
THESIS APPROVAL

The abstract and thesis of Robert M. Jones for the Master of Science in Computer

Science were presented July 12, 2002, and accepted by the thesis committee and the

department.

COMMITTEE APPROVALS: _________________________________
Karen Karavanic, Chair

Warren Harrison

Robert Bertini
Representative of the Office of Graduate Studies

DEPARTMENT APPROVAL: _________________________________
Cynthia Brown, Chair
Department of Computer Science

ABSTRACT

An abstract of the thesis by Robert M. Jones for the Master of Science in Computer

Science presented July 12, 2002.

Title: Content Aware Request Distribution for High Performance

Web Service: A Performance Study

The World Wide Web is becoming a basic infrastructure for a variety of services, and

the increases in audience size and client network bandwidth create service demands

that are outpacing server capacity. Web clusters are one solution to this need for high-

performance, highly available web server systems. We are interested in load

distribution techniques, specifically Layer-7 algorithms that are content-aware. Layer-

7 algorithms allow distribution control based on the specific content requested, which

is advantageous for a system that offers highly heterogenous services. We examine the

performance of the Client Aware Policy (CAP) on a Linux/Apache web cluster

consisting of a single web switch that directs requests to a pool of dual-processor SMP

nodes. We show that the performance advantage of CAP over simple algorithms such

as random and round-robin is as high as 29% on our testbed consisting of a mixture of

static and dynamic content. Under heavily loaded conditions however, the

performance decreases to the level of random distribution. In studying SMP vs.

uniprocessor performance using the same number of processors with CAP distribution,

we find that SMP dual-processor nodes under moderate workload levels provide

equivalent throughput as the same number of CPU’s in a uniprocessor cluster. As

workload increases to a heavily loaded state however, the SMP cluster shows reduced

throughput compared to a cluster using uniprocessor nodes. We show that the web

cluster’s maximum throughput increases linearly with the addition of more nodes to the

server pool. We conclude that CAP is advantageous over random or round-robin

distribution under certain conditions for highly dynamic workloads, and suggest some

future enhancements that may improve its performance.

CONTENT AWARE REQUEST DISTRIBUTION FOR

HIGH PERFORMANCE WEB SERVICE:

A PERFORMANCE STUDY

by

ROBERT M. JONES

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Portland State University
2002

i

Acknowledgments

I would like to thank fellow student Richa Sehgal for her assistance with the

Webstone benchmarking package and research on workload characterization. Many

thanks go to my advisor, Dr. Karen Karavanic, for her patient guidance, candid

assessments and thought-provoking questions. Her flexibility and understanding

allowed me to juggle both school work and my full-time employment. I would also like

to acknowledge Dr. Warren Harrison and Dr. Robert Bertini who participated on my

thesis defense committee. Their time and effort in reviewing my work and providing

valuable input are most appreciated. Of course, I must thank my family most of all, for

without their never ending support, my return to school and completion of the masters

program and this thesis research would not have been possible.

