theChannel Interface
(CI) [layer 3]. According to the original MPICH prementation document [10],
the reasoning for the layered approach was to geoan implementation that could
be ported quickly to different platforms, usingnagch shared code as possible,

while maintaining a level of high performance.

The ADI is not specific to MPIl. The documentatgiates that any higher level
message passing library can be built on top dbifferent implementations of the
ADI exist, allowing for portability across a widaniety of parallel platforms. Much
of the code in the ADI is shared among the varldédCH ADI implementations.
Code that is not shared is fine-tuned for speaifiglementations in an effort to

achieve high performance.

The primary purpose of the Channel Interface dafne functions for low-level
data transfer among processes. Because thisaogeis smaller than the ADI,
MPICH can be quickly ported from system to systara minimal manner using the
Channel Interface, and then gradually expandechptement the full ADI. The
channel interface most commonly used for clustechi p4, where p4 stands for
Portable Programs for Parallel Processors, a shmghly portable parallel program-

ming library.
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252 LAM

LAM (Local Area Multicomputer) [30] was originaligeveloped at the Ohio Super-
computing Center in 1989. The project was latevedao The Laboratory for Sci-
entific Computing (LSC) at the University of Nofdame. The LSC moved to
Indiana University in the fall of 2001, and thatnkere the work on LAM is being
done today. The current release of LAM is LAM-6.5It supports all of MPI-1.2
except the cancellation of sends, and it suppeantsqd MPI-2, including dynamic

process creation and management.

The primary purpose of LAM was to provide an MPr#ry that would run effi-
ciently on heterogeneous workstation networks dmsters. It has been tested on
clusters and networked workstations running varidox and Unix-like operating
systems, including Solaris, OpenBSD, Linux, MacXQ3RIX, HP-UX, and AlX.
As dedicated clusters have gained popularity, LAdd hlso gained popularity.
Reasons for its popularity include the fact thatats originally developed for the
cluster architecture, and the increasing amoupwmfence that it has performed

well on clusters (see [3, 13, 14, 27], for example)

LAM runs on each node as a user-level daemon. dbdesare listed in a boot file,
and the user issues tlrenbootcommand to get the daemons started. In this tvay i

is similar to PVM. Because the daemons are runwingn the MPI program is
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started, the MPI processes are created quicklys i$hn contrast with MPICH,
where no user-level daemons are running on thesoefere the program starts. As
stated earlier, MPI process creation in MPICH isi@ed with the use of a system-
level daemon or by remote shell invocation. Assult, some research has indi-

cated that process startup time is generally slonvstPICH [3].

LAM is implemented in two layers [29] which meetaat interface called the RPI
(Request Progression Interface). The upper layra portable MPI API, and the
lower layer consists of bindings and functionstieo separate running modes,
known adamd modeandc2c mode A user can specify which mode to use as an
argument to the mpirun command (c2c is the defa@tth implementations of the
lower layer employ user-level LAM daemon procedse®/PI process creation.
However, the daemons may or may not have anytbidg tith the messages. The
difference between lamd mode and c2c mode istHamd mode, the daemons also
act as message intermediaries (an MPI processamAcends a message to an
MPI daemon on node A; the daemon on node A thetssitle message to a daemon
on node B, which finally sends the message to ahpviftess on node B). In c2c
mode, no such daemon activity occurs. LAM daenavasstill used for MPI pro-
cess creation, but they do not interfere with mgasa a message from process 1 on

node A will be sent directly to process 2 on node B
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A natural question to ask is: why have the daenmtesfere with messages at all?
The answer is that these daemons keep track alveeable information about the
messages that can be used for program monitoridgl@nugging. The trade-off is
slower performance. Therefore, programs run irdlamode will generally be
slower than those run in c2c mode, but they wilabke to be debugged and moni-
tored directly with tools provided in the LAM eneitment, whereas the c2c pro-
grams will not. Interestingly, lamd mode uses UbDPmessage transfer, whereas
c2c mode uses TCP. In fact, for this reason, sesearch [3] has found lamd pro-
grams to run faster than c2c programs in previeleases of LAM. It would be
interesting to perform a full-blown study comparthg performance of lamd mode

and c2c mode.

Preliminary testing using Linpack comparing the twodes in the research of this
thesis showed that c2c mode was faster than lanu@ntleerefore c2c mode for
LAM was used in the comparisons with MPICH. Onedtty as to why the c2c pro-
grams ran faster than the lamd programs is thatlisence of the daemon interme-

diaries outweighs the use of UDP in the currensiogerof LAM.
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3 Testing Environment and Software Installation

This chapter outlines the test environment andvso that was installed to conduct
the research of this thesis. All tests were pearéat on a dedicated group of nodes
on the Wyeast Cluster located in the High PerformeaDomputing Laboratory at

Portland State University.

3.1 Wyeast Architecture

Wyeast consists of a head node and 48 dual-CPU 18MPs (see figure 3, next
page). Two 100 Mbps Fast Ethernets are instaltetth® cluster, using two central
switches, and two Network Interface Cards (NICs)qmenpute node. The head
node has three Gigabit NICs and connects to tredmutvorld and to each of the
two switches via Gigabit Ethernet. Each computgenoas two 100 Mbps Fast
Ethernet NICs which are used to connect to thecbwd. There is no common file

system within the cluster.

It is not necessary to have two networks withincghester. The benefits include
availability and channel bonding potential. Wittaanel bonding, the data is
striped across two networks, leading to increasediWwidth. In the current config-
uration of Wyeast, the NICs on the designated Mielas are not set up for channel

bonding. Therefore, only one of the Fast Etheneévorks is being used within the
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cluster for all of the MPI test runs. Channel bogdesearch is currently being
conducted, and MPI performance with and withounhcleghbonding remains an
open research area within the cluster. Tablesdn@ 3 (next page) present specifi-

cations on Wyeast's hardware, network, and softwaspectively.

TO THE INTERNET

COMPUTE
NODE
g CENTRAL
HEAD NODE gt SWITCH > COMPUTE
- (x2) > NODE
COMPUTE
NODE
GIGABIT 100 Mbps
ETHERNET FAST ETHERNET

Figure 3: Abstract View of the Wyeast Cluster

This figure provides a high-level view of the Wye&$uster at Portland State University. Wyeast is
an SMP cluster consisting of a head node and fight compute nodes. The head node contains
two 1Ghz processors and the compute nodes eachicdwbd 866 Mhz Processors. The head node
has a Gigabit Ethernet connection to the outsidédwand to each of the two switches. The compute
nodes each have a 100Mbps Fast Ethernet connégtéach of the two switches. Along with the
head node, twelve compute nodes were used ingbéarch.
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Table 1. Weast Hardware Specification

Number of Nodes 48

Processors Per Node 2

Processor Type Intel Pentium Il
Processor Speed 866 Mhz

Motherboard ECS d6vaa

Main memory 512 MB RAM per node
Secondary Storage 20 GB per node

Tabl e 2: Weast Network Specification

Type

Fast Ethernet (100 mbps)

Topology

Double Switched Ethernet

Network Switch (x2)

Cics

0 3548 with Gigabit Uplinks

Compute Node NIC (x2)

3Cq

m 3¢905c¢ Fast Ethernet

Head Node NIC (x3)

Sy

sKonnect Gigabit

Tabl e 3: Weast Software Specification

Operating System RedHat 7.2 (Linux)
Kernel Version Linux 2.4.7

C Compiler gcc 3.0

Fortran Compiler g712.96

LAM 6.5.6

MPICH 1.24
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3.2 Node Configuration

Along with the head node, twelve compute nodes \aeadlable for the MPI exper-
iments, for a total of 26 processors. We develguegts on the head node to facil-
itate many tasks, including copying programs ampdirfiles over to the compute
nodes, and performing system-wide resource recov@egause these scripts were

needed frequently, we decided to use the headawtte launch node for mpirun.

Due to the absence of a common file system, theQWREests required the use of a
proc group filefor the mpirun command to work properly. Thigfit created auto-
matically by mpirun under most circumstances, ugnfigrmation stored in an
MPICH “machines file”, and information entered dw tmpirun command line.
However, for several situations (heterogeneouesystabsence of a common file
system, and others) MPICH requires the user toifspaty create this file, and then
direct mpirun to read it by using thedpg filenameption to mpirun. Each time a
new program is run or a different node configurai®used, this file must be
changed. In addition, the local node (the nodmfwhich the mpirun command is
launched) must be included in the proc group filberefore, with the local node
being the head node in our case, the head nodeaeyased to be one of the com-
pute nodes for the MPICH runs. For fairness itirigsit was decided to use the
head node as a compute node for LAM as well, aghdtAM does not require this

with our configuration.
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3.3 Operating System and Compilers

Red Hat Linux 7.2 (Linux kernel 2.4.7) is the operg system for all nodes used in
this research. Red Hat 7.0 was originally insthfia all of the nodes in the cluster.
We decided to stay with Red Hat, and update the MdEes to the most current
release available at the time of the MPI testse Crcompiler used for compiling
the libraries and compiling MPI programs is gcc-3The Fortran compiler is g77-
2.9.6. These compiler choices were made becaagenmére already present on the
cluster before the MPI research began; they suitdlgssompiled both libraries;
and both libraries subsequently compiled and sséa®ys ran large MPI test pro-
grams. Time limitations prevented an investigagod possible subsequent instal-

lation of alternative compilers to determine whacdmpilers are optimal for MPI on

Wyeast.

3.4 LAM, MPICH, and MPE

LAM-6.5.6 was downloaded from: http://www.lam-mpgédownload. Installation
consisted of running a supplied configure scripttmhead node to generate a
Makefile, executing the Makefile, and then copytihg binaries over to the compute
nodes. A similar approach was taken for MPICH4L.&hich was downloaded

from: http://www.unix.mcs.anl.gov/mpi/mpich/downkbatml.
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Configure options for LAM:

Jconfigure --prefix=/usr/local/lam-6.5.6 --withigsysv --with-rsh="ssh -x”

Configure Options For MPICH:

Jconfigure --prefix=/usr/local/mpich-1.2.4 --witemm=shared -rsh=ssh

LAM is available in three different versions of tRequest Progression Interface.
(Note that these are not the same as thexRidediscussed earlier in section 2.5.2;
each of the three RPI versions can be run in batties). We installed theysvRPlI
version of LAM, which is one of the two RPI's siota for SMP clusters. The other
is usysv Both use TCP/IP for message transfer betweetepses on different
nodes, and shared memory for message transfer érefwecesses on the same
node. The difference is that the sysv RPI uses\S&naphores for synchroniza-
tion, and usysv uses spin locks. The LAM documeniastates that the sysv RPI
likely performs better than usysv for SMP clustevée were able to compile and
install LAM using the usysv RPI, but the prograneseampiled ran erroneously, so
we decided to use the sysv RPI. A third R&, uses TCP/IP exclusively for mes-

sage transfer, and was not installed.

MPICH is available in many implementations becatibkas been ported to many

different systems. We chose ttfe_p4implementation, which is recommended for
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SMP clusters. Another cluster implementaticm, pAmpdprovides faster process
startup but is only available for uniprocessor ®@ts As with LAM’s sysv imple-
mentation, the ch_p4 implementation of MPICH us€®P for inter-node mes-
sage transfer, and shared memory (using semaploorg@gchronization) for intra-

node message transfer.

All LAM programs were run irt2c mode with theO option to mpirun. In c2c
mode, MPI messages bypass the LAM daemons. Tlopton specifies to LAM
that all nodes in the system are homogeneous,raimg the need for data conver-
sion. These choices were made based on resuttspireliminary testing of LAM
programs on the cluster using Linpack. For MPICGbigpams, mpirun by default
assumes that the system consists of homogeneoas.ndtierefore, no options
were passed to mpirun aside from the -p4pg optubinch was needed due to the

absence of a common file system on Wyeast.

MPE (Multi-Processing Environment) [4] is a usdihtary for profiling parallel
MPI programs. It was developed by Argonne for MRJ@nd is included with the
MPICH download, but is intended to be used with BBl implementation. MPE
has capabilities for producing log and trace fitegarious formats, and includes
several viewers for log file analysis, includingrjushot. Jumpshot is a graphical

visualizer for the SLOG files created by using MiE logging library. MPE is
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installed automatically when selecting the defaaltfigure options to MPICH. In
order to use MPE with LAM, the directions providadMPE User’s Guide [4] were

followed for configuration and linkage.
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4 Experiments and Performance Results

This chapter presents the experiments that weramdrthe results obtained. Three
major categories of experiments were run: HighHdPerance Linpack (HPL), a
standard benchmark for parallel computers usethdyap 500 list; su3_rmd, a pro-
gram involving four dimensional SU(3) lattice gaugeory; and a series of band-

width comparisons testing eight MPI point-to-panimmunication primitives.

To avoid confusion, the following definitions ofroonly used abbreviations
which will be used in the proceeding discussion iaritie next chapter are pro-
vided: 1 Mbps refers to 1 Megabit per second; /$4B means 1 Megabyte per
second; 1 MFLOPS is 1 million floating point opéoat per second, and 1
GFLOPS is 1 billion floating point operations pecend. These definitions are
given because researchers in networking often tefeits, whereas the operating
system literature mostly refers to bytes, and bé&stause of unclear results found in
the course of this research that stressed the tampme of unit and abbreviation clar-
ification. Note that Fast Ethernet has a theoaétitaximum bandwidth of 100

Mbps, and Gigabit Ethernet has a theoretical mamrbandwidth of 21000 Mbps.
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4.1 Linpack

The first set of experiments compare LAM and MPI@hg the Linpack Bench-
mark [5]. Linpack is a program that solves a ddimsar system of equations. It
has become the benchmark used by the top 5081istWwhich ranks the world’s
500 fastest computers. The implementation usdgisrresearch is HPL (High Per-
formance Linpack) [35], because it is appropriatedistributed systems, is freely-
available, and is the implementation used and recended by the top 500 list.
Parallelization is achieved by distributing theadamong a two-dimensional grid (P
by Q) of processors, the parameters of which ageiipd by the user. According to
the HPL documentation, this ensures good load balgrand scalability character-
istics. Along with the grid size, the values fanamber of other parameters are left
up to the user. These are placed in an inputéiled “HPL.dat” and can be
changed from run to run. The only parametersvieae varied for the Linpack tests
of this research were grid size and problem sidéother parameters remained
fixed, the values of which were decided upon byimieary testing. A sample

HPL.dat input file is provided in Appendix A.

Linpack was chosen to be used in this researcbefegral reasons. We wanted to
test the Wyeast cluster as soon as possible h#tarddes were configured, and it
therefore seemed suitable to compile and run almeark that is widely used, freely

available, and has been accepted as a standarpadki provides results in terms of
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bothperformancgtiming results and GFLOPS performed) aadrectnesgthe

tests either pass or they fail). Many clustersehasen tested using Linpack, and so
it also gave us a reasonable gauge by which to amerthe performance of Wyeast
to other clusters, as well as ensuring that athelas of the parallel environment of
Wyeast (MPI, operating system, networking, hardyvewere functioning cor-

rectly. Finally, once the program was compiled emdwith one of the MPI librar-
ies, it could also be compiled and run with thesgtkeading to an environment in

which the two could be compared running a largecherark.

4.1.1 Description of Experiments

Linpack was compiled and executed for both LAM a#fICH on increasingly
large process grid sizes (P by Q), correspondingd@asing numbers of proces-
sors. As an example of grid size, a 3x4 grid mm4.2 processors, and a 4x4 grid
runs on 16 processors. For each grid size, tests man with increasingly large
problem sizes (corresponding to “N” in the HPL doe&ntation). As an example of
a problem size, N=15000 means that a matrix of @93015000 double precision

(8 byte) elements will be used by the program.
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The grid sizes tested (with number of processopmanmenthesis) were: 1x1 (1), 1x2
(2), 2x2 (4), 2x4 (8), 2x5 (10), 3x4 (12), 4x4 (18%5 (20), and 4x6 (24). The prob-

lem sizes tested were: 2000, 4000, 6000, 800@WA,AH0O00, 20000, and 25000.