Table of Contents
List of Figures iv

List of Tables v

1 Introduction 1

1.1 Popular Website Workloads 1

1.2 Motivation for High-Performance Web Service 2

1.3 Web Workload Characterization 2

1.4 Web Server Architectures 3

1.5 Load Distribution and Balancing in Web Clusters 5

1.6 Load Distribution Algorithms 7

1.7 Contributions of this Research 8

1.8 Summary of Results 9

1.9 Outline of this Paper 10

2 Related Work 11

2.1 Locality Aware Request Distribution Policy (LARD) 11

2.2 Client Aware Policy (CAP) 12

2.3 Web Content Workloads 13

2.4 Web Switches 14

2.4.1 TCP Splicing 14

2.4.2 TCP Handoff 15

2.4.3 Reverse-Proxy Forwarding 15
ii

Table of Contents (continued)
2.5 CAP and LARD Performance 16

3 Experimental Design 19

3.1 Testbed Architecture 19

3.2 Testbed Software Details 20

4 Experimental results 22

4.1 Capacity of the Reverse-Proxy Web Switch 22

4.2 Static Workloads 23

4.3 Dynamic Workloads 26

4.3.1 80% Static, 20% Dynamic Workload 28

4.3.2 60% Static, 40% Dynamic Workload 29

4.4 SMP versus Uniprocessor Nodes 34

4.5 Scalability 36

5 Conclusions and Future Work 38

6 References 41
iii

iv

List of Figures

Figure 1: Example Web Cluster. 4

Figure 2: Capacity of the reverse-proxy web switch. 22

Figure 3: Static Workload Results 25

Figure 4: 80% Static, 20% Dynamic Workload 28

Figure 5: 60% Static, 40% Dynamic Workload 30

Figure 6: CPU and Disk Utilization Under 60% Static, 40% Dynamic 31
Workload

Figure 7: Performance Differences Between Nodes of Identical 32
Hardware and Software

Figure 8: 60% Static, 40% Dynamic Using 2 Back-end Nodes 33

Figure 9: SMP vs. Uniprocessor nodes (4 CPU’s total) 35

Figure 10: Scalability from 1 to 4 back-end nodes 36

v

List of Tables

Table 1: Static Workload 24

Table 2: Dynamic Workload 27

1 Introduction

The World Wide Web is increasingly being used as a basic infrastructure for a

variety of Internet services [1] and its user pool is skyrocketing in numbers [2].

Network bandwidth that is available to clients is increasing at a higher rate than what

servers based on single machines can support, and this will lead to server-side

bottlenecks. A highly reliable, cost-effective web server system is a key solution to

these demands. We have surveyed the literature in the area of high-performance web

service, and conducted a performance study of a prototype Linux / Apache SMP cluster

under a variety of web service workloads using the content-aware distribution policy

Client Aware Policy (CAP). This study includes the difference in performance of

uniprocessor versus SMP nodes in the context of web service, and the scalability

measured by the addition of more nodes to the cluster.

1.1 Popular Website Workloads

As an example of what popular web sites are experiencing, Guinness World

Records has recognized the official web site for the 1998 FIFA World Cup

(www.france98.com) for setting four different Internet records [6]. The first is "Most

Visited Web Site for an Event” as the site logged over 1.1 billion hits during the period

between June 29 and July 12, 1998. The second record was for the most pages viewed

in one minute, topping out at 235,356 on June 29, 1998. The third record is for the

“most pages viewed in one hour” at over 10 million on June 30, and fourth is “most
(1)

pages viewed in 24 hours” at over 73 million (also on June 30, 1998). Guinness World

Records has recognized Microsoft’s www.msn.com collection of web sites as holding

the record for “Most Day-to-Day Visits” when their servers logged 10.5 billion page

views in March of 2000.

1.2 Motivation for High-Performance Web Service

Today’s busy web sites must be highly available. As Internet usage develops

and changes, there is a growing dependence on having such information readily

available. In stark contrast to the early days of the Web, when the idea of the company

web page was somewhat of a novelty, many Internet services, such as e-commerce,

have become more and more “mission critical” because the penalty for system failures

and service loss is greater than ever [1].

Research has shown that users are not willing to tolerate latency times greater

than 8 to 10 seconds [4], and as traffic increases, the effective web server system must

be scalable, keeping response times to a minimum. A system is scalable if the response

time for individual requests is kept as small as theoretically possible when the number

of simultaneous HTTP requests increases, while maintaining a low request drop rate

and achieving a high peak request rate [5]. Response time is the length of time between

the moment the client initiates the request and the time all of the information arrives at

the client.
(2)

1.3 Web Workload Characterization

Web service workload has been found to be self-similar [7],[16] in nature, and

has a heavy-tailed Pareto request distribution [17]. Self-similar with respect to web

traffic means that the request patterns are “bursty”, and periods of high and low traffic

can span multiple time scales, from milliseconds to hours. The Pareto distribution is so-

called heavy tailed in that (in the context of page request probability) smaller files are

the most commonly requested, but as file size increases, the likelihood of larger pages

being requested is a slowly decaying function (slower than a Gaussian distribution for

example). With this distribution, a small percentage of the requests can use a

disproportionately large amount of system resources. The need for highly available

services requires that the web server system be able to fulfill the requests in an

acceptable time frame during periods of peak usage, and these are often difficult to

predict. Keeping a sufficient amount of resources available for effectively handling

peak usage can be expensive and difficult to justify when those times of heavy demand

are infrequent.