The memory requirements of the program dictatetirtbiall problem sizes could
be run with all grid sizes. For example, a prob&re of N = 15000 could not be
run on a 2x2 process grid because the two nodesrwgthe 4 processors (1 GB
total) did not have enough memory available togitgram (1.8 GB required).
Running the program with such a combination woeaktllto memory swapping and
would therefore distort the overall execution tiraed is not recommended in the
HPL documentation. All allowable grid/problem sz@mbinations were run five
times. The final results given in the next sectom mean results of the five runs for

each combination.

4.1.2 Results and Analysis

LAM and MPICH performed similarly on the Linpackichmark, with LAM per-
forming slightly better in almost every case. kxithg the uniprocessor runs, LAM
outperformed MPICH by 2.6% on average in terms BEGPS. The best result
obtained was 9.18 GFLOPS. This occurred on rumgirdy LAM on a 4x6 process

grid (24 processors) with a problem size of N 8@& Tables 4 and 5 (pages 41
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and 42) display the results of all combinationse#sn terms of both GFLOPS and
execution time. Each number reflects the meartrestive runs. We did not

experience a high level of variation among the fimeeated runs for each problem
size / grid size combination. Appendix D contéims standard deviation numbers

for all combinations tested.

Figure 4 (page 43) displays the results as a fandaif problem size for a fixed grid
size of 4x6 (24 processors), the highest numberafessors used. In figure 5
(page 43), the results for a fixed problem sizdle15k are displayed as a function
of grid size. This is a good representative figugeause it is a respectable problem
size that was able to fit into almost all grid sizé-urther, the trends of the other
problem size runs are similar, with the exceptibthe N=2k and N=4k problem
sizes. Appendices B and C contains graphs oéslilts. In Appendix B, the results
are shown as a function of grid size with respec¢hé various problem sizes. The
graphs in Appendix C display the results as a fanaf problem size by keeping

the various grid sizes fixed.
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Table 4: Linpack Data

Grid | Problem LAM MPICH LAM MPICH
Size Size GFLOPS | GFLOPS | Seconds | Seconds
1x1 2,000 |0.611 0.602 8.75 8.88
4,000 | 0.637 0.637 66.99 67.10
6,000 | 0.651 0.650 221.39 221.54
1x2 2,000 | 0.986 0.991 5.38 5.37
4,000 | 1.089 1.096 39.28 38.94
6,000 |1.132 1.112 127.34 129.59
2X2 2,000 | 1.077 1.056 4.96 5.09
4,000 | 1.464 1.454 29.25 29.45
6,000 | 1.682 1.670 85.65 86.35
8,000 |1.781 1.777 191.81 192.17
10,000 | 1.858 1.851 358.81 360.51
2x4 2,000 | 1.086 1.057 4.90 5.06
4,000 | 1.987 1.914 21.53 22.24
6,000 | 2.492 2.413 57.68 59.58
8,000 | 2.838 2.789 119.42 122.25
10,000 | 3.044 3.016 218.50 221.13
15,000 | 3.410 3.017 660.43 725.37
2x5 2,000 | 0.991 0.955 5.39 5.55
4,000 |1.918 1.838 22.30 23.25
6,000 | 2.690 2.581 52.98 55.83
8,000 | 3.161 3.049 108.83 111.65
10,000 | 3.524 3.467 189.35 192.28
15,000 | 4.032 3.992 558.65 563.68

Table 4 displays thkeinpack data for all problem sizes tested with,14,28, and 10 processors. Each
number reflects the mean result of 5 runs.
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Table 5: Linpack Data, continued

Grid Problem LAM MPICH LAM MPICH
Size Size GFLOPS | GFLOPS | Seconds | Seconds
3x4 2,000 1.059 1.036 5.10 5.16
4,000 2.112 2.092 20.31 20.35
6,000 2.855 2.809 51.02 51.22
8,000 3.423 3.446 99.75 99.37
10,000 3.848 3.786 173.96 177.15
15,000 4.435 4.370 507.70 511.55
4x4 2,000 1.219 1.142 4.33 4.62
4,000 2.593 2.414 16.78 17.66
6,000 3.435 3.283 42.21 43.29
8,000 4.186 4.147 81.66 82.79
10,000 4.805 4,729 138.75 141.10
15,000 5.715 5.560 395.52 403.66
20,000 6.295 6.221 849.37 858.18
4x5 2,000 1.144 1.093 4.76 4.86
4,000 2.636 2.555 16.30 16.73
6,000 3.725 3.605 37.78 39.91
8,000 4.774 4.654 71.05 73.84
10,000 5.432 5.313 123.45 125.05
15,000 6.496 6.371 345.63 355.04
20,000 7.418 7.338 719.61 728.22
4x6 2,000 1.113 1.125 4.72 4.68
4,000 2.590 2.514 16.46 16.93
6,000 3.789 3.653 38.66 39.45
8,000 4.998 4.843 68.14 70.98
10,000 5.833 5.803 114.21 115.03
15,000 7.236 7.076 311.77 314.68
20,000 8.448 8.276 624.96 642.97
25,000 9.077 8.980 1154.81 | 1161.37

Table 5 displays the Linpack data for all problénes tested with 12, 16, 20, and 24 processors.
Each number reflects the mean result of 5 runs.
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Figure 5: Linpack Results for N = 15k

Figures 4 and 5 display representative Linpack otetao different ways. In figure 4, results are
shown as a function of problem size by keepingtietsize fixed. The 4x6 grid (24 processors) was
the largest grid size tested, and the resultsalepl in figure 4 are representative of the redaits

the other grid sizes. In figure 5, the resultssir@wn as a function of grid size for a fixed pesbl
size of N=15k. This problem size was too largéttmto the 2x2 grid. All problem sizes except
N=2k and N=4k resulted in patterns similar to the®shown in figures 4 and 5.
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In nearly every case, LAM and MPICH scaled for biottreasing problem sizes and
increasing grid sizes (processor counts). Two gtkaes are for the N=2k and N=
4k problem sizes (see figures 6 and 7, next page¢ conclusion here is that these
problem sizes were likely too small to ensure gdamhmunication time would not
become a bottleneck in overall execution time. fHoethat a parallel program can
be written for a problem does not always meanithatadvantageous to use the
highest number of processors available. For samgrgms with small problem
sizes, the communication time incurred by addingenpsocessors outweighs the
concurrency benefits. The Linpack 2k and 4k pnob$ézes appear to fall into this

category.

For the other problem sizes, LAM and MPI scaled,nmither achieved linear
speedup. Speedup is defined by equation: (Timk mnocessor) / (Time on N pro-
cessors). Linear speedup is N for N processohe Idrgest problem size that fit
into 1 node was N=6k; therefore, we were able toutate the parallel speedup of
LAM and MPICH with respect to serial execution this problem size. The results
are shown in figure 8 (page 46). While we wereblm#o get the uniprocessor time
for the larger problem sizes due to memory requérds) the timing results for these
problem sizes suggest that Linpack scales bettdarfger problem than for smaller

problem sizes using both LAM and MPICH.
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Figure 7: Linpack Results for N = 4k

Figures 6 and 7 display the performance of LAM BICH as a function of processor count for
fixed problem sizes of N=2k and N=4k, respectivélieither LAM nor MPICH scale consistently
for these small problem sizes. The reason i$ylitteat the communication cost incurred by adding

processors begins to outweigh the benefits of lgh@iocessing.These were the only problem sizes
in which this characteristic was noticed.
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Figure 8: Speedup for N = 6k

Figure 8 displays the speedup of LAM and MPICHd&a@roblem size of N=6k, the largest problem
size that would fit in to the memory of 1 node.e8gup is defined by dividing the execution time
using 1 processor by the execution time using Ngssors. Linear speedup is achieved when the
time is N for N processors. Neither LAM nor MPIGidhieve linear speedup for any of the problem
sizes; however the speedup for both appears tetberlior the larger problem sizes.

The Linpack results build confidence that the gakanvironment is set up to prop-
erly compile and execute large MPI programs (alig@assed), they give us a way
to compare the performance of the cluster with rothesters, and provide a legiti-

mate starting point in comparing LAM and MPICH.wi& were going to spend time
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fine-tuning the Linpack input parameters and oping the parallel environment
(MPI configure options, compiler choice, networkiops, etc.) with the goal of
achieving the highest possible Linpack score, ¢iselts of this research indicate
that the library to focus on would be LAM. Thiglioation, however, is not over-
whelming. The highest LAM score was 9.184 GFLOP® (@rid; N = 25000). The

highest MPICH score was 9.014 GFLOPS (4x6 grid; 26600).
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4.2 su3 _rmd

In an effort to strengthen the comparison of LAMI&PICH, we decided to test
the performance of the libraries on another pdrpfiegram. Linpack is certainly a
legitimate parallel program, but it is primarilyagsas a benchmark, and provides
only one basis for comparison. The su3_rmd progsaasimulation program used
in physics research. It is the pure gauge vaohatvariety of programs available
from the MIMD Lattice Computation (MILC) Collaboiat [36] involving a con-
cept known as four-dimensional SU(3) lattice gatig®ry. Parallelization is
achieved by distributing lattice sites across npded exchanging information

among sites.

4.2.1 Description of Experiments

The overall problem size can be increased in su@ bynncreasing the lattice
dimensions (nx, ny, nz, nt) and increasing the remalb trajectories (traj). The
number of processors used must be a power of 2raWexperiments with 5 prob-
lem sizes, shown in table 6 (next page). Sincentimeber of processors used in
su3_rmd must be a power of 2, we were able to usaxamum of 16 processors.
For experiments 1, 2, and 3 we used 2, 4, 8, amqtddessors. Experiment 4 was
not run with 2 processors because its problemvgazetoo large to fit into the mem-

ory of 1 node. Similarly, experiment 5 was runyonith 16 processors because its
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problem size would not fit into the memory of 4 eedwhich is the number needed

for an 8 processor run on our SMP cluster.

Tabl e 6: Description of su3 rnd Experinents

Experi nent Probl em Si ze Processors Used

1 nx=ny=nz=4, 2,4,8,16
nt=8,
traj=50

2 nx=ny=nz=6 2,4,8,16
nt=12
traj=75

3 nx=ny=nz==8 2,4,8,16
nt=16
traj=100

4 nx=ny=nz=12 4,8,16
nt=24
traj=150

5 nx=ny=nz=16 16
nt=32
traj=200

Table 6 displays the five problem sizes testedfi® rmd. The number or processors used in
su3_rmd must be a power of 2. Experiment 4 wasurotvith 2 processors because its problem size
exceeded the memory of 1 node. Likewise, experifievas run only with 16 processors because it
would not fit into the memory of 4 nodes (8 procggsin).
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4.2.2 Results and Analysis

We measured wall clock time (total execution timedhe shell, and the program
provides timing results for CPU time. LAM and MPH@®erformed similarly in
terms of total execution time on all problem site=sted except for the smallest and
largest sizes. Table 7 (next page) presents tlaefalaeach combination tested in
terms of wall clock time and CPU time versus thehar of processors used. Fig-
ures 9 through 13 (pages 55 through 57) displasetinesults graphically. In both
the table and the graphs, the numbers shown are timees of five runs for each
combination. Standard deviation results of alkeagpd runs are provided in Appen-

dix E.

One interesting observation from the timing resigltfhat, in many cases, the CPU
time for LAM is less than the CPU time for MPICHytlihe total execution time is
longer. For example, in experiment 4, with 8 pesoes, the total execution time for
LAM is 759 seconds versus 752 seconds for MPICH i CPU time is 559 sec-
onds versus 673 seconds. In the same experingng L6 processors, the execu-
tion time for LAM finally becomes less than thatMPICH, but only by 10
seconds. The difference in CPU time is 100 secomdble 8 (page 52) displays the
results in terms of CPU time percentage versus aamgation/IO time percentage

for all experiments.
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Table 7: Results of su3 rnd in Seconds

LAM LAM MPI CH MPI CH
Probl em Si ze | Processors wal | CPU wal | CPU

Ti me Ti me Ti me Ti me
Experiment 1 | 2 7.46 6.48 6.94 6.68
nx=ny=nz=4, 4 6.19 4.07 6.79 5.56
nt=8, 8 4.32 2.13 6.41 5.04
traj=50 16 3.88 1.55 8.55 5.76
Experiment 2 | 2 67.50 64.42 65.05 64.75
nx=ny=nz=6, 4 37.68 31.73 38.08 36.52
nt=12, 6 23.11 14.72 24.78 21.88
traj=75 16 15.61 7.85 22.08 18.31
Experiment 3 | 2 294.47 293.23 288.28 287.82
nx=ny=nz=8, 4 174.31 152.45 173.85 166.40
nt=16, 8 97.95 69.88 94.77 88.19
traj=100 16 58.94 35.77 60.42 53.95
Experiment 4 | 4 1284.57 1133.50 1284.34 1231.44
nx=ny=nz=12 8 759.38 559.25 752.49 672.81
nt=24 16 428.93 290.74 438.01 390.62
traj=150
Experiment 5 | 16 1683.32 [1203.04 1B30.65 156.82
nx=ny=nz=16
nt=32
traj=200

Table 7displays the results of the su3_rmd tests. Reatdtslisplayed as execution time and CPU
time in seconds. The only situation where the @ogdid not scale occurred in the smallest problem
size for MPICH. One reason for this is that precgsrtup is slower in MPICH than in LAM, and
with 16 processes this characteristic plays an aporole for small problem sizes, in which startu

time can be a large portion of overall executiometi
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Table 8: su3 rnd CPU Time and Comuni cation/ 10O Tine

Experi ment LAM LAM MPI CH MPI CH
P CPU comi | O CPU comi | O
1. 2procs 86.9% 13.1% 96.3% 3.7%
4 procs 65.7% 34.3% 81.9% 18.1%
8 procs 49.3% 50.7% 78.6% 21.4%
16 procs 39.9% 60.1% 67.4% 32.6%
2: 2procs 95.4% 4.6% 99.6% 0.4%
4 procs 84.2% 15.8% 95.9% 4.1%
8 procs 63.7% 36.3% 88.3% 11.7%
16 procs 50.3% 49.7% 82.9% 17.1%
3: 2procs 99.6% 0.4% 99.8% 0.2%
4 procs 87.5% 12.5% 95.7% 4.3%
8 procs 71.3% 28.7% 93.1% 6.9%
16 procs 60.7% 39.3% 89.3% 10.7%
4: 4 procs 88.2% 11.8% 95.9% 4.1%
8 procs 73.6% 26.4% 89.4% 10.6%
16 procs 67.8% 32.2% 89.2% 10.8%
5: 16 procs 71.5% 28.5% 86.1% 1319%

Table 8 displays the breakdown of the su3_rmd exyts in terms of percentage CPU time and
percentage communication/IO time. The su3_rmdnamgorovides timing results for CPU time.
We timed overall execution time at the shell, amovg the difference of execution time and CPU
time here as percentage communication/IO time.

52



For the largest problem size tested (experimerthB)total execution time for LAM

is 1,683 seconds versus a total execution time8&#11seconds for MPICH. This
indicates that LAM performs better than MPICH orgkx problem sizes with a
large number of processors. Unfortunately we waable to test su3_rmd with a
higher number of processors because the next dllewaumber for this program is
32, and we did not have 32 processors availablthe®oMPI experiments. It would
be interesting to see if the performance differanceeases as both the problem size

and the number of processors are increased.

For 16 processors on the smallest problem size, LA\RI2 times faster than

MPICH. This is likely in part due to the fact th@abcess startup time is faster in
LAM than in MPICH. As discussed in section 2.9.2M runs as a user level dae-
mon on each node. These daemons are responsil#tqrocess startup, and
optionally for intercepting messages to collectérdata. Because the daemons are
already running before the MPI program is execypeodcess startup time is fast.
Conversely, process startup time in MPICH is sl@eaduse MPICH uses a remote
shell invocation for each MPI process created Gams et. al. [3]). Startup time
can become an important factor in the executioe tfinprograms with small prob-

lem sizes as the number of processors is increala@d. partially explains the
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extreme performance difference of LAM and MPICHekperiment 1 using 16 pro-

Cessors.

We conducted a simple experiment to measure MRigsstartup time in LAM
and MPICH. In this experiment, all processes ekpegpcess 0 sends a single inte-
ger (4 bytes) to process 0. Table 9 displaysébalts of the startup time experi-

ment.

Table 9: Process Startup Tine Results (seconds)

Processors LAM MPI CH
2 0.51 0.23
4 0.53 0.63
8 0.54 1.42
12 0.55 2.24
16 0.57 3.04
20 0.58 3.93
24 0.60 4.79

Table 9 displays results from our process staitap experiments. Process startup time is high in
MPICH due to the fact that MPICH uses remote shebcation for MPI process creation. In con-
trast, LAM uses daemons on each node to start Mizlegses. These daemons are already running
when the LAM MPI program is executed.
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su3_rmd Experiment 1
nx=ny=nz=4, nt=8, traj=50
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Figure 9: su3_rmd Results for Experiment 1

su3_rmd Experiment 2
nx=ny=nz=6, nt=12, traj=75
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Figure 10: su3_rmd Results for Experiment 2

Figures 9 and 10 display the timing results for sa8l on the first two problem sizes. For the small
est size tested (shown in figure 9), it is evidbat MPICH does not scale as processors are added.

The reason for this is likely the fact that MPI pees startup time is slow in MPICH.
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su3_rmd Experiment 3
nx=ny=nz=8, nt=16, traj=100
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Figure 11: su3_rmd Results for Experiment 3

su3_rmd Experiment 4
nx=ny=nz=12, nt=24, traj=150
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Number of Processors

LAM cpu
MPICH cpu

M LAM wall
= MPICH wall

Figure 12: su3_rmd Results for Experiment 4

Figures 11 and 12 display the timing results f& $md on larger problem sizes. One interesting
observation is that, while the LAM programs use IE®U time, the overall execution time is nearly

even for LAM and MPICH for these problem sizes.
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su3_rmd Experiment 5
nx=ny=nz=16, nt=32, traj=200
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MPICH cpu

M LAM wall
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Figure 13: su3_rmd Results for Experiment 5

Figure 13 displays the timing results for su3_rmdte largest problem size tested. This problem
size was only tested with 16 processors becawseuitd not fit onto the memory of the node config-
urations for fewer processors. Unlike experimdriisrough 4, LAM clearly outperforms MPICH in

terms of both CPU time and overall execution timéhis experiment.
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We studied the performance of su3_rmd using the NM#&ry and Jumpshot, the
visualization tool distributed with MPE (discussadsection 3.4). The tools fell
short, however, in not providing information abtwt breakdown of CPU time, 1/0
time, and communication time. MPE and Jumpshoewetpful, however, for
clearly logging and displaying every MPI functidrat su3_rmd uses, and also for
providing an overall view of the communication patt For MPI point-to-point
communication, the only construct used was MPI_&®#¢RI_Irecv, a synchronous

send with a non-blocking receive.

As can be seen from the MPE/Jumpshot histograngimd 14 (next page),
MPI1_Ssend and MPI_Wait (which corresponds to MRc\Y) dominate communi-
cation time. Jumpshot uses a heuristic basedeonumber of function calls and the
duration of each call to determine the relativeant@nce of each MPI construct in
the histogram display. We decided to take a cllusde at MPI_Ssend/MPI_Irecy,
along with seven other MPI point-to-point combipas. The results are presented
in the next section. LAM performed better than KRIlin terms of bandwidth for
Ssend/Irecv, providing a partial explanation awly LAM performed better than

MPICH on su3_rmd for the large problem size.

58



Event Count vs Time
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Figure 14: Histogram of MPI Constructs in su3_rmd

Shown in figure 14 is a screen shot of the Jumpgtagthical visualizer which is used to view the
SLOG trace files generated by the MPE logging aralhe SLOG file used for this screen shot
contains information for an execution of su3_rmuhgshe problem size of experiment 2 with 16
processors. The histogram displays the relatiyitance of MPI functions as time elapses using a
heuristic that involves the number of function satlade and the time spent in each call. Note that
MPI_Barrier is only called at the beginning of ffregram. The histogram clearly shows that
MPI_Ssend and the MPI_Wait corresponding to MPtMreearly dominate communication time in
su3_rmd.
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4.3 Bandwidth Comparisons

This section discusses the performance of LAM affi®H on eight MPI point-to-
point communication pairs using a traditional “pipgng” bandwidth test program,
in which a message is passed from process A t@psd8, which passes it back to
process A. The source code can be obtained byingetive on-line version of a

paper entitled “MPI Performance Topics” [28].

The bandwidth program tests round-trip performasfabe MPI point-to-point
communication pairs shown in table 10 (next padéfpl provides both blocking
and non-blocking sends and receives. Addition&dlysends, four communication
modes are provided: standard, synchronous, buffaretiready. Therefore, there
are eight possible send operations and two possb&sve operations. This results
in sixteen point-to-point communication pairs pbtsin MPIl. The bandwidth pro-
gram tests eight of them, including many of thesoc@mmonly found in MPI pro-

grams.

Detailed information regarding the various poin§gtmnt communication options
available in MPI can be found in the texts by Grapp Lusk [12], and Pacheco
[15]. A brief description of the operations in l@ho0 is presented here. Blocking

operations do not return until the function arguteeme safe to reuse. The argu-
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ments are safe to reuse if the system has buffeeethessage and/or the matching

operation has been posted.

Table 10: Point-To-Point MPI Bandwidth Tests

Pair Description

MPI_Send / MPI_Recv Blocking Send
Blocking Receive

MPI_Send / MPI_Irecv Blocking Send
Non-blocking Receive

MPI_Isend / MPI_Recv Non-blocking Send
Blocking Receive

MPI_Isend / MPI_Irecv Non-blocking Send
Non-blocking Receive

MPI_Ssend / MPI_Recv Synchronous Send
Blocking Receive

MPI_Ssend / MPI_lrecv Synchronous Send
Non-blocking Receive

MPI_Issend / MPIl_Recv Non-blocking Synchronous Send
Blocking Receive

MPI_Issend / MPI_Irecv Non-blocking Synchronous Send
Non-blocking Receive

Table 10 displays the MPI point-to-point communimatcombinations tested by the bandwidth pro-
gram. The MPI_Ssend/MPI_Irecv combination was useke su3_rmd program. See the text for a
brief discussion of blocking, non-blocking, and glyronous communication.

Therefore, a blocking send may or may not blockewwaiting for a corresponding

receive to be posted. It depends on whether otheosystem provides temporary
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buffering of messages. Most systems provide baffeup to a certain message

size. For example, LAM provides buffering for magss up to 65 KB in size.

Note that blocking communication is different fregnchronous communication in
MPI terminology. Synchronous communication is m@srictive: it does not rely
on system buffering but rather demands that themireg operation has been
posted, and data transmission has begun. For égaanprocess executing a syn-
chronous send will block until the correspondingeiging process has actually
posted the receive and begun receiving the datatsvargument buffer. For this
reason, synchronous sends can be used to enssefehgf MPI programs. If the
program does not deadlock when all blocking senelseplaced with synchronous
sends, one can be assured that the send and rpegisvdave been coded in a cor-

rect order in terms of avoiding deadlock.

Non-blocking calls return immediately, and requive programmer to call a sepa-
ratewait or testoperation to determine if the corresponding opendtas com-
pleted. When it has, the function arguments afietsareuse. Non-blocking
communication can be used to avoid deadlock amdpoove performance by over-

lapping communication with computation.
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The bandwidth program can be configured to testrange of message sizes, using
any size for a step interval. For example, onespatify to test message sizes in the
range [100, 1000], incrementing the message sigeyed00 bytes. The number of
round-trip iterations can also be configured, dreddrogram keeps track of the best,
worst, and average times, using MPI_Wtime for aetstation. MPI_Wtime returns
the time in seconds from some arbitrary time ingast. This arbitrary time is guar-
anteed not to change during the lifetime of a pgeceo a timing of some activity
can be taken by surrounding the activity with tighgalls and subtracting the differ-

ence.

We decided to perform bandwidth experiments to ok fine-grained view of the
point-to-point performance of LAM and MPICH. MdgPI programs are written
using at least one of the eight point-to-point corabons shown in table 10, and
testing the performance of the libraries on somié@fcommonly used combina-
tions strengthened the overall comparison of LAM BMPICH in this research.
Specifically, the su3_rmd application discussesdation 4.2 uses the MPI_Ssend/
MPI_lIrecv combination, and we decided to take a@ldook at this pair. The spe-
cific bandwidth program used in this research wsedibecause it tests this pair,
along with the others listed in table 10. Furtltezan be easily configured to reset
the different parameters, and the timing resukspaovided in a clear, understand-

able form.
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4.3.1 Description of Experiments

Each pair listed in table 10 was tested for thressage ranges: “sma|B00 to

4,800 bytes]; medium” [5,000 to 100,000 bytes], and “larg200,000 to

2,000,000 bytes]. The message sizes were incrégagactements of 300 bytes,
5,000 bytes, and 100,000 bytes, respectively.eBoh communication pair, for
each message size tested, one hundred iteratiorspedormed. The reported
results are mean times. The tests were condustad two processors, one on each
of two nodes. Therefore, the tests reflect nodeetde performance over the net-

work, rather than shared memory performance.

We noticed we were getting results that exceededndoretical maximum (12.5
MB/sec) for round trip bandwidth on a 100 Mbps Rasiernet for many of the tests
involving non-blocking receives. A close examionatpf the bandwidth program
revealed that the tests which involve non-blockiecgives were not properly mea-
suring round trip bandwidth, due to the orderingvi#tl_Irecv and MPI1_Wait. Pro-
cess 1 correctly sends the message to process\®eudr, process 2 does not wait
for the non-blocking receive to complete beforedseg the message back to pro-
cess 1. It does call MP1_Wait, but only afterabds the message back. At this
point, it is too late - there is no reason to wdihe message has been sent back
without ensuring that it has been correctly reagivethe first place, and so what is

really happening is that two messages are beingaseoss the network at the same
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time. This is possible because our switches anégiored to run in full-duplex
mode. Therefore, we were exceeding the theoreneaimum for round trip band-

width on our 100 Mbps Fast Ethernet.

We modified the program to correctly wait beforadiag the message back in the
cases involving non-blocking receives. When wetlisgl, the results were under
12.5 MB/sec. In addition, there was less data skevthe remainder of this thesis,
we will refer to theoriginal programand themodified progranwhen discussing
bandwidth results for non-blocking receives. Weviate all data for both catego-

ries of results.

4.3.2 Results and Analysis

LAM performed better than MPICH on the Wyeast Ghugor the communication
pairs tested between two nodes. This was expéatede Ssend/Irecv combina-
tion, because the su3_rmd application uses thifg@apoint-to-point communica-
tion, and LAM outperformed MPICH on the su3_rmd fes the large problem
size. However, the overwhelming performance gafrisAM over MPICH for
nearly all of the bandwidth experiments was noteexgd. Appendix F contains
graphs displaying the results for every bandwidiheeiment conducted (original

program). The graphs represent the bandwidth dfllakd MPICH on the eight
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communication pairs tested for each of the thressange size ranges. They reflect
the mean bandwidth results of one-hundred iterationeach combination tested.
Raw data showing best, average, and worst timesaftin communication pair/mes-
sage size combination is provided in Appendix @nil&rly, Appendix H contains
graphs of results for pairs involving non-blockiegeives for the modified pro-

gram, and Appendix | contains the raw data forelresults.

Figures 15 through 17 on the following pages disphe results of LAM and
MPICH on MPI_Send/MPI_Recyv, the MPI blocking send aeceive pair. This is
the most basic of the point-to-point communicatonstructs in MPI, and one that
is found in many MPI programs. LAM slightly outp@med MPICH on this com-
bination for every message size. In figures 18ugh 20, the results are presented
for MPI_Ssend/MPI_Irecv (modified program) - a sgranous send with a non-
blocking receive. This is the construct used leygt3 rmd application, discussed
in section 4.2. The results clearly show that LA&tforms better than MPICH for
this construct, which is one reason why LAM perfethbetter on su3_rmd on the

large problem size.
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Send/Recv - Short Messages
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Figure 15: Bandwidth Results for Send/Recv - Shotlessages
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Figure 16: Bandwidth Results for Send/Recv - MediunMessages

Figures 15 and 16 display the bandwidth performarfitéAM and MPICH on Send/Recv for short
and medium range messages, respectively. SendiRewy basic blocking point-to-point blocking
construct in MPI.
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Send/Recv - Long Messages
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Figure 17: Bandwidth Results for Send/Recv - Long Mssages

Figures 17 displays the bandwidth performance diiLa#nd MPICH on Send/Recv for long mes-
sages. Send/Recyv is the basic blocking point-totfxdocking construct in MPI.

Ssend/Irecv - Short Messages
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Figure 18: Bandwidth Results for Ssend/Irecv - SharMessages

Figure 18 displays the bandwidth performance of LAl MPICH on Ssend/Irecv (modified pro-
gram) for short range message sizes. Ssend/Bexgynchronous send with a non-blocking
receive. This is the construct used in the su3_apmlication.
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Ssend/Irecv - Med. Messages
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Figure 19: Bandwidth Results for Ssend/Irecv - Medim Messages

Ssend/Irecv - Long Messages
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Figure 20: Bandwidth Results for Ssend/Irecv - LondMlessages

Figures 19 and 20 display the bandwidth performarfitéAM and MPICH on Ssend/Irecv (modi-
fied program) for medium and long range messagssiespectively. Ssend/Irecv is a synchronous
send with a non-blocking receive. This is the tts$ used in the su3_rmd application.
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One interesting conclusion that can be made fraamehults is that MPICH narrows
the gap in many cases when the message size eXa®& This can clearly be
seen in figures 16 and 19, and on most of the grapithe medium size messages.
The reason for this is that LAM switches frorsleortto long protocol at 65 KB by
default. Although we used the default configunatitihis setting can be changed by
setting the environmental variable LAM_TCPSHORTM3BL LAM’s short pro-
tocol specifies that the message is sent in iisatytusing a system buffer if the
matching receive has not yet been posted. Withotig protocol, a “handshake”
occurs. The sending process first sends the messaglope, which includes the
source and destination addresses, message sizggadag, communicator, and
possibly other information. A small amount of tietual data might also be sent.
The sender then waits for the receiving proceseia back an acknowledgement
indicating that it has received the envelope. Uackowledgement from the

receiver, the sending process then proceeds totserattual data.

It may seem tempting to set the cutoff limit betwesbort and long messages as
high as possible in order to avoid the handshakiethere is a trade-off between the
extra communication of the long protocol and thpywiog required in order to use
the short protocol. The short protocol relies ystam buffering. For messages up

to the short limit, LAM buffers messages on theereer’s node in an address space
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separate from the receive buffer argument if tloeike has not yet been posted .
Therefore, a blocking send can return without tla¢aming receive being posted
because the data has been buffered for the receifieh must copy the data into its
receive buffer. As message sizes increase, treegpant copying the buffer out-
weighs the time spent during the handshake ofahg protocol. The specific size
is system dependent. Thus, an interesting futxperanent for Wyeast would be to
try different settings for the short limit and rbandwidth tests to determine the

optimal setting.

MPICH implements three protocols for node-to-nodsmunicationshort eager
andrendezvousdepending on the message size [11]. In each tesenessage
envelope is sent immediately. With short prototog, data is sent along with the
envelope. With eager protocol, the data is dedislevhether or not the receiver
acknowledges the receipt of the envelope, implgoigpe sort of system buffering.
In contrast, rendezvous protocol requires thatélseiver requests the data by
acknowledging receipt of the envelope. Eager paitand rendezvous protocol
seem analogous to LAM’s short and long protocekpectively. Although we were
unable to determine the short/eager crossoverwzéound the crossover size for
eager/rendezvous to be 128 KB by performing firergad tests in the 100 KB to
200 KB range. For MPICH, the drop-off in bandwidtithe eager/rendezvous

crossover size is not as severe as it is for LAMhatshort/long crossover size.