1.4 Web Server Architectures

Web server architectures currently in use include single uniprocessor machines,

single SMP machines, uniprocessor or SMP clusters, and mainframes that can run

many virtual servers simultaneously. In this thesis our focus is the use of clusters for

web service. Clusters provide a high level of availability and performance, and are able
(3)

to scale with respect to throughput over time as demand increases. Another advantage

is their high work/cost ratio, providing high throughput for a relatively modest price.

There are subtle differences between one author's version of a cluster and another's,

however, they often conform to a basic structure, that being a group of 2 or more

commodity workstations connected together with high speed (100 Mbs or higher)

interconnects. An example is shown in Figure 1.

Figure 1: Example Web Cluster.
Clients issue requests to the same node (Web Switch) and these are
then redirected to an appropriate back-end node.

These nodes of the cluster can be (but are not always) heterogeneous, and many

researchers have designed their clusters to support the easy addition or removal of

heterogeneous nodes as necessary based on demand. A common architecture places a
(4)

cluster of nodes behind a public point of contact (the head node, also referred to as the

dispatcher, distributor, or the web switch). The clients’ requests are distributed

transparently, giving the appearance of a single machine. This type of solution is

much less expensive than a mainframe or similar “high-end” system composed of a

similar number of nodes.

There are many choices for distributing the document store across the nodes of

the cluster. The document store is the collection of all resources that the web site can

serve users, and can be shared among nodes either by a shared file system, such as the

Network File System (NFS), or by replicating data across the nodes. Other ideas

include analysis to precisely mirror the most popular content across all nodes, and

distribute the rest by static partitioning. Static partitioning involves dividing up the

document store so that a particular page or resource is located on a specific machine.

There are many different network topologies for web clusters. Often the cluster

has a hierarchical structure, where the cluster maintains a public front-end node, and is

connected to one or more private back-end nodes. This provides a single interface for

all users to request services from the system. There are also multi-tier topologies

where the head node may communicate with one or more mid-level nodes, who in turn

communicate with back-end nodes.

1.5 Load Distribution and Balancing in Web Clusters

One of the many research areas in the design of web server clusters is that of

load distribution. Load distribution solutions deal with balancing the workload among
(5)

all nodes of the cluster. Ideally, the nodes will be loaded such that they experience

similar levels of CPU, disk and network utilization, keeping all nodes equally “busy”.

A popular approach to this distribution problem is to set up the cluster so that the public

head node receives each request and directs it to the back-end nodes. Implementations

have included Layer 4 switches (referring to the OSI protocol stack network layer), so

that requests are directed to one of the back-end nodes via IP address modification

according to some set of metrics, but do not include examination of the actual HTTP

request [18]. These network level “content-blind” algorithms require server state

information that must be regularly updated so the switch can make appropriate

distribution choices, but are efficient and scale well provided they are tuned

appropriately. Another approach is to use a Layer 7 switch, which is an application

level implementation. This type of switch examines the HTTP request and forwards it

to an appropriate back-end server. These algorithms have the advantage of being

aware of what type of request is being made (e.g. static or dynamic), at the expense of

extra system resources. For example, a simple request for a static page with a few

inline graphic images has a relatively low demand on system resources, while other

requests that involve transactions with a database management system or those needing

to use public key encryption for secure transmission can create resource demands that

cause orders of magnitude greater response times. This degree of control offered by

Level-7 algorithms make it a viable alternative to the Layer 4 approach since the site

operator can easily tailor the architecture to serve specific kinds of requests. One set of

servers might handle only static content where much of the document store is cached
(6)

and can be returned quickly. Another set of servers may handle disk intensive content.