71



4.4 Summary

We tested the performance of LAM and MPICH usingéhmajor categories of
experiments: High Performance Linpack; su3_rmdyl&h application used in
physics research; and a series of round trip badtdwiomparisons. The perfor-
mance of the libraries was most similar on Linpaeith LAM outperforming
MPICH by 2.6% on average. LAM and MPICH also parfed similarly on
su3_rmd. However, for the largest problem size ekecution time for LAM was
1,683 seconds versus 1,831 seconds for MPICH. gubs MPE logging library
and the Jumpshot visualization tool, we saw thatgbint-to-point communication
construct used by su3_rmd was MPI_Ssend/MPI_l@esynchronous send with a
non-blocking receive. We took a close look at tambination, along with seven
other MPI point-to-point combinations, using a eemf bandwidth comparisons.
LAM outperformed MPICH on all of the bandwidth coamgons, including
MPI1_Ssend/MPI_lIrecv. These bandwidth results alytexplain why LAM out-

performed MPICH on the su3_rmd application on #rge problem size.

The results show that LAM is at least as fast asQ#R and generally faster, on the
Wyeast cluster - especially for larger problem sizeAM was originally designed
for the cluster and networked workstation environtaewhile MPICH was

designed to be able to be quickly ported to maffgrint types of parallel systems.
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For this reason, MPICH relies on a heavily layeaechitecture, which might

explain why MPICH generally ran slower than LAM our tests.
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5 Related Work

This chapter discusses previous studies relatdtetoomparison of LAM and
MPICH. Three of the studies were conducted onteissand one was conducted
using two PCs. Each study is different in termplatform, LAM and MPICH ver-
sions, and experiments. With a few exceptionsgctimemon result is that LAM out-
performs MPICH. It should be noted that none efgtudies in this chapter
compare the most recent version (at the time efuhiting) of either library. How-
ever, several primary features of each have notgdghdramatically during the
courses of their respective evolutions. For exampAM has always operated in a
“virtual machine” environment with LAM daemon pr@ses running on each node,
whereas MPICH never has. Therefore, it is usef@xamine the comparative per-
formance of past versions of both libraries wheriguening a current study such as

this to see if any of the performance trends havdicgued.

The studies are presented in order of latest tesbhkrsion numbers of the libraries.
Section 5.1 discusses a study that compares tluedth performance (Mbps) of
LAM-6.5.1 and MPICH-1.2.1 on a 16 node Beowulf téusvith Fast Ethernet
using the NAS-2.3 benchmark suite. Section 5.2rsarizes a comparison of
LAM-6.3, MPICH-1.1.2, and MVICH (an MPI implemenian based on MPICH
using VIA technology for network protocol proceggion 2 PCs connected by

Gigabit Ethernet using the NetPIPE-2.3 benchmérmksection 5.3, a study of the
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performance (MFLOPS) of LAM6.3-b1 and MPICH-1.0s3iscussed. The testing
environment is a 16 node Beowulf Cluster with F&siernet, and the program
tested is a parallel N-body application conducteddsearchers in the field of
astronomy. Results are given in terms of MOPSI{dfis of Operations Per Sec-
ond). Section 5.4 discusses a bandwidth compaatbAM-6.0 and MPICH-
1.0.12 on an 8 node DEC workstation cluster coratkly an FDDI network. This
study was conducted using six “in house” benchmakd the results are given in

terms of seconds versus message size (exact Mlzpdatimns not provided).

5.1 LAM-6.5.1 and MPICH-1.2.1

A 2001 report on the 16 node Beowulf cluster Gréfideat Uppsala University in
Linkoping, Sweden provides a comparison of LAM-6.8nd MPICH-1.2.1 using
the NAS Parallel Benchmark (NPB) 2.3 suite withass B problem size. NAS-2.3
contains eight benchmarks based on computatiamdl diynamics. Six of the
benchmarks were used by the researchers. Grendelks each contain 1 CPU (1
Ghz) and are connected by Fast Ethernet. The Légtwere run in lamd mode,
which employs user-level daemons as message ind@nes. In lamd mode, a
message travels from an MPI process on node A_fdMidaemon process on node
A; the daemon on node A then sends the messageAMalaemon process on

node B, which finally sends the message to an M&igss on node B. Also notable
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about lamd mode is that UDP (as opposed to TCReémwode) is used for data
transfer. MPICH always uses TCP for data transéween nodes and sends mes-
sages from MPI process to MPI process directlycaR¢hat our LAM results show
that c2c mode performed better than lamd modes dduld be due to improve-

ments of the c2c mode with the release of LAM-6.5.6

The Grendel researchers found that MPI programgpdechwith the LAM libraries
provided 4.26% more MOPS than those compiled wiBiGH. The report con-
cluded that the LAM programs performed better beedhey exhibited faster com-
munication over the network, primarily due to tlee wf UDP packets for data
transfer. The study did not test the c2c mode,cited research presented in the
paper of Carns et al. [3] as one reason to use taote. The NAS test was the
extent of the comparison of LAM and MPICH in theport; due to the NAS results

all further experiments used LAM (lamd mode) td temious aspects of the cluster.

5.2 LAM-6.3-b1 and MPICH-1.0.9

Astrolab is a cluster at the University of Washorgtvhich was used in a 1999
study [27] by the UW Department of Astronomy conipgLAM-6.3-b1 and
MPICH-1.0.9. The cluster is composed of 16 sifglJ nodes (300 Mhz each)

connected by Fast Ethernet. The program testedPWBGRAYV, a parallel N-body
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program. The program was run on 2, 4, 8, 12, &wlatles using executables com-

piled with both libraries.

The performance of LAM and MPICH was very similartbe runs using up to 4
processors. As the number of processors incretisegerformance of LAM
became better than that of MPICH. With 12 procesdbe MPICH program pro-
duced approximately 775 MFLOPS, while LAM achieeggbroximately 925
MFLOPS. After this point, MPICH experienced a stgdecline, whereas the per-
formance of LAM scaled at a near linear rate. gdif processors (the maximum
tested), LAM achieved nearly 1200 MFLOPS, and MPkHieved approximately

550 MFLOPS.

The conclusion of the Astrolab researchers wasliAM performed better than
MPICH because in their opinion it is more suitedtfee Beowulf cluster architec-
ture by design. They stated that LAM does not aslheavily on the layered
approach (Application Interface, Abstract Devictetface, Channel Interface) as
MPICH, producing what they believe is a trade-df§peed on Beowulfs versus
versatility in porting to other systems. As sthite the introduction, MPICH has
been ported to nearly every parallel system imdmgengorimarily due to its layered
construction). For example, MPICH has been paxdtie systems utilizing the

VIA communication technology, whereas such portgehanly recently begun with
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LAM. Although there is no direct proof in the papleat the layered construction of
MPICH is entirely the cause of its slower speed,algument is believable and the

reasoning is sound.

5.3 LAM-6.3 and MPICH-1.1.2

Ong and Farrell [14] conducted a study publishe2@0 comparing LAM-6.3,
MPICH-1.1.2, and MVICH (an MPI implementation utilg VIA as the communi-
cation protocol). The tests were conducted usiRg2 (450 Mhz each) connected
by a Gigabit Ethernet using various NICs (Networtetface Cards). The primary
finding of the study was that MVICH using VIA teablngy was superior to both
LAM and MPICH, which rely on traditional TCP/IP fdata transfer. The motiva-
tion of the study is very interesting, as the arghpint out that the increasing avail-
ability of Gigabit Ethernet technology has shifted bottleneck of message passing
communication from the network media to networktpeol processing. VIA (Vir-
tual Interface Architecture) bypasses layers oft@®/IP protocol stack, and

reduces intermediate copies of data transfer dumiegsage transmission.

As far as the LAM and MPICH comparisons are conegfhAM was reported to
achieve superior bandwidth using NetPIPE-2.3 [Idjree NICs were tested:

Packet Engine GNIC-II, Alteon ACEnic, and SysKorirel-NET. LAM achieved
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a maximum bandwidth of approximately 298 Mbps vesmaximum of 249 Mbps
for MPICH. These numbers are reported for the SKFMIC. All LAM tests were
conducted in fast client to client (c2c) mode, whises daemons for MPI process
creation but bypasses them for message transfarNtBl process to MPI process.
It is worth repeating that in c2c mode, TCP (asosgpl to UDP used in lamd mode)
is used to transfer messages. Also, as statadre8BfPICH does not use user-level
daemons. Process startup is achieved by remeli@rsiocation, and TCP is
always used for communication among nodes. BotWlahd MPICH show a drop
in performance (moreso with LAM) at 128KB - the €sover size between “short”
and “long” messages. The 128 KB size is the defaiting in MPICH-1.1.2.
LAM-6.3 has a default of 64 KB; the researchersgeal this setting during the

installation to 128 KB.

5.4 LAM-6.0 and MPICH-1.0.12

A 1996 report from the Ohio Supercomputer Cent8f €bmpares the performance
of LAM-6.0 and MPICH-1.0.12 on an 8 node DEC wodktstn cluster connected by
a FDDI (Fiber-Distributed Data Interface) netwofkDDI is capable of 100 Mbps
bandwidth. The LAM tests were conducted usingrodde. Six (presumably “in
house”) benchmarks were used in the comparisoesulis were obtained by sur-

rounding timing statements around a loop of comation and then dividing the
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result by the number of iterations. Twenty of thebservations (as the author
called them) were performed for each benchmarkfaneach message size (mes-
sage sizes ranged from 0 to 16,384 bytes), witlatieeage of each set of twenty
reported as final results. The LAM tests wereiruc2c mode with the -O option to
mpirun. This option specifies to LAM that the ned# the parallel system are
homogeneous, thus eliminating the need for dataersion. Note that our tests
with LAM also used this option. It is unclear whet any other work (besides the
DEC experiment) discussed in this chapter useddonat use the -O option (no ref-
erences were made in any of the other publishexhrel results). MPICH requires
no such mpirun option; it conveniently detects thatparallel system is homoge-
neous. In fact, in order to run MPICH in heterogas mode, a proc group file, as

mentioned in chapter 3, is required.

Two tests, ping and ping-pong, were run with 2 pesors (1 per node) and mea-
sured non-blocking, point-to-point communicatidfor message sizes up to 8,192
bytes in the ping test (one-way message trandfAN| outperformed MPICH. For
example, the time reported for LAM on a 2,000 hyiessage transfer is approxi-
mately 0.00051 seconds versus an MPICH time ofcmately 0.00081 seconds.
MPICH outperformed LAM in the ping test for messagees greater than 8,192
bytes. The reported time for MPICH is approximat@l0024 seconds versus

approximately 0.0040 seconds for LAM for a messsge of 10,200 bytes. The
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8192 byte size discrepancy is also evident in thg-pong (round trip message
transfer) test, although the differences are nalrasatic, and the performance of
both libraries is the same at 15,000 bytes, wittML&ctually performing slightly

faster between 15,000 and 16,384 bytes.

The author concluded that MPICH outperformed LAMrftessage sizes greater
than 8,192 bytes because this is precisely theasimdnich LAM-6.0 distinguishes
between “short” and “long” messages, and theredanéches from eager to rendez-
vous protocol. Recall that with eager protocaead is allowed to complete before
a matching receive is posted, whereas a rendegrotscol requires an acknowl-
edgement from the receive before the send can eeapDne common way in
which to implement rendezvous protocol is to sdredMPl message envelope first
(containing information such as the source andrsin addresses, ranks of the
sender/receiver, and message tag), receive theatdasigement, and then proceed
by sending the actual data part of the messag®IPIiC€H-1.0.12, the protocol
change occurs at 16,384 bytes. Unfortunately,whis the longest message size
tested for any of the experiments. It would beri@sting to see the performance of

both libraries for longer messages on the DEC efust

The four other benchmarks compared LAM and MPICHV®|_Batrrier,

MPI1_Broadcast, MPI_Gather, and MPI_Alltoall. MPRafBier is a synchronization
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routine, and the other three are various formbéctive communication. Note
that these are not the only forms of collective oamication in MPI. The tests
were conducted with 1 processor on each node dfitister (8 total processors).
The broadcast and all-to-all benchmarks tested agessizes in the range of O to
4,096 bytes. The range in the gather test wa®4@®06,384 bytes. No messages
are sent with a barrier call. LAM outperformed NIIM for the barrier test
(0.005185 seconds mean time versus 0.007268 s@cdraisthe broadcast test,
LAM outperformed MPICH for all message sizes tesrdept those under 400
bytes. In the gather test, LAM outperformed MPIf@oHmessage sizes under
approximately 9,500 bytes, with MPICH performindtbebetween 9,500 bytes and
15,000 bytes. Between 15,000 bytes and 16,384 Jyte performance of the
libraries is approximately equal. LAM consisteriytperformed MPICH (at least

3X faster for all sizes tested) in the all-to-akt.

5.5 Summary

This chapter has presented results of past resealating to the performance of
LAM and MPICH. The studies are all unique in ttiegty involve different plat-

forms, different MPICH and LAM versions, and diéett test programs. While it
was not possible to find a study comparing the saengions of LAM and MPICH

that were compared in this thesis, the studiesiomed here are useful in under-
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standing the performance of previous versions @two libraries. Another reason
the studies are useful is that they present difteresearchers’ ideas as to why one

library might perform better than the other on\zegi platform.

With a few exceptions, LAM outperformed MPICH in af the studies. This com-
mon result does not imply that LAM is faster thaRI@H in general. Rather, the
studies (including this study) indicate that LAMhaufaster on clusters. It is very
probable that there are clusters running MPICH gog faster than they run LAM
programs, especially considering the tuning poé¢aid numerous configure
options of both libraries. However, this theslsng with the studies presented

here, show that LAM is generally faster than MPIQidthe clusters tested.
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6 Conclusions and Future Work

We tested the performance of LAM and MPICH on thdi#kerent categories of
experiments: High Performance Linpack (HPL), teadhmark used by the top 500
list; su3_rmd, an MPI application used in physegsaarch; and a series of band-
width comparisons. LAM outperformed MPICH in ngaglery Linpack test.
Overall, LAM outperformed MPICH on Linpack by 2.6 8a average. The highest
LAM score was 9.184 GFLOPS (4x6 grid; N = 25000he highest MPICH score
was 9.014 GFLOPS (4x6 grid; N = 25000). Both aggtions scaled as the number
of processors was increased for all problem sixesp for the smallest two, N = 2k
and N = 4k. This suggests that communication tseomes an unnecessary over-

head for these problem sizes.

LAM and MPICH performed similarly on su3_rmd for st@f the problem sizes
tested. For the largest problem size, with théésg number of processors used, the
execution time of LAM was 1,683 seconds versusxacion time of 1,831 sec-
onds for MPICH, which is clearly significant. Bes we experienced little varia-
tion among the repeated runs, the difference candveed as statistically

significant. The MPI point-to-point construct ud®dsu3_rmd is MPI_Ssend/
MPI_lIrecv. We tested this combination, along va#ven other point-to-point com-

binations. In every case, LAM outperformed MPICFhe performance difference
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on MPI_Ssend/MPI_Irecv partially explains why LAMnormed better than

MPICH on su3_rmd for the large problem size.

One area of future research involves tuning anshophg the LAM and MPICH
libraries. The libraries were tested here withthanging any of the configuration
options, except that we used ssh (secure shaBadof the default choice of rsh for
both libraries. We did not change constants sgctpaket buffer sizes or protocol
crossover sizes. The MPICH developers are in tbegss of developing a fully
MPI-2 compliant implementation, and the frequentizAM releases and the fact
that LAM already provides dynamic process creasioggest that the LAM team
will release a MPI-2 compliant implementation aslwé would be interesting to
tune and optimize future MPI-2 compliant LAM and NP releases using pro-

grams involving MPI-2 functions.