If the nodes are heterogeneous, then the less powerful machines might be assigned to

serve content that requires fewer system resources to deliver.

1.6 Load Distribution Algorithms

A variety of algorithms have been examined for web switch distribution. These

are generally classified as either Layer-4 or Layer-7 as defined in the previous section.

 Two examples of Layer-4 policies include random (RAND) which chooses a

back-end node at random, and round-robin (RR) which always chooses the “next”

back-end node in circular array fashion. The RR policy can be enhanced with the

addition of server-state information to give each back-end node a “weight” relative to

the server’s current load to consider with the RR policy. This is referred to as weighted

round-robin (WRR). These algorithms do not require knowledge of what content is

being requested, and therefore can be handled at the network layer (IP address).

Two example Layer-7 algorithms are Locality Aware Request Distribution

(LARD) and Client-Aware Policy (CAP) [8], also referred to as Multi-Class Round

Robin (MC-RR) [9]. The LARD policy distributes requests based on which back-end

node likely contains the page in its main memory cache, so the benefits of locality are

realized. The CAP policy, developed by Casalicchio and Colajanni, distributes

requests based on their expected impact on the back-end node’s system resources.
(7)

Both of these algorithms require that the contents of the request be known to make the

decision, hence the Layer-7 (application) categorization.

1.7 Contributions of this Research

 Our contributions to this area of research include the comparison of CAP

policy to RAND and RR policies. Previous work compared CAP to LARD and WRR,

but did include RAND or RR. It is of interest to know how an algorithm behaves

relative to RAND which is truly a baseline for comparison. We are also interested in

the performance compared to RR, since many current implementations for request

distribution and load balancing include this policy. These three algorithms: CAP, RR

and RAND also share a commonality in that they are relatively simple to implement

and do not require any back-end node state information, unlike LARD and WRR.

In comparing the CAP, RR and RAND algorithms, our research includes more

detailed information regarding our workload content than many other published results.

One major issue we encountered during this study is the lack of information to

characterize typical workloads, including static/dynamic content probability ratios and

response times for typical dynamic requests. In providing a more detailed view of our

workloads, we hope that future research will have a better notion of realistically

comparing published results, even if the workloads do not model a particular website.

Our work is incremental to those that investigated the use of Linux/Apache

based web clusters, as our study uses the next generation versions of this software. The

most recent published data we found included prototypes built with Linux 2.2 and
(8)

Apache 1.3. The nodes in our testbed are running the newer Linux version 2.4 kernel

and Apache 2.0 server package utilizing the threaded multi-processing module Worker

that handles connections with threads rather than processes.

Another contribution is our use of a prototype with dual-processor nodes. We

are interested in the performance improvements realized by using SMP nodes for web

service. Our study includes measurements of the cluster with back-end nodes that are

dual-processor machines running the Linux-SMP kernel. Previous research in the area

of content-aware request distribution where the web switch exists as a single layer in

front of the back-end nodes included studies exclusively on uniprocessor architectures.

Recently, a research group created a prototype on a Linux 2.4 cluster with dual

processor nodes [24], but this was a multi-tier approach that differs significantly from

our performance study.

1.8 Summary of Results

Our research shows the capacity of the reverse-proxy to redirect requests is

approximately 1450 connections/sec. We show that CAP policy outperforms the

RAND and RR policies by as much as 29% under the workloads consisting of mixtures

of static and dynamic content, but no appreciable improvement is realized for

workloads consisting of only static content. We demonstrate that for web service using

the CAP policy under moderate workloads, the performance gain for dual processor

SMP nodes is nearly 100% greater compared to using uniprocessor nodes, and the

increased throughput by the addition of more nodes to the cluster is near linear. We did
(9)

observe that under very heavy workloads, the improvement in throughput for a dual-

processor node versus a uniprocessor node is less than 100%.

1.9 Outline of this Paper

The general content of this paper is as follows: Section 2 discusses previous

work in this area of research including the LARD and CAP policies and example web

switch implementations. Section 3 describes our experimental design including the

testbed architecture we used in our performance measurements and some discussion of

software details. Section 4 discusses our experimental method and performance

results, and we conclude in Section 5 including a discussion of potential future work

for this area of research.
(10)

2 Related Work

Previous work in the area of content-aware request distribution policies has

yielded two very different approaches to load balancing. The first is the policy known

as Locality-Aware Request Distribution (LARD) [11], and the other is Client-Aware

Policy (CAP) [8]. The performance of these policies (and others in this area) is

evaluated in comparison to well-known algorithms such as random (RAND), round-

robin (RR) and weighted round-robin (WRR). The LARD and WRR policies use state

information from the back-end nodes for load balancing considerations, while RAND,

RR and CAP do not. The random policy (RAND) chooses a back-end server at random

from the available pool. The round-robin (RR) policy chooses a back-end with

subsequent requests going to the “next” server in a circular array fashion.

2.1 Locality Aware Request Distribution Policy (LARD)

The LARD policy’s strategy is locality-based, directing requests to the server that

contains the information. The idea is to have the requested content readily available in

the back-end servers’ main memory caches, minimizing the response time delays

caused by disk access where possible. LARD is not purely a locality based strategy. A

purely locality based strategy is static partitioning, where the document store is divided

among all of the back-end nodes. For example, if the cluster is comprised of 10 back-

end nodes, then each node will contain approximately 1/10th of the document store.

The difference in LARD compared to static partitioning is the inclusion of server state
(11)

information. There is a back-end node threshold load value based on some set of

metrics. The metric used by the LARD algorithm is the back-end node’s number of

open connections. When the web switch receives the request, an attempt is made to

direct it to a back-end node based on static partitioning, but if the load value exceeds

the threshold level, the switch will direct it to a less loaded node, if any exists.

Choosing when to redirect to an alternate node versus experiencing a small load

imbalance is decided by tuning parameters that are part of the LARD algorithm: the

high and low connection threshold values. The algorithm can be augmented so that

highly popular pages can be replicated across all nodes, minimizing the chance that one

node will become overloaded due to repeated requests of the same page, but replicating

many pages across all nodes defeats the general purpose of maintaining locality.

The amount of state information required by LARD is minimal: the number of

open connections. No information such as CPU and/or disk utilization is needed for

the LARD policy. One shortfall of this algorithm is that efficient locality is difficult to

maintain for highly dynamic content in the respect that caching such content can be

expensive or impossible. Web traffic is becoming increasingly dynamic, which

suggests that the effectiveness of a distribution policy based on the LARD algorithm is

limited. The performance of LARD is covered in Section 2.5.

2.2 Client Aware Policy (CAP)

The other major content aware distribution algorithm, Client Aware Policy

(CAP), distributes requests based on the category of the content (e.g. static, dynamic,
(12)

secure, etc.). The decision of which back-end will receive the request is determined by

the expected impact on system resources. This policy has also been referred to as

Multi-Class Round Robin (MC-RR) [9]. Like LARD, it is a Layer-7 policy that makes

decisions based on the content of the actual HTTP request, but the idea is to keep

requests of each category distributed evenly among the back-end nodes so that each

server is handling a similar number and variety of workload categories. Unlike the

LARD policy that maintains a count of open connections per back-end, CAP does not

require any server state information. This makes the implementation simpler than that

for LARD. Previous research that studied the performance of this policy is discussed

in Section 2.5.