Another area of future work involves detailed ping of LAM and MPICH on
su3_rmd and other “real life” applications. Weeatpted to profile using MPE and
Jumpshot, but were unable to obtain aggregateitumcall times, and the trace files
produced for LAM seemed to be erroneous. MPE angpdhot were valuable,
however, for clearly displaying all MPI functionsad by su3_rmd. It would be
valuable to further analyze the performance of LAMI MPICH using a tool that
provides trace file data and profiling informatisuch as CPU time, communication

time, and 1/O time, as well as finer-grained infatran.
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Running applications on the entire cluster remsortse done. With 48 nodes (96
processors), we would be able to more fully exarttieescaling characteristics of
the applications and of the cluster itself. Alsoyould be interesting to examine a
variety of MPI applications, each having a diffdreammunication pattern, to be
able to determine empirically those kinds of MPplagations that scale well on the

cluster architecture.
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Appendix A: Sample HPL.dat Input File

1PLinpack benchmark input file

nnovative Computing Laboratory, University of Te

iPL.out  output file name (if any)
device out (6=stdout,7=stderr file)

) # of problems sizes (N)

'000 4000 6000 8000 10000 15000 Ns

) # of NBs

.50 NBs

i # of process grids (P x Q)

| Ps

) Qs

6.0 threshold

) # of panel fact

! PFACTSs (0O=left, 1=Crout, 2=Right)
# of recursive stopping criterium

| NBMINS (>= 1)
) # of panels in recursion
! NDIVs

i # of recursive panel fact.
! RFACTSs (0O=left, 1=Crout, 2=Right)
# of broadcast
BCASTSs (0=1rg,1=1rM,2=2rg,3=2rM,4=Ln
# of lookahead depth
DEPTHs (>=0)
SWAP (0=bin-exch,1=long,2=mix)
0 swapping threshold
L1 in (O=transposed,1=no-transposed)
U in (O=transposed,1=no-transposed)
. Equilibration (0=no,1=yes)
) memory alignment in double (> 0)

nnessee

g,5=LnM)

form
form
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Appendix B: Linpack Results for Fixed Problem Sizs
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Appendix C: Linpack Results for Fixed Grid Sizes
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Appendix D: Standard Deviation for Linpack Repeat& Runs

Grid Size Problem Size LAM MPICH
1x1 2,000 0.00067 0.00010
1x1 4,000 0.00039 0.00024
1x1 6,000 0.00037 0.00019
1x2 2,000 0.00745 0.00422
1x2 4,000 0.00303 0.00040
1x2 6,000 0.00098 0.00426
2x2 2,000 0.01503 0.00818
2x2 4,000 0.00759 0.00402
2x2 6,000 0.00133 0.00102
2x2 8,000 0.00089 0.00075
2x2 10,000 0.00407 0.00387
2x4 2,000 0.01127 0.00150
2x4 4,000 0.01858 0.01977
2x4 6,000 0.01559 0.00811
2x4 8,000 0.02128 0.01376
2x4 10,000 0.00821 0.01076
2x4 15,000 0.00934 0.08515
2x5 2,000 0.01243 0.01273
2x5 4,000 0.00997 0.00492
2x5 6,000 0.02681 0.01374
2x5 8,000 0.02042 0.01269
2x5 10,000 0.01124 0.00595
2x5 15,000 0.00299 0.02693
3x4 2,000 0.01028 0.00174
3x4 4,000 0.02926 0.01991
3x4 6,000 0.03099 0.00582
3x4 8,000 0.03187 0.01266
3x4 10,000 0.01525 0.01105
3x4 15,000 0.04227 0.04408
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Grid Size Problem Size | LAM MPICH
4x4 2,000 0.03306 0.04468
4x4 4,000 0.04882 0.02836
4x4 6,000 0.04596 0.07677
4x4 8,000 0.02209 0.02657
4x4 10,000 0.07670 0.03000
4x4 15,000 0.02822 0.01927
4x5 2,000 0.03929 0.02527
4x5 4,000 0.06208 0.01474
4x5 6,000 0.09246 0.03542
4x5 8,000 0.05180 0.06016
4x5 10,000 0.07972 0.08071
4x5 15,000 0.03672 0.06141
4x5 20,000 0.02682 0.07099
4x6 2,000 0.04023 0.02713
4x6 4,000 0.02420 0.03581
4x6 6,000 0.07464 0.04133
4x6 8,000 0.03081 0.05022
4x6 10,000 0.05695 0.06211
4x6 15,000 0.05854 0.06190
4x6 20,000 0.08662 0.03569
4x6 25,000 0.06681 0.02211
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Appendix E: Standard Deviation for su3_rmd Repeatd Runs

nx=ny=nz=16,
nt=32,
traj=200

Probl em Si ze | Processors LAM LAM MPI CH MPI CH
Val | CPU WALL CPU

Experiment 1 2 0.09287 0.10419 0.03929 0.00800
nx=ny=nz=4, 4 0.07950 0.05083 0.25492 0.25492
nt=6, 8 0.13691 0.10315 0.35704 0.35704
traj=50 16 0.07782 0.16228 0.38370 0.38370
Experinment 2 2 1.39872 0.19906 0.08405 0.09091
nx=ny=nz=6, 4 0.33223 0.62933 0.18203 0.20675
nt=12, 8 0.24848 0.10778 0.11016 0.09988
traj=75 16 0.34971 0.11825 1.08901 1.18567
Experiment 3 2 0.09209 0.09330 0.17577 0.16017
nx=ny=nz=8, 4 0.29842 0.66479 0.41761 0.42544
nt=16, 8 0.52518 0.45579 0.34681 0.43961
traj=100 16 0.41639 0.30688 0.35491 0.44512
Experiment 4 | 4 0.83731 1.13228 0.88773 0.66028
nx=ny=nz=12, 8 0.45913 2.56203 1.17123 0.88490
nt=24, 16 0.29600 0.39520 1.39421 0.52378
traj=150

Experinment 5 | 16 1.61788 p.61788 0(63312 1.06683
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Appendix F: Bandwidth Comparison Graphs
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Appendix G: Bandwidth Raw Data

Short Messages

Const r uct Nbgsage LAM MPI CH

Si ze Best Avg Wor st | Best Avg Wor st
Send/Recv 300 2.79 2.76 2.63 2.35 2.30 2.08
600 3.86 3.83 3.73 3.41 3.34 3.08
900 4.42 4.39 4.28 4.00 3.95 3.71
1,200 4.75 4.74 4.60 4.37 4.33 3.89
1,500 4.98 4.93 4.79 471 4.64 4.50
1,800 5.80 5.72 5.61 5.55 5.44 5.33
2,100 6.46 6.39 6.25 6.10 6.01 5.80
2,400 6.62 6.56 6.43 6.37 6.24 6.02
2,700 6.78 6.72 6.57 6.51 6.42 6.24
3,000 7.14 7.04 6.77 6.80 6.70 6.53
3,300 7.69 7.59 7.44 7.33 7.26 7.10
3,600 8.04 7.98 7.84 7.68 7.62 7.49
3,900 8.08 8.05 7.89 7.72 7.68 7.54
4,200 8.10 8.05 7.85 7.80 7.74 7.59
4,500 8.22 8.16 8.05 7.92 7.85 7.57
4,800 8.59 8.53 8.43 8.26 8.17 7.70
Send/Irecv 300 8.00 5.40 3.73 | 12.24 5.66 2.79
600 | 14.12 8.13 486 | 21.82 10.62 3.69
900 | 12.33 8.93 6.23 | 25.00 | 12.68 451
1,200 | 12.31 9.60 7.29 | 24.49 13.37 4.88
1,500 | 2458 | 13.51 572 | 24.19 13.61 5.49
1,800 | 38.72 14.81 6.37 | 29.03 14.45 6.23
2,100 | 33.59 15.59 7.17 | 29.37 15.01 7.28
2,400 | 28.24 | 15.92 796 | 22.75 | 15.09 8.19
2,700 | 26.21 16.20 8.68 | 23.28 | 15.56 8.49
3,000 | 24.00 | 16.21 9.01 | 23.44 | 14.37 8.53
3,300 | 28.94 | 16.86 9.85 | 27.97 16.56 9.19
3,600 | 28.58 | 17.36 1051 | 26.18 | 17.03 10.27
3,900 | 25.74 | 17.53 11.10 | 2445 | 17.11 10.86
4,200 | 2545 | 17.60 | 11.31 | 24.28 | 17.23 10.87
4500 | 25.94 | 17.62 11.26 | 25,50 | 17.16 10.88
4,800 | 28.23 17.96 11.52 | 25.81 17.57 11.37
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Construct I\/Es_sage LAM MPI CH

Si ze Best Avg Wor st | Best Avg Wor st
Isend/Recv 300 2.67 2.64 2.44 2.36 231 211
600 3.73 3.70 3.52 3.41 3.35 3.20
900 4.32 4.28 4.10 4.00 3.95 3.74
1,200 4.66 4.63 4.49 4.40 4.34 4.20
1,500 4.93 4.84 4.65 4.74 4.66 4.55
1,800 5.75 5.66 5.15 5.56 5.44 5.26
2,100 6.42 6.30 5.95 6.11 6.00 5.32
2,400 6.64 6.55 6.37 6.36 6.24 5.99
2,700 6.79 6.71 6.54 6.51 6.41 6.25
3,000 7.09 6.99 6.84 6.79 6.70 6.56
3,300 7.61 7.52 7.28 7.37 7.26 7.07
3,600 7.97 7.92 7.78 7.71 7.63 7.47
3,900 8.00 7.95 7.72 7.72 7.68 7.55
4,200 8.08 8.03 7.90 7.76 7.72 7.59
4,500 8.19 8.10 7.94 7.92 7.86 7.73
4,800 8.56 8.46 6.83 8.28 8.18 7.99
Isend/Irecv 300 7.15 5.24 3.85 | 11.54 5.98 2.78
600 | 15.61 8.22 4.67 | 20.00 | 10.45 3.70
900 | 22.77 | 11.89 5.03 | 24.66 | 12.99 451
1,200 | 24.00 | 11.89 558 | 24.00 | 13.34 5.03
1,500 | 24.39 | 13.95 5.62 | 23.44 | 13.67 5.55
1,800 | 33.93 | 14.81 6.59 | 28.13 | 14.45 6.41
2,100 | 33.33 | 15.49 7.33 | 28.19 | 15.06 7.25
2,400 | 26.23 | 15.85 8.23 | 23.65 | 15.13 7.96
2,700 | 25.96 | 16.21 8.64 | 23.58 | 15.56 8.40
3,000 | 26.66 | 16.33 8.97 | 26.20 | 14.44 8.24
3,300 | 29.20 | 16.77 9.61 | 23.91 | 16.50 | 10.03
3,600 | 2857 | 17.36 | 10.36 | 23.92 | 16.97 | 10.79
3,900 | 25,57 | 1743 | 11.24 | 24.00 | 17.09 | 11.03
4,200 | 25.76 | 1758 | 11.14 | 23.86 | 17.19 | 11.13
4500 | 2594 | 1758 | 11.14 | 24.06 | 17.12 | 11.19
4800 | 2766 | 1797 | 11.62 | 23.65 | 17.53 | 11.97
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Construct I\/Es_sage LAM MPI CH

Si ze Best Avg Wor st | Best Avg Wor st
Ssend/Recv 300 2.54 2.42 2.24 1.08 1.05 0.97
600 3.48 3.43 3.33 1.81 1.77 1.66
900 4.06 4.03 3.92 2.37 2.33 2.21
1,200 4.43 4.40 4.02 2.82 2.76 2.05
1,500 4.76 4.68 4.55 3.15 3.08 291
1,800 5.59 5.53 5.31 3.73 3.65 3.42
2,100 6.34 6.27 6.12 4.18 4.10 3.74
2,400 6.61 6.55 6.44 4.48 4.40 4.26
2,700 6.76 6.70 6.58 4.70 4.64 4.49
3,000 6.95 6.86 6.74 4.98 491 4.75
3,300 7.47 7.34 7.14 5.41 5.33 5.17
3,600 7.75 7.65 7.51 5.75 5.67 5.47
3,900 7.77 7.68 7.54 5.93 5.86 5.60
4,200 7.84 7.75 7.64 6.06 5.98 5.72
4,500 8.09 7.98 7.80 6.22 6.13 5.92
4,800 8.48 8.37 8.23 6.52 6.43 6.27
Ssend/Irecv 300 3.19 3.09 2.87 1.42 1.33 1.19
600 5.04 491 4.62 2.30 2.21 2.04
900 6.27 6.17 5.96 2.92 2.80 2.54
1,200 7.12 6.96 6.70 3.37 3.26 3.07
1,500 7.64 7.50 7.25 3.65 3.56 3.33
1,800 9.00 8.77 8.43 4.34 4.21 3.95
2,100 9.86 9.62 9.31 4.86 4.72 4.44
2,400 | 10.50 | 10.30 | 10.02 5.16 5.04 4.84
2,700 | 11.07 | 10.86 | 10.31 5.39 5.26 5.07
3,000 | 11.63 | 11.48 | 11.15 5.69 5.52 5.20
3,300 | 12.52 | 12.28 | 11.85 6.13 6.01 5.65
3,600 | 13.14 | 1299 | 12.61 6.50 6.36 6.11
3,900 | 13.47 | 13.16 | 12.79 6.67 6.55 6.20
4,200 | 13.70 | 1353 | 13.23 6.76 6.65 6.39
4500 | 13.95 | 13.64 | 13.29 6.88 6.77 6.39
4,800 | 14.46 | 14.32 | 12.40 7.20 7.10 6.95

117



Construct I\/Es_sage LAM MPI CH

Si ze Best Avg Wor st | Best Avg Wor st
Issend/Recv 300 2.47 2.42 2.30 1.09 1.06 0.96
600 3.56 3.54 3.44 1.85 1.80 1.70
900 4.16 414 4.07 241 2.37 2.24
1,200 452 4.48 4.38 2.84 2.80 2.62
1,500 4.70 4.64 4.48 3.15 3.10 2.92
1,800 5.56 5.48 5.34 3.76 3.67 3.48
2,100 6.29 6.21 6.07 4.20 411 3.66
2,400 6.56 6.50 6.38 4.49 4.41 4.28
2,700 6.72 6.66 6.58 4.74 4.65 4.50
3,000 6.92 6.84 6.68 5.02 4.93 4.70
3,300 7.42 7.31 7.17 5.43 5.36 5.14
3,600 7.74 7.62 7.44 5.78 5.69 5.39
3,900 7.80 7.67 7.53 5.95 5.88 5.64
4,200 7.84 7.73 7.59 6.06 6.00 5.77
4,500 8.06 7.96 7.81 6.23 6.15 5.94
4,800 8.44 8.32 8.14 6.52 6.45 6.20
Issend/lrecv 300 3.43 3.13 2.79 2.39 2.10 1.67
600 5.33 5.06 4.49 3.99 3.57 2.92
900 6.64 6.06 5.84 5.17 4.67 3.91
1,200 7.50 7.12 6.72 6.03 5.55 4.89
1,500 7.92 7.58 7.37 6.83 6.04 3.54
1,800 9.12 8.78 8.53 8.11 7.13 3.93
2,100 9.77 9.64 9.19 9.35 7.94 4.49
2,400 | 10.55 | 10.39 | 10.02 9.82 8.49 4.81
2,700 | 11.34 | 10.99 | 10.67 | 10.04 9.20 8.08
3,000 | 12.17 | 11.65 | 11.21 | 10.56 9.67 8.00
3,300 | 12.67 | 12.38 | 11.93 | 11.62 | 10.53 5.86
3,600 | 13.14 | 13.01 | 1257 | 12.41 | 11.00 6.15
3,900 | 13.76 | 1351 | 12.96 | 12.62 | 11.53 6.23
4,200 | 14.12 | 1396 | 13.46 | 12.65 | 11.83 6.50
4500 | 14.29 | 13.83 | 1341 | 1293 | 12.02 | 10.65
4,800 | 1452 | 1425 | 13.78 | 13.83 | 12.54 6.79
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Medium Messages