2.3 Web Content Workloads

We can categorize existing web sites into three broad categories [9]: Web

Publishing, Web Transaction and Web Multimedia sites. Web publishing sites contain

primarily static and lightly dynamic content, such as static HTML pages and dynamic

requests that do not make intensive use of resources. Examples include a static page

with some inline graphics, or a small CGI process that returns a counter with the

number of page hits. These services are primarily CPU bound. Web transaction sites

provide dynamic content that requires more complex database queries and other system

resources, and possibly requires secure, encrypted transmission of sensitive data. An

example is a web site that allows personal banking customers to get account
(13)

information, transfer funds, etc. These sites provide services that are CPU and/or disk

bound. Web multimedia sites include content such as streaming audio and video using

specialized hardware and software. Our study does not attempt to consider this last

type of web workload. For the purposes of this study, we use a synthetic workload

consisting of static pages, light CPU intensive dynamic content, heavy CPU intensive

content, and a resource representing a combination of CPU and disk intensive content.

Web publishing sites contain both static and dynamic content, but the ratio is more

heavily weighted to static content. A Web transaction site, in comparison includes a

higher percentage of dynamic content.

2.4 Web Switches

A web switch node has the duty of relaying the requests to an appropriate back-

end server, and there are a variety of methods to accomplish this. Three of them

include TCP splicing, TCP hand-off and Reverse-Proxy forwarding.

2.4.1 TCP Splicing

In the TCP splicing approach [12], the web switch receives the connection from

the client, examines the HTTP header information, then makes a decision to forward

the TCP packets to an appropriate server. At this point, the web switch is

masquerading as the client. The response from the back-end server returns through the

web switch and is forwarded to the client. As long as the connection exists, the packets

travel up through to the network layer of the protocol stack before they are forwarded
(14)

to the appropriate end (similar to network address translation, or NAT at this point),

hence the term “spliced connection.” This requires modification of the kernel in the

web switch node, but no changes to the back-end nodes. All traffic between endpoints

travels through the web switch.

2.4.2 TCP Handoff

The TCP handoff mechanism [11] is an improvement on the TCP splicing

approach, where all the incoming packets from clients pass through the web switch, but

after passing them on to the appropriate back-end node, the responses are sent back

using a network connection that does not pass through the web switch, in effect the

connection is “handed off” to the server so that the reply returns to the client directly.

This has been shown to be a notable performance improvement over TCP splicing.

This type of switch requires kernel modification of both the switch and the back-end

nodes.

2.4.3 Reverse-Proxy Forwarding

The use of Apache as a reverse-proxy web switch was described by Ralf

Engelschall [14] and used in development of the CAP policy [8]. This is an adaptation

of the Apache web server software [15]. In addition to the “core” modules, Apache has

a module called mod_rewrite that can rewrite the URL string, choosing and replacing

any portion of it with a series of regular expression type rules that the webmaster can

create in a configuration file. The other notable module is mod_proxy which provides

the request forwarding functionality. The request’s URL string is modified in
(15)

mod_rewrite, replacing the host portion of the URL with that of a back-end node. The

request is forwarded to that back-end node via the proxy mechanism. This approach

requires no kernel modification to implement, however, being a user level application,

it has a higher overhead than kernel level implementations like TCP splicing or

handoff. Research has shown that switches operating at Layer-7 pose scalability

problems [13] above ten back-end nodes, but for the purpose of studying dispatching

policies on a small cluster, the reverse-proxy is sufficient.

2.5 CAP and LARD Performance

The CAP authors examined the performance of their algorithm in both

simulation and prototype trials [8]. In the simulation experiments, LARD

outperformed CAP and WRR for the static workload due to its effective exploitation of

locality. For light dynamic requests the performance of CAP and LARD was about the

same, both giving better results than WRR. For heavy dynamic requests, such as in

Web Transaction sites, CAP clearly outperformed both LARD and WRR.

In the prototype trials, the authors used a reverse proxy web switch based on the

Apache software, and found that while CAP and LARD performance for static content

was about the same, CAP was more effective than LARD for both light and intensive

dynamic workloads. Their conclusion is that LARD is appropriate for web publishing

sites that use mostly static and some light dynamic content, but for modern web

transaction and commerce sites, a policy like CAP will yield better results. The authors
(16)

make another point that CAP is a robust policy in that it does not require any special

tuning parameters, unlike the LARD and WRR policies. If not tuned properly, these

latter two can yield results worse than that for random distribution.