Const r uct Mas_sage LAM MPI CH

Si ze Best Avg Wor st | Best Avg Wor st
Send/Recv 5,000 8.73 8.66 7.39 8.39 8.27 7.49
10,000 9.89 9.86 9.62 9.51 9.45 9.12
15,000 10.58 | 10.54 | 10.46 | 10.14 | 10.10 9.93
20,000 10.74 | 10.71 | 10.67 | 10.50 | 10.46 | 10.25
25,000 10.97 | 10.95 | 10.88 | 10.69 | 10.65 | 10.58
30,000 11.10 | 11.09 | 11.02 | 10.75 | 10.72 | 10.65
35,000 11.16 | 11.14 | 11.11 | 10.83 | 10.80 | 10.76
40,000 11.24 | 11.22 | 11.20 | 10.94 | 1091 | 10.78
45,000 11.26 | 11.24 | 11.22 | 1091 | 10.89 | 10.84
50,000 11.36 | 11.35 | 11.33 | 10.98 | 10.95 | 10.78
55,000 11.33 | 11.31 | 11.29 | 10.95 | 10.92 | 10.89
60,000 1141 | 1140 | 11.38 | 11.03 | 11.01 | 10.97
65,000 1142 | 1141 | 11.39 | 10.99 | 10.97 | 10.88
70,000 11.24 | 11.22 | 11.20 | 11.02 | 11.00 | 10.98
75,000 1124 | 11.23 | 11.21 | 11.03 | 11.01 | 10.93
80,000 11.28 | 11.27 | 11.25 | 11.05 | 11.03 | 11.00
85,000 11.31 | 11.30 | 11.29 | 11.04 | 11.02 | 11.01
90,000 11.32 | 11.31 | 11.30 | 11.04 | 11.03 | 10.99
95,000 11.35 | 11.34 | 11.33 | 11.06 | 11.05 | 11.01
100,000 11.35 | 11.34 | 11.27 | 11.03 | 11.01 | 10.90
Send/Irecv 5,000 4462 | 18.29 9.89 | 43.86 | 17.88 9.50
10,000 | 23.84 | 19.72 | 16.04 | 23.64 | 19.21 | 14.87
15,000 | 24.33 | 20.64 | 17.74 | 23.53 | 19.76 | 16.46
20,000 | 23.05 | 2085 | 1756 | 21.31 | 20.31 | 19.37
25,000 | 2353 | 21.25 | 19.06 | 20.33 | 19.47 | 18.47
30,000 | 22.26 | 21.54 | 20.01 | 20.15 | 17.83 | 17.13
35,000 | 2291 | 21.27 | 1143 | 18.05 | 16.47 | 16.27
40,000 | 22.98 | 19.64 | 1149 | 17.06 | 15.64 | 15.28
45,000 | 2291 | 2145 | 11.44 | 16.07 | 1525 | 14.87
50,000 | 2265 | 21.76 | 1151 | 1570 | 14.77 | 14.40
55,000 | 22.74 | 21.42 | 1151 | 1442 | 1431 | 13.46
60,000 | 23.39 | 19.77 | 11.46 | 14.83 | 14.15 | 13.77
65,000 | 2253 | 19.96 | 11.96 | 15.08 | 13.91 | 12.79
70,000 11.33 | 11.30 9.80 | 13.80 | 13.67 | 13.29
75,000 11.33 | 11.31 | 11.29 | 13.84 | 13.60 | 13.44
80,000 11.36 | 11.35 | 11.33 | 13.52 | 1346 | 12.96
85,000 11.39 | 11.38 | 11.36 | 13.68 | 13.29 | 12.92
90,000 11.39 | 11.38 | 11.37 | 13.13 | 13.09 | 12.86
95,000 1142 | 1141 | 11.39 | 13.28 | 13.14 | 13.10
100,000 1142 | 1141 | 11.33 | 13.63 | 12.97 | 12.28
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Construct I\/Es_sage LAM MPI CH

Si ze Best Avg Wor st | Best Avg Wor st
Isend/Recv 5,000 8.70 8.63 8.33 8.38 8.28 7.61
10,000 9.84 9.81 9.72 9.51 9.46 9.27
15,000 10.53 | 1049 | 10.41 | 10.14 | 10.09 9.93
20,000 10.70 | 10.66 | 10.59 | 10.51 | 10.45 | 10.37
25,000 10.91 | 10.89 | 10.85 | 10.67 | 10.65 | 10.61
30,000 11.07v | 11.05 | 11.01 | 10.75 | 10.72 | 10.69
35,000 1112 | 11.10 | 11.06 | 10.83 | 10.80 | 10.65
40,000 11.21 | 11.19 | 11.16 | 1094 | 1091 | 10.86
45,000 11.22 | 11.20 | 11.17 | 1091 | 10.89 | 10.84
50,000 11.33 | 11.32 | 11.30 | 10.97 | 10.95 | 10.86
55,000 11.30 | 11.28 | 10.99 | 10.93 | 10.91 | 10.62
60,000 11.38 | 11.37 | 11.33 | 11.02 | 11.00 | 10.84
65,000 11.39 | 11.38 | 11.23 | 10.99 | 10.97 | 10.94
70,000 1119 | 1117 | 11.15 | 11.01 | 11.00 | 10.97
75,000 1119 | 1117 | 11.13 | 11.03 | 11.01 | 10.99
80,000 11.22 | 1121 | 11.20 | 11.04 | 11.02 | 11.00
85,000 11.26 | 11.25 | 11.23 | 11.03 | 11.01 | 10.93
90,000 11.27 | 11.26 | 11.24 | 11.04 | 11.02 | 10.96
95,000 11.30 | 11.29 | 11.27 | 11.06 | 11.04 | 11.02
100,000 11.31 | 11.29 | 11.25 | 11.02 | 11.01 | 10.97
Isend/Irecv 5,000 48.55 | 18.34 9.76 | 23.92 | 17.62 3.89
10,000 | 23.56 | 19.71 | 16.08 | 23.56 | 19.16 | 14.93
15,000 | 24.19 | 20.65 | 17.64 | 22.44 | 19.72 | 17.49
20,000 | 23.16 | 20.92 | 18.64 | 22,79 | 20.31 | 17.48
25,000 | 23.73 | 21.27 | 19.13 | 20.33 | 19.45 | 18.59
30,000 | 23.38 | 2156 | 1991 | 1861 | 1782 | 17.35
35,000 | 23.22 | 20.97 | 11.43 | 18.06 | 16.46 | 16.04
40,000 | 23.18 | 20.21 | 11.49 | 17.03 | 15.62 | 15.31
45,000 | 22.77 | 21.38 | 11.83 | 1585 | 15.25 | 15.06
50,000 | 22.79 | 21.93 | 21.19 | 15.81 | 14.77 | 14.46
55,000 | 22.86 | 21.58 | 1152 | 1440 | 1431 | 13.44
60,000 | 23.38 | 19.49 | 11.46 | 14.79 | 14.17 | 13.77
65,000 | 23.49 | 2056 | 11.99 | 15.05 | 13.90 | 12.82
70,000 | 22.26 | 17.90 8.19 | 14.15 | 13.67 | 13.53
75,000 | 22.12 | 17.92 8.74 | 13.87 | 13.60 | 13.43
80,000 | 22.13 | 18.48 9.15 | 1353 | 13.46 | 12.95
85,000 | 22.05 | 18.34 9.30 | 13.75 | 13.28 | 12.90
90,000 | 22.15 | 19.13 9.58 | 13.13 | 13.08 | 12.89
95,000 | 22.31 | 18.65 | 10.04 | 13.34 | 13.14 | 13.09
100,000 22.07 | 19.79 | 10.15 | 13.63 | 12.97 | 12.28
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Construct I\/Es_sage LAM MPI CH

Si ze Best Avg Wor st | Best Avg Wor st
Ssend/Recv 5,000 8.66 8.59 8.21 6.70 6.56 291
10,000 9.73 9.65 9.51 8.37 8.32 8.13
15,000 10.46 | 10.39 | 10.31 9.29 9.24 9.03
20,000 10.70 | 10.67 | 10.63 9.65 9.59 9.46
25,000 10.91 | 10.88 | 10.82 | 10.01 9.94 9.81
30,000 11.00 | 10.98 | 10.93 | 10.19 | 10.16 | 10.05
35,000 11.09 | 11.06 | 11.03 | 10.30 | 10.25 | 10.15
40,000 11.22 | 11.20 | 11.17 | 1043 | 10.38 | 10.32
45,000 11.21 | 11.19 | 11.16 | 1048 | 1043 | 10.36
50,000 11.29 | 11.28 | 11.24 | 10.59 | 10.56 | 10.49
55,000 11.31 | 11.29 | 11.26 | 10.56 | 10.52 | 10.47
60,000 11.38 | 11.37 | 11.34 | 10.65 | 10.61 | 10.54
65,000 11.35 | 11.35 | 11.32 | 10.67 | 10.64 | 10.57
70,000 11.22 | 1121 | 11.18 | 10.71 | 10.68 | 10.61
75,000 11.23 | 11.212 | 11.19 | 10.73 | 10.69 | 10.58
80,000 11.26 | 11.25 | 11.23 | 10.75 | 10.72 | 10.68
85,000 11.30 | 11.29 | 11.27 | 10.78 | 10.75 | 10.69
90,000 11.30 | 11.29 | 11.27 | 10.78 | 10.75 | 10.70
95,000 11.33 | 11.32 | 11.31 | 10.80 | 10.77 | 10.74
100,000 11.34 | 11.32 | 11.26 | 10.80 | 10.77 | 10.71
Ssend/Irecv 5,000 14.68 | 1452 | 13.42 7.36 7.22 6.62
10,000 17.76 | 17.58 | 17.23 8.94 8.86 8.61
15,000 19.19 | 19.00 | 18.60 9.76 9.68 9.49
20,000 19.78 | 19.64 | 19.34 | 10.08 9.99 9.89
25,000 | 20.26 | 20.06 | 17.04 | 10.37 | 10.31 9.79
30,000 | 20.53 | 20.42 | 20.25 | 10.57 | 10.50 | 10.37
35,000 | 20.71 | 20.57 | 19.79 | 10.64 | 10.59 | 10.49
40,000 | 20.87 | 20.21 | 11.83 | 10.76 | 10.70 | 10.61
45,000 | 20.88 | 20.52 | 11.78 | 10.84 | 10.76 | 10.69
50,000 | 21.02 | 20.89 | 20.60 | 10.92 | 10.88 | 10.79
55,000 | 20.92 | 20.40 | 18.33 | 10.88 | 10.84 | 10.75
60,000 | 21.05 | 20.55 | 19.93 | 10.97 | 10.93 | 10.84
65,000 | 20.68 | 19.64 | 11.74 | 10.99 | 10.95 | 10.87
70,000 11.32 | 11.31 | 11.29 | 11.04 | 10.99 | 10.90
75,000 11.32 | 11.30 | 11.29 | 11.05 | 10.99 | 10.93
80,000 11.36 | 11.35 | 11.32 | 11.08 | 11.03 | 10.97
85,000 11.38 | 11.37 | 11.35 | 11.10 | 11.06 | 10.99
90,000 11.39 | 11.38 | 11.36 | 11.11 | 11.06 | 11.00
95,000 1141 | 11.40 | 11.39 | 11.12 | 11.08 | 11.03
100,000 1142 | 1140 | 11.34 | 11.11 | 11.08 | 11.01
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Construct I\/Es_sage LAM MPI CH

Si ze Best Avg Wor st | Best Avg Wor st
Issend/Recv 5,000 8.62 8.54 8.06 6.70 6.51 3.54
10,000 9.69 9.60 9.47 8.37 8.31 8.12
15,000 | 10.40 | 10.35 | 10.28 9.29 9.23 8.52
20,000 | 10.68 | 10.64 | 10.57 9.64 9.58 9.27
25,000 | 10.88 | 10.85 | 10.79 9.99 9.94 9.84
30,000 | 10.98 | 10.96 | 10.93 | 10.19 | 10.15 | 10.05
35,000 | 11.06 | 11.04 | 11.02 | 10.29 | 10.25 | 10.18
40,000 | 11.20 | 11.17 | 11.15 | 1041 | 10.37 | 10.07
45,000 | 11.18 | 11.16 | 11.14 | 1048 | 10.44 | 10.34
50,000 | 11.28 | 11.26 | 11.23 | 10.58 | 10.55 | 10.45
55,000 | 11.28 | 11.27 | 11.25 | 10.55 | 10.52 | 10.46
60,000 | 11.36 | 11.35 | 11.33 | 10.65 | 10.61 | 10.55
65,000 | 11.34 | 11.33 | 11.31 | 10.68 | 10.64 | 10.57
70,000 | 11.19 | 11.17 | 11.15 | 10.69 | 10.67 | 10.61
75,000 | 11.19 | 1117 | 11.15 | 10.71 | 10.68 | 10.60
80,000 | 11.23 | 11.22 | 11.20 | 10.76 | 10.72 | 10.65
85,000 | 11.26 | 11.25 | 11.23 | 10.78 | 10.75 | 10.70
90,000 | 11.27 | 11.26 | 11.25 | 10.78 | 10.74 | 10.70
95,000 | 11.30 | 11.29 | 11.28 | 10.80 | 10.77 | 10.70
100,000 11.31 | 11.30 | 11.28 | 10.79 | 10.76 | 10.71
Issend/lrecv 5,000 14.64 | 1443 | 13.40 | 14.14 | 12.72 3.76
10,000 | 18.12 | 1794 | 1754 | 16.95 | 16.33 | 15.23
15,000 | 19.48 | 19.23 | 19.01 | 18.82 | 17.97 9.44
20,000 | 20.06 | 19.87 | 19.64 | 19.18 | 18.67 | 17.31
25,000 | 20.56 | 20.38 | 20.21 | 18.88 | 17.76 9.73
30,000 | 20.99 | 20.81 | 20.68 | 18.67 | 16.00 | 13.25
35,000 | 21.17 | 21.02 | 20.33 | 17.48 | 15.13 | 13.42
40,000 | 21.37 | 21.18 | 21.00 | 16.26 | 14.65 | 13.12
45,000 | 21.43 | 21.27 | 21.09 | 15.37 | 1411 | 12.61
50,000 | 21.66 | 21.49 | 21.28 | 15.79 | 13.89 | 12.27
55,000 | 21.71 | 20.75 | 11.96 | 13.84 | 13.50 | 12.89
60,000 | 21.80 | 20.96 | 11.90 | 14.27 | 13.41 | 12.94
65,000 | 21.63 | 1951 | 12.09 | 13.43 | 13.16 | 12.83
70,000 | 22.17 | 18.02 8.39 | 13.71 | 13.06 | 12.78
75,000 | 22.11 | 18.10 8.57 | 13.87 | 1295 | 12.14
80,000 | 22.15 | 17.89 9.16 | 13.04 | 12.83 | 12.48
85,000 | 22.20 | 18.40 9.45 | 1355 | 12.74 | 11.99
90,000 | 22.17 | 19.51 9.77 | 12.81 | 12.64 | 12.35
95,000 | 22.20 | 1843 | 10.04 | 13.06 | 12.60 | 12.34
100,000 2212 | 19.68 | 10.35 | 12.62 | 12,53 | 12.25

122



Long Messages

Const r uct l\/bs;age LAM MPI CH

Si ze Best Avg Wor st | Best Avg Wor st
Send/Recv 200k 1155 | 1155 | 11.54 | 10.93 | 10.91 | 10.85
300k | 11.62 | 11.62 | 11.62 | 11.01 | 11.00 | 10.99
400k | 11.66 | 11.66 | 11.65 | 11.05 | 11.05 | 10.94
500k | 11.68 | 11.68 | 11.67 | 11.08 | 11.08 | 11.06
600k | 11.70 | 11.70 | 11.68 | 11.10 | 11.10 | 11.08
700k | 11.71 | 11.71 | 112.70 | 11.11 | 11.11 | 11.10
800k | 11.72 | 11.72 | 11.71 | 11.12 | 11.11 | 11.10
900k | 11.72 | 11.72 | 11.72 | 1112 | 11.12 | 11.11
1,000k 11.73 | 11.73 | 11.72 | 1113 | 11.12 | 11.11
1,100k 11.73 | 11.73 | 11.73 | 11.13 | 11.13 | 11.12
1,200k 11.73 | 11.73 | 11.73 | 11.13 | 11.13 | 11.12
1,300k 11.73 | 11.73 | 11.73 | 11.14 | 11.13 | 11.13
1,400k 11.74 | 11.74 | 11.74 | 1114 | 11.13 | 11.13
1,500k 11.74 | 11.74 | 11.74 | 1114 | 11.14 | 11.13
1,600k 11.74 | 11.74 | 11.74 | 1114 | 11.14 | 11.13
1,700k 11.74 | 11.74 | 11.74 | 11.14 | 11.14 | 11.13
1,800k 11.74 | 11.74 | 11.74 | 1114 | 11.14 | 11.13
1,900k 11.75 | 11.74 | 11.70 | 11.14 | 11.14 | 11.13
2,000k 11.75 | 11.75 | 11.75 | 11.15 | 11.14 | 10.88
Send/Irecv 200k 1159 | 1158 | 11.57 | 11.29 | 11.27 | 10.73
300k | 11.65 | 11.64 | 1164 | 11.36 | 11.35 | 11.33
400k | 11.68 | 11.68 | 11.67 | 11.38 | 11.37 | 11.34
500k | 11.70 | 11.70 | 11.69 | 11.40 | 11.40 | 11.37
600k | 11.72 | 11.71 | 11.71 | 1142 | 11.41 | 11.39
700k | 11.72 | 11.72 | 11.69 | 11.43 | 11.42 | 11.40
800k | 11.73 | 11.72 | 11.72 | 1143 | 11.43 | 1141
900k | 11.73 | 11.73 | 11.73 | 11.44 | 11.43 | 11.43
1,000k 11.73 | 11.73 | 11.73 | 11.45 | 11.44 | 11.43
1,100k 11.74 | 11.74 | 11.73 | 1145 | 11.44 | 11.44
1,200k 11.74 | 11.74 | 11.74 | 1145 | 1145 | 11.44
1,300k 11.74 | 11.74 | 11.74 | 1145 | 1145 | 11.44
1,400k 11.74 | 11.74 | 11.74 | 1146 | 11.45 | 11.37
1,500k 11.74 | 11.74 | 11.74 | 1146 | 1145 | 11.42
1,600k 11.74 | 11.74 | 11.74 | 11.46 | 11.45 | 11.44
1,700k 11.75 | 11.75 | 11.74 | 1146 | 11.45 | 11.45
1,800k 11.75 | 11.75 | 11.74 | 11.46 | 11.46 | 11.45
1,900k 11.75 | 11.75 | 11.75 | 11.46 | 11.46 | 11.45
2,000k 11.75 | 1175 | 11.75 | 1146 | 11.46 | 11.46