Many authors have noted the potential bottlenecks in distributing requests at the

application layer and have proposed alternate architectures. One group who focused on

the implementation of the web switch rather than distribution algorithms has

determined that it depends on the particular website whether to use content based

routing at the web switch or to use TCP routing (a Level 4 switch) [21]. In the case

where the back-end nodes are likely to be the bottleneck, they suggest using content-

based routing. If the content-based switch is likely to be the bottleneck, then use TCP

routing (such as the splicing or handoff techniques described in Section 2.4). They

discuss the performance benefits of implementing these techniques in an embedded

operating system, yielding higher performance than that of a general purpose O/S.

Another group suggests a strategy known as WARD [22]. The WARD policy

partitions the working set into a small, frequently requested group called core, which is

distributed across all nodes, and the group of less requested pages is partitioned similar

to static partitioning. Their algorithm includes ward-analysis which computes the

optimal core size. It takes into account access patterns and cluster hardware

characteristics. Their studies from simulation results describe a large improvement

over both RR and static partitioning strategies. It has not yet been implemented on a

prototype architecture
(17)

3 Experimental Design

The main goal of this study is to show that a content-aware policy such as CAP

on a prototype Linux / Apache architecture using SMP nodes provides a substantial

improvement over random and round-robin distribution for workloads that contain

dynamic content. A second goal is to demonstrate the utility of SMP nodes for web

service. We do this by performing measurements on our prototype cluster using the

CAP, RR and RAND algorithms, and measure the performance differences between

dual-processor SMP and uniprocessor nodes. We used the latest available versions of

both Linux and Apache to take advantage of their reported increases in performance

over previous releases. A third goal is to study the scalability of the cluster, measuring

the performance as more nodes are added.

3.1 Testbed Architecture

Our testbed for this study is a subset of a forty-eight (48) node Intel Pentium-III

based cluster (“Wyeast”) located in the Department of Computer Science’s High

Performance Computing Lab at Portland State University. This subset consists of

seven (7) identical machines with the following specifications:

• Dual (2) 866 MHz Intel Pentium III processors on an ECS D6VAA dual-socket

mainboard

• 512 MB PC133 SDRAM

• 20 GB Hard Disk
(18)

• 3Com 3c905c 10/100 Network Interface

• Linux O/S, kernel 2.4 (RedHat 7.2 distribution)

These nodes are all connected via a Cisco 3548 switch, providing 100 Mbs

bandwidth between nodes.

3.2 Testbed Software Details

We used the recommended Linux 2.4 kernel tuning parameters as listed for the

SPECweb99 benchmark [23]. The tuning parameters modify the size of socket input

and output queues, range of allowable ports, and allowable simultaneous TIME_WAIT

sockets. In our tests, these parameters did not have a noticeable effect on our results,

suggesting we were not stressing the system in the areas that needed these parameters

changed from the default values.

This version of Linux utilizes a new file system, called EXT3, which is a

journaling file system now included with RedHat distributions. The journaling

component adds transaction-based integrity to the disk, but does not sacrifice

performance. A paper describing the early stages of this development is available for

more information [20].

To guarantee dedicated use of the network, each testbed client and server is

located on an interior, private node of the local area network. One of the machines is

designated as the web switch, and runs a thin build of Apache 1.3.24 as a reverse proxy.

The RAND policy is already available in the Apache source code distribution. We
(19)

modified the source code to support the RR and CAP policies. Four of the machines

are designated servers that each run a general purpose build of Apache 2.0.28. The last

two machines are designated clients that have the job of sending requests to the web

switch. One of these two has the Webstone [10] version 2.5 package installed, which

during test runs, executes the webmaster module, which in turn calls the webclient

module. The webmaster process starts a number of webclients on both the local

machine and any other designated client nodes. We created workload profiles that

Webstone uses to generate requests.