123



Construct I\/Es_sage LAM MPI CH

Si ze Best Avg Wor st | Best Avg Wor st
Isend/Recv 200k 1153 | 1152 | 1151 | 1092 | 1091 | 10.86
300k | 11.61 | 11.60 | 11.60 | 11.01 | 11.00 | 10.96
400k | 11.65 | 11.64 | 11.64 | 11.05 | 11.04 | 11.03
500k | 11.67 | 11.67 | 11.67 | 11.09 | 11.08 | 11.07
600k | 11.69 | 11.69 | 11.69 | 11.10 | 11.10 | 11.08
700k | 11.70 | 11.70 | 11.69 | 11.11 | 11.10 | 11.09
800k | 11.71 | 11.71 | 11.71 | 1112 | 11.11 | 11.10
900k | 11.72 | 11.712 | 11.71 | 11.12 | 11.12 | 11.11
1,000k 11.72 | 1172 | 1172 | 11.13 | 1112 | 11.11
1,100k 11.72 | 1172 | 1170 | 11.13 | 11.12 | 11.12
1,200k 11.73 | 11.73 | 11.73 | 11.13 | 11.13 | 11.12
1,300k 11.73 | 11.73 | 11.73 | 11.14 | 11.13 | 11.13
1,400k 11.73 | 11.73 | 11.73 | 11.14 | 11.13 | 11.13
1,500k 11.74 | 11.73 | 11.73 | 11.14 | 11.14 | 11.13
1,600k 11.74 | 11.74 | 1174 | 11.14 | 11.14 | 11.13
1,700k 11.74 | 11.74 | 1173 | 11.14 | 11.14 | 11.13
1,800k 11.74 | 11.74 | 11.74 | 11.14 | 11.14 | 11.13
1,900k 11.74 | 11.74 | 11.74 | 11.15 | 11.14 | 11.13
2,000k 11.74 | 11.74 | 11.74 | 11.15 | 11.14 | 11.14
Isend/Irecv 200k 22.64 | 18.27 9.84 | 12.19 | 11.89 | 11.62
300k | 22.74 | 18.61 | 10.76 | 11.79 | 11.74 | 11.68
400k | 22.80 | 18.53 | 10.44 | 11.69 | 11.66 | 11.61
500k | 22.84 | 18.20 | 10.65 | 11.72 | 11.63 | 11.60
600k | 22.84 | 18.48 | 1081 | 11.62 | 11.60 | 11.57
700k | 22.85 | 18.16 | 1094 | 11.64 | 1158 | 11.51
800k | 22.82 | 18.13 | 11.09 | 1158 | 1156 | 11.54
900k | 22.88 | 17.84 7.10 | 1156 | 11.55 | 11.52
1,000k 2295 | 1821 | 11.18 | 1158 | 1153 | 11.48
1,100k 2292 | 17.75 | 11.23 | 1153 | 1152 | 11.51
1,200k 23.08 | 17.89 | 10.16 | 1153 | 1151 | 11.50
1,300k 2293 | 1775 | 11.30 | 1155 | 1151 | 11.50
1,400k 2293 | 17.71 | 11.34 | 1151 | 1150 | 11.49
1,500k 2296 | 1749 | 11.31 | 1153 | 1150 | 11.47
1,600k 23.05 | 1746 | 1140 | 1151 | 1150 | 11.48
1,700k 2301 | 1762 | 1142 | 1150 | 11.49 | 11.48
1,800k 23.00 | 17.33 | 1143 | 1152 | 11.49 | 11.46
1,900k 2294 | 17.71 | 1145 | 1149 | 1149 | 11.48
2,000k 2290 | 1749 | 1147 | 1155 | 1148 | 1141
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Construct I\/Es_sage LAM MPI CH

Si ze Best Avg Wor st | Best Avg Wor st
Ssend/Recv 200k 1154 | 1154 | 1151 | 1093 | 1091 | 10.89
300k | 11.62 | 11.61 | 11.61 | 11.01 | 11.00 | 10.99
400k | 11.66 | 11.65 | 11.65 | 11.05 | 11.04 | 11.01
500k | 11.68 | 11.68 | 11.67 | 11.08 | 11.08 | 11.06
600k | 11.70 | 11.69 | 11.69 | 11.10 | 11.10 | 11.07
700k | 11.71 | 11.70 | 11.70 | 11.11 | 11.10 | 11.09
800k | 11.72 | 11.71 | 11.71 | 1112 | 11.11 | 11.10
900k | 11.72 | 11.72 | 11.72 | 11.12 | 11.12 | 11.11
1,000k 11.73 | 1172 | 1172 | 11.13 | 1112 | 11.11
1,100k 11.73 | 11.73 | 11.73 | 11.13 | 1112 | 11.11
1,200k 11.73 | 11.73 | 11.73 | 11.13 | 11.13 | 11.12
1,300k 11.73 | 11.73 | 11.73 | 11.14 | 11.13 | 11.13
1,400k 11.74 | 11.74 | 11.74 | 11.14 | 11.14 | 11.13
1,500k 11.74 | 11.74 | 11.74 | 11.14 | 11.14 | 11.13
1,600k 11.74 | 11.74 | 1174 | 11.14 | 11.14 | 11.13
1,700k 11.74 | 11.74 | 11.74 | 11.14 | 11.14 | 11.13
1,800k 11.74 | 11.74 | 11.74 | 11.14 | 11.14 | 11.13
1,900k 11.74 | 11.74 | 11.74 | 11.14 | 11.14 | 11.14
2,000k 11.75 | 11.75 | 11.75 | 11.15 | 11.15 | 11.14
Ssend/Irecv 200k 1158 | 1158 | 11.57 | 11.30 | 11.27 | 11.03
300k | 11.65 | 11.64 | 1164 | 11.36 | 11.35 | 11.33
400k | 11.68 | 11.67 | 11.65 | 11.38 | 11.37 | 11.34
500k | 11.70 | 11.69 | 11.69 | 1141 | 11.39 | 11.39
600k | 11.72 | 11.71 | 11.71 | 1142 | 11.41 | 11.39
700k | 11.72 | 11.72 | 11.71 | 1143 | 1142 | 1141
800k | 11.72 | 11.72 | 11.72 | 1144 | 1143 | 1141
900k | 11.73 | 11.73 | 11.73 | 11.44 | 11.43 | 11.43
1,000k 11.73 | 11.73 | 11.73 | 1144 | 1144 | 11.43
1,100k 11.74 | 11.73 | 11.73 | 1145 | 11.44 | 11.43
1,200k 11.74 | 11.74 | 11.68 | 1145 | 1145 | 11.44
1,300k 11.74 | 11.74 | 11.74 | 1145 | 1145 | 11.44
1,400k 11.74 | 11.74 | 11.74 | 1145 | 1145 | 11.45
1,500k 11.74 | 11.74 | 11.74 | 1146 | 1145 | 11.45
1,600k 11.74 | 11.74 | 11.74 | 1146 | 1145 | 11.42
1,700k 11.75 | 11.74 | 11.74 | 1146 | 1145 | 11.45
1,800k 11.75 | 11.75 | 11.74 | 1146 | 1146 | 11.45
1,900k 11.75 | 11.75 | 11.75 | 1146 | 1146 | 11.45
2,000k 11.75 | 1175 | 11.75 | 1146 | 11.46 | 11.46
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Construct I\/Es_sage LAM MPI CH

Si ze Best Avg Wor st | Best Avg Wor st
Issend/Recv 200k 11.53 | 1152 | 11.42 | 1093 | 1091 | 10.86
300k | 11.61 | 11.60 | 11.60 | 11.01 | 11.00 | 10.96
400k | 11.65 | 11.65 | 11.64 | 11.05 | 11.04 | 11.02
500k | 11.67 | 11.67 | 11.67 | 11.08 | 11.08 | 11.07
600k | 11.69 | 11.69 | 11.69 | 11.10 | 11.10 | 11.08
700k | 11.70 | 11.70 | 11.70 | 11.11 | 11.10 | 11.09
800k | 11.71 | 11.71 | 11.71 | 1112 | 11.11 | 11.10
900k | 11.72 | 11.712 | 11.71 | 11.12 | 11.12 | 11.11
1,000k 11.72 | 1172 | 1172 | 11.13 | 1112 | 11.11
1,100k 11.72 | 1172 | 1165 | 11.13 | 11.13 | 11.12
1,200k 11.73 | 11.73 | 11.73 | 11.13 | 11.13 | 11.12
1,300k 11.73 | 11.73 | 11.73 | 11.14 | 11.13 | 11.13
1,400k 11.73 | 11.73 | 11.73 | 11.14 | 11.13 | 11.13
1,500k 11.74 | 11.73 | 11.73 | 11.14 | 11.14 | 11.13
1,600k 11.74 | 11.74 | 1173 | 11.14 | 11.14 | 11.13
1,700k 11.74 | 11.74 | 11.74 | 11.14 | 11.14 | 11.04
1,800k 11.74 | 11.74 | 11.74 | 11.14 | 11.14 | 11.13
1,900k 11.74 | 11.74 | 11.74 | 11.14 | 11.14 | 11.09
2,000k 11.74 | 11.74 | 11.74 | 11.15 | 11.12 8.44
Issend/lrecv 200k 22.70 | 17.94 9.59 | 1221 | 11.90 | 11.61
300k | 22.72 | 18.98 | 10.71 | 11.79 | 11.74 | 11.67
400k | 22.80 | 18,59 | 10.56 | 11.69 | 11.67 | 11.62
500k | 22.77 | 18.05 | 10.65 | 11.72 | 11.63 | 11.60
600k | 22.90 | 1855 | 1092 | 11.62 | 11.60 | 11.57
700k | 22.86 | 18.49 | 1093 | 11.65 | 1158 | 11.51
800k | 22.86 | 18.19 9.74 | 1158 | 1156 | 11.54
900k | 22.84 | 18.19 | 11.11 | 1156 | 1155 | 11.53
1,000k | 22.86 | 18.06 | 11.21 | 1158 | 11.53 | 11.48
1,100k | 22,92 | 17.68 | 11.23 | 1154 | 1152 | 11.50
1,200k | 22.94 | 18.00 | 11.27 | 1153 | 1151 | 11.50
1,300k | 2291 |17.78 | 11.30 | 1155 | 1151 | 11.50
1,400k | 22.88 | 18.18 | 11.34 | 1151 | 11.50 | 11.49
1,500k | 2294 | 1769 | 11.37 | 1154 | 11.50 | 11.47
1,600k | 2297 | 1754 | 11.39 | 1151 | 1150 | 11.48
1,700k | 2296 | 17.47 | 1142 | 1150 | 11.49 | 11.48
1,800k | 2290 | 18.03 | 1143 | 1152 | 11.49 | 11.46
1,900k | 2295 | 17.77 | 1146 | 1149 | 1149 | 11.48
2,000k | 2298 | 1758 | 11.43 | 1149 | 11.49 | 11.48
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Appendix H: Bandwidth Graphs - Modified Non-Blocking Receives
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Appendix I: Bandwidth Raw Data for Modified Non-Blocking Receives

Short Messages

Const r uct Nbgsage LAM MPI CH

Si ze Best Avg Wor st | Best Avg Wor st
Send/Irecv 300 2.70 2.66 2.07 2.37 2.31 2.16
600 3.77 3.74 3.58 3.40 3.37 3.17
900 4.34 4.29 4.03 4.03 3.97 3.81
1,200 4.69 4.64 4.23 4.39 4.34 4.16
1,500 4.96 4.90 4.68 4.74 4.67 4.57
1,800 5.77 5.70 5.56 5.58 5.46 5.25
2,100 6.46 6.36 5.83 6.13 6.02 5.78
2,400 6.65 6.55 6.41 6.37 6.26 6.05
2,700 6.80 6.71 6.51 6.51 6.43 6.30
3,000 7.13 7.03 6.82 6.81 6.73 6.55
3,300 7.67 7.57 7.36 7.38 7.29 7.12
3,600 8.02 7.97 7.85 7.73 7.64 6.74
3,900 8.09 8.02 7.81 7.75 7.70 7.59
4,200 8.12 8.10 8.05 7.78 7.74 7.57
4,500 8.23 8.12 7.98 7.95 7.89 7.73
4,800 8.60 8.52 8.33 8.28 8.21 8.02
Isend/Irecv 300 2.63 261 2.49 2.38 231 2.14
600 3.75 3.68 3.39 341 3.36 3.18
900 4.33 431 4.22 4.00 3.96 3.81
1,200 4.67 4.63 452 4.39 4.32 3.92
1,500 4.85 4.80 4.62 4.72 4.66 451
1,800 5.73 5.64 5.45 5.58 5.45 5.28
2,100 6.40 6.31 6.16 6.12 6.02 5.73
2,400 6.59 6.51 6.27 6.35 6.24 6.07
2,700 6.74 6.68 6.52 6.55 6.43 6.24
3,000 7.08 6.97 6.67 6.81 6.73 6.59
3,300 7.60 7.51 7.35 7.37 7.29 7.14
3,600 7.95 7.91 7.77 7.73 7.66 7.48
3,900 8.00 7.94 7.73 7.77 7.71 7.55
4,200 8.05 8.02 7.91 7.81 7.76 7.57
4,500 8.18 8.14 8.05 7.94 7.88 7.73
4,800 8.54 8.47 8.36 8.30 8.20 7.97
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Construct I\/Es_sage LAM MPI CH

Si ze Best Avg Wor st | Best Avg Wor st
Ssend/Irecv 300 2.49 2.38 2.23 1.09 1.06 0.95
600 3.49 3.46 3.35 1.85 1.81 1.70
900 4.08 4.01 3.89 241 2.37 2.24
1,200 4.40 4.36 4.29 2.85 2.79 2.65
1,500 4.72 4.65 4.53 3.16 3.10 2.94
1,800 5.55 5.48 5.35 3.76 3.67 3.50
2,100 6.29 6.21 6.03 4.23 4.14 3.97
2,400 6.57 6.51 6.34 4.49 4.42 4.29
2,700 6.72 6.64 6.49 4.73 4.65 4.49
3,000 6.90 6.78 6.54 5.00 4.94 4.78
3,300 7.38 7.29 7.10 5.42 5.36 5.13
3,600 7.71 7.60 7.45 5.75 5.68 5.47
3,900 7.73 7.65 7.49 5.95 5.87 5.63
4,200 7.79 7.71 7.59 6.07 6.01 5.77
4,500 8.01 7.94 7.83 6.22 6.16 5.93
4,800 8.44 8.31 8.14 6.55 6.46 6.28
Issend/lrecv 300 2.42 2.34 221 1.09 1.06 0.86
600 3.46 3.42 3.28 1.84 1.80 1.65
900 4.14 4.05 3.97 241 2.36 2.22
1,200 4.49 4.42 4.35 2.82 2.78 2.63
1,500 4.70 4.61 4.06 3.16 3.10 2.94
1,800 5.52 5.45 5.32 3.74 3.68 3.50
2,100 6.26 6.20 6.09 4.23 414 3.98
2,400 6.53 6.45 6.31 4.49 4.42 4.29
2,700 6.63 6.58 6.48 4.72 4.66 4.52
3,000 6.84 6.76 6.59 5.01 4.93 4.78
3,300 7.34 7.27 7.11 5.44 5.36 5.20
3,600 7.65 7.57 7.29 5.77 5.69 5.47
3,900 7.71 7.61 7.51 5.95 5.88 5.62
4,200 7.69 7.66 7.53 6.08 6.01 5.77
4,500 7.99 7.92 7.80 6.23 6.15 5.96
4,800 8.42 8.32 8.12 6.54 6.46 6.21
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Medium Messages

Const r uct l\/bs;age LAM MPI CH

Si ze Best Avg Wor st | Best Avg Wor st
Send/Irecv 5,000 8.74 8.67 8.40 8.38 8.26 7.56
10,000 9.89 9.86 9.79 9.50 9.45 9.23
15,000 10.56 | 10.51 | 10.45 | 10.11 | 10.06 9.94
20,000 10.72 | 10.69 | 10.66 | 10.50 | 10.46 | 10.35
25,000 10.94 | 1091 | 10.86 | 10.67 | 10.65 | 10.52
30,000 11.09 | 11.07 | 11.05 | 10.74 | 10.72 | 10.56
35,000 11.14 | 11.12 | 11.07 | 10.84 | 10.81 | 10.65
40,000 11.23 | 11.21 | 11.18 | 10.95 | 10.92 | 10.89
45,000 11.24 | 11.22 | 11.20 | 10.92 | 10.90 | 10.88
50,000 11.35 | 11.34 | 11.31 | 10.99 | 10.97 | 10.93
55,000 11.31 | 11.30 | 11.28 | 10.95 | 10.93 | 10.91
60,000 11.40 | 11.38 | 11.36 | 11.05 | 11.02 | 11.00
65,000 11.40 | 11.39 | 11.37 | 11.00 | 10.98 | 10.97
70,000 11.22 | 11.20 | 11.17 | 11.03 | 11.01 | 10.97
75,000 1122 | 11.21 | 11.18 | 11.03 | 11.01 | 10.99
80,000 11.26 | 11.25 | 11.22 | 11.03 | 11.02 | 11.00
85,000 11.30 | 11.28 | 11.24 | 11.04 | 11.02 | 10.82
90,000 11.30 | 11.28 | 11.26 | 11.03 | 11.01 | 10.98
95,000 11.33 | 11.32 | 11.30 | 11.05 | 11.04 | 10.98
100,000 11.33 | 11.32 | 11.30 | 11.02 | 11.01 | 10.99
Isend/Irecv 5,000 8.70 8.62 8.31 8.42 8.27 7.56
10,000 9.84 9.80 9.73 9.48 9.43 9.25
15,000 10.53 | 10.48 | 10.40 | 10.12 | 10.06 9.93
20,000 10.69 | 10.65 | 10.60 | 10.49 | 10.45 | 10.39
25,000 10.93 | 10.90 | 10.83 | 10.67 | 10.65 | 10.60
30,000 11.07 | 11.05 | 11.01 | 10.75 | 10.73 | 10.70
35,000 11.13 | 11.11 | 11.07 | 10.84 | 10.82 | 10.70
40,000 11.21 | 11.19 | 11.17 | 1094 | 10.92 | 10.88
45,000 11.22 | 11.20 | 11.18 | 1091 | 10.89 | 10.86
50,000 11.33 | 11.32 | 11.29 | 1098 | 10.96 | 10.94
55,000 11.29 | 11.28 | 11.26 | 1095 | 10.92 | 10.90
60,000 11.38 | 11.36 | 11.35 | 11.04 | 11.02 | 11.00
65,000 11.38 | 11.37 | 11.36 | 11.00 | 10.98 | 10.95
70,000 11.18 | 11.16 | 11.14 | 11.02 | 11.01 | 10.99
75,000 1119 | 11.17 | 11.15 | 11.03 | 11.01 | 10.98
80,000 11.23 | 11.212 | 10.97 | 11.03 | 11.01 | 10.75
85,000 11.27 | 11.25 | 11.18 | 11.03 | 11.01 | 10.98
90,000 11.26 | 11.25 | 11.22 | 11.02 | 11.01 | 10.94
95,000 11.30 | 11.29 | 11.27 | 11.05 | 11.03 | 10.98
100,000 11.31 | 11.29 | 11.27 | 11.01 | 11.00 | 10.99
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Construct I\/Es_sage LAM MPI CH

Si ze Best Avg Wor st | Best Avg Wor st
Ssend/Irecv 5,000 8.64 8.56 8.15 6.68 6.59 5.97
10,000 9.68 9.62 9.55 8.38 8.31 8.07
15,000 | 10.41 | 10.36 | 10.30 9.29 9.23 9.09
20,000 | 10.68 | 10.65 | 10.61 9.65 9.60 9.53
25,000 | 10.88 | 10.86 | 10.82 | 10.00 9.94 9.35
30,000 | 10.98 | 10.95 | 10.80 | 10.19 | 10.15 | 10.00
35,000 | 11.07 | 11.05 | 10.99 | 10.31 | 10.27 | 10.17
40,000 | 11.20 | 11.18 | 11.14 | 1043 | 10.39 | 10.35
45,000 | 11.18 | 11.17 | 11.11 | 1047 | 1044 | 10.36
50,000 | 11.28 | 11.26 | 11.24 | 10.58 | 10.56 | 10.49
55,000 | 11.29 | 11.27 | 11.25 | 10.56 | 10.52 | 10.46
60,000 | 11.37 | 11.35 | 11.33 | 10.67 | 10.63 | 10.55
65,000 | 11.34 | 11.33 | 11.31 | 10.68 | 10.65 | 10.57
70,000 | 11.20 | 11.19 | 11.17 | 10.71 | 10.68 | 10.61
75,000 | 11.21 | 11.19 | 11.15 | 10.71 | 10.67 | 10.64
80,000 | 11.25 | 11.24 | 11.21 | 10.75 | 10.71 | 10.64
85,000 | 11.28 | 11.27 | 11.26 | 10.77 | 10.74 | 10.68
90,000 | 11.29 | 11.27 | 11.26 | 10.76 | 10.72 | 10.69
95,000 | 11.32 | 11.31 | 11.30 | 10.78 | 10.75 | 10.71
100,000 11.32 | 11.31 | 11.25 | 10.78 | 10.75 | 10.65
Issend/lrecv 5,000 8.60 8.52 8.14 6.70 6.56 2.94
10,000 9.68 9.63 9.52 8.38 8.31 8.13
15,000 | 10.40 | 10.35 | 10.24 9.30 9.23 9.05
20,000 | 10.67 | 10.64 | 10.40 9.65 9.60 9.49
25,000 | 10.87 | 10.85 | 10.81 | 10.01 9.95 9.85
30,000 | 10.97 | 10.95 | 10.90 | 10.19 | 10.15 | 10.06
35,000 | 11.06 | 11.04 | 10.98 | 10.31 | 10.26 | 10.12
40,000 | 11.20 | 11.17 | 11.09 | 1043 | 10.38 | 10.18
45,000 | 11.18 | 11.16 | 11.10 | 10.48 | 10.45 | 10.38
50,000 | 11.27 | 11.26 | 11.22 | 10.59 | 10.56 | 10.47
55,000 | 11.28 | 11.26 | 11.24 | 10.56 | 10.52 | 10.43
60,000 | 11.36 | 11.35 | 11.32 | 10.67 | 10.63 | 10.55
65,000 | 11.33 | 11.32 | 11.30 | 10.68 | 10.65 | 10.58
70,000 | 11.18 | 11.17 | 11.13 | 10.72 | 10.68 | 10.63
75,000 | 11.19 | 11.17 | 11.15 | 10.71 | 10.68 | 10.63
80,000 | 11.23 | 11.22 | 11.19 | 10.74 | 10.70 | 10.66
85,000 | 11.26 | 11.25 | 11.18 | 10.77 | 10.74 | 10.69
90,000 | 11.27 | 11.26 | 11.24 | 10.76 | 10.73 | 10.69
95,000 | 11.30 | 11.29 | 11.28 | 10.79 | 10.76 | 10.72
100,000 11.31 | 11.29 | 11.28 | 10.78 | 10.75 | 10.70
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Long Messages

Construct Mas_sage LAM MPl CH

Si ze Best Avg Wor st | Best Avg Wor st
Send/Irecv 200k 1155 | 1154 | 1154 | 1094 | 10.92 | 10.90
300k | 11.62 | 11.62 | 11.61 | 11.00 | 10.99 | 10.97
400k | 11.66 | 11.65 | 11.65 | 11.03 | 11.02 | 10.99
500k | 11.68 | 11.68 | 11.67 | 11.06 | 11.05 | 11.04
600k | 11.70 | 11.69 | 11.69 | 11.08 | 11.07 | 11.06
700k | 11.71 | 11.70 | 11.67 | 11.08 | 11.08 | 11.06
800k | 11.71 | 11.71 | 11.71 | 11.09 | 11.09 | 11.07
900k | 11.72 | 11.72 | 11.72 | 11.10 | 11.09 | 11.09
1,000k 11.73 | 1172 | 1172 | 11.10 | 11.10 | 11.09
1,100k 11.73 | 11.73 | 1172 | 11.14 | 11.13 | 11.13
1,200k 11.73 | 11.73 | 11.73 | 11.14 | 11.13 | 11.12
1,300k 11.73 | 11.73 | 11.73 | 11.14 | 11.13 | 11.12
1,400k 11.74 | 11.74 | 1173 | 11.14 | 11.13 | 11.13
1,500k 11.74 | 11.74 | 1173 | 11.14 | 11.14 | 11.13
1,600k 11.74 | 11.74 | 11.73 | 11.14 | 11.14 | 11.13
1,700k 11.74 | 11.74 | 11.74 | 11.14 | 11.14 | 11.14
1,800k 11.74 | 11.74 | 11.74 | 11.14 | 1114 | 11.14
1,900k 11.74 | 11.74 | 11.74 | 11.15 | 11.15 | 11.14
2,000k 11.75 | 11.75 | 11.74 | 11.15 | 11.15 | 11.14
Isend/Irecv 200k 1153 | 1152 | 1151 | 1094 | 10.92 | 10.90
300k | 11.61 | 11.60 | 11.60 | 11.00 | 10.99 | 10.95
400k | 11.65 | 11.64 | 11.46 | 11.03 | 11.03 | 10.99
500k | 11.67 | 11.67 | 11.67 | 11.06 | 11.05 | 11.03
600k | 11.69 | 11.69 | 11.68 | 11.08 | 11.07 | 11.06
700k | 11.70 | 11.70 | 11.70 | 11.08 | 11.08 | 11.07
800k | 11.72 | 11.71 | 11.70 | 11.09 | 11.09 | 11.07
900k | 11.72 | 11.71 | 11.71 | 11.10 | 11.09 | 11.09
1,000k 11.72 | 11.72 | 11.71 | 11.10 | 11.10 | 11.09
1,100k 11.72 | 11.72 | 1172 | 11.13 | 11.13 | 11.13
1,200k 11.73 | 11.73 | 11.72 | 11.14 | 11.13 | 11.12
1,300k 11.73 | 11.73 | 11.72 | 11.13 | 11.13 | 11.13
1,400k 11.73 | 11.73 | 11.73 | 11.14 | 11.13 | 11.13
1,500k 11.73 | 11.73 | 11.73 | 11.14 | 11.14 | 11.05
1,600k 11.74 | 11.74 | 11.72 | 11.14 | 11.14 | 11.13
1,700k 11.74 | 11.74 | 11.74 | 11.14 | 11.14 | 11.14
1,800k 11.74 | 11.74 | 11.74 | 1114 | 11.14 | 11.14
1,900k 11.74 | 11.74 | 11.74 | 11.15 | 11.15 | 11.14
2,000k 11.74 | 11.74 | 11.74 | 11.15 | 11.15 | 11.14
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Construct I\/Es_sage LAM MPI CH

Si ze Best Avg Wor st | Best Avg Wor st
Ssend/Irecv 200k 11.54 | 1153 | 11.53 | 1094 | 10.92 | 10.87
300k | 11.61 | 11.61 | 11.60 | 11.00 | 10.99 | 10.97
400k | 11.65 | 11.65 | 11.60 | 11.03 | 11.02 | 10.99
500k | 11.68 | 11.67 | 11.67 | 11.06 | 11.05 | 11.04
600k | 11.69 | 11.69 | 11.69 | 11.08 | 11.07 | 11.05
700k | 11.70 | 11.70 | 11.70 | 11.08 | 11.08 | 11.06
800k | 11.71 | 11.71 | 11.71 | 11.09 | 11.09 | 11.08
900k | 11.72 | 11.72 | 11.71 | 11.10 | 11.09 | 11.09
1,000k 11.72 | 1172 | 1172 | 11.10 | 11.10 | 11.09
1,100k 11.73 | 1172 | 1172 | 11.13 | 11.13 | 11.13
1,200k 11.73 | 11.73 | 11.73 | 11.14 | 11.13 | 11.12
1,300k 11.73 | 11.73 | 11.73 | 11.14 | 11.13 | 11.12
1,400k 11.74 | 11.73 | 11.73 | 11.14 | 11.13 | 11.13
1,500k 11.74 | 11.74 | 11.73 | 11.14 | 11.14 | 11.13
1,600k 11.74 | 11.74 | 11.74 | 11.14 | 11.14 | 11.14
1,700k 11.74 | 11.74 | 11.74 | 11.14 | 11.14 | 11.13
1,800k 11.74 | 11.74 | 11.74 | 11.14 | 11.14 | 11.13
1,900k 11.74 | 11.74 | 11.74 | 11.15 | 11.15 | 11.14
2,000k 11.75 | 11.74 | 11.74 | 11.15 | 11.15 | 11.14
Issend/lrecv 200k 1153 | 1152 | 1151 | 1095 | 10.92 | 10.90
300k | 11.61 | 11.60 | 11.60 | 11.00 | 10.99 | 10.96
400k | 11.65 | 11.64 | 11.64 | 11.04 | 11.02 | 11.01
500k | 11.67 | 11.67 | 11.67 | 11.06 | 11.05 | 11.04
600k | 11.69 | 11.69 | 11.68 | 11.08 | 11.07 | 11.05
700k | 11.70 | 11.70 | 11.70 | 11.08 | 11.08 | 11.07
800k | 11.72 | 11.71 | 11.71 | 11.09 | 11.09 | 11.08
900k | 11.72 | 11.71 | 11.71 | 11.10 | 11.09 | 11.08
1,000k 11.72 | 1172 | 11.72 | 11.10 | 11.10 | 11.09
1,100k 11.72 | 11.72 | 11.72 | 11.13 | 11.13 | 11.11
1,200k 11.73 | 11.73 | 11.72 | 11.13 | 11.13 | 11.12
1,300k 11.73 | 11.73 | 11.73 | 11.13 | 11.13 | 11.13
1,400k 11.73 | 11.73 | 11.73 | 11.14 | 11.13 | 11.13
1,500k 11.73 | 11.73 | 11.73 | 11.14 | 11.14 | 11.13
1,600k 11.74 | 11.74 | 11.73 | 11.14 | 11.14 | 11.13
1,700k 11.74 | 11.74 | 11.74 | 11.14 | 1114 | 1111
1,800k 11.74 | 11.74 | 11.74 | 11.14 | 11.14 | 11.13
1,900k 11.74 | 11.74 | 11.74 | 11.15 | 11.15 | 11.14
2,000k 11.74 | 11.74 | 11.74 | 11.15 | 11.15 | 11.14
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