We did not modify the Webstone executable in any way other than applying a

patch to make it compatible with the Linux operating system. The webclient modules

request pages without any delays. Some researchers have modified the program to

include user “think time”, or to make the request arrival times at the server “bursty”.

Adding think time would make the request profile more authentic, more closely

modeling real client behavior, but for the purpose of comparing algorithms without

regard to absolute capacity of our system in “real client” numbers, we feel the lack of

think time does not prevent the study from producing useful information. One way to

look at this is that Webstone is sending the requests at a rate where the arrival rate is as

high as possible during a burst. This should make the reported throughput results

worse, not better. A more uniform request rate should also increase the reproducibility

of the results. If think time been implemented, we would expect to see a higher number

of client processes to yield the same throughput. Our study uses the stock version 2.5

code without modification.
(20)

Each Apache build, except the web switch reverse proxy, utilizes the new

threaded Multi-Processing Module (MPM) Worker. The previous major release of

Apache (1.3) uses a pre-forking model where upon starting the webserver, the master

process forks off a number of child processes that each handle connections. If the

number of connection requests exceed the capacity of the available processes, more

child processes are spawned according to criteria in the configuration file (usually

constrained by available RAM). By contrast, the newer 2.0 version is threaded. The

Worker module is designed so that connections are handled by threads rather than

processes. Launching the webserver software spawns a number of child processes,

and each child process then spawns a set number of threads, each of which handles

connections, realizing the benefits of lower system overhead compared to the non-

threaded pre-forking model. The number of threads is increased to match the demands

of increasing connection requests.

In early experiments we observed with an Apache 2.0.28-based reverse-proxy

web switch that the switch became overloaded much more quickly than we expected.

We then tried the previous Apache version, and had much better results. Some

modules were completely rewritten for version 2.0, and this may explain the

performance drop.

To summarize the portions of our study that included custom or modified

software, they include: creation of workload dataset files used by Webstone (called

“filelists”) for request generation (multiple profiles including mixtures of static and

dynamic content); creation of CPU and disk intensive dynamic service modules (used
(21)

by Apache), that represent dynamic requests; modification of the mod_rewrite module

in Apache 1.3 to implement the Round Robin and CAP algorithms; building a

specialized reverse-proxy version of Apache 1.3 using a customized run-time

configuration file and back-end node distribution maps; writing small scripts to aid in

reducing data and to gather CPU and disk utilization information, and the application

of Linux 2.4 kernel tuning parameters to all back-end nodes of the cluster.
(22)

4 Experimental results

In this section we detail our results for the performance of CAP, RAND and RR

on workloads consisting of various mixtures of static and dynamic content. We then

describe the performance benefits of using SMP versus uniprocessor nodes, and the

measured increase in performance as more nodes are added to the cluster.

We chose to measure performance using the metric connections per second.

The literature shows this is a common metric used by many researchers in the area of

cluster based web service. We also could have chosen network bandwidth throughput

as megabits per second, or request response time. We did not choose network

bandwidth as this does not accurately reflect the server throughput when dynamic

requests make up a significant portion of the content. While static file response times

are relative to their file size, dynamic requests can take orders of magnitude longer to

service, yet the amount of data sent through the network with the result can be much

smaller, and so have no such relationship to their response time. We did not use

response time since the stock Webstone software only provides 1) aggregate minimum,

maximum and mean response times for all requests, and 2) minimum, maximum and

mean response times for individual requests. We made no modifications to the

software. Webstone could be modified to generate more useful aggregate response

time information, such as “number of requests with a response time less than or equal

to X”, however in the scope of this study, we are satisfied with the information

provided by connections per second.
(23)

4.1 Capacity of the Reverse-Proxy Web Switch

To determine the capacity of the web switch to forward requests to the back-

end nodes, we configured Webstone to request pages of zero size. This way we could

measure the performance of the switch with a minimum amount of data transfer,

eliminating our 100 Mbs bandwidth as a potential bottleneck.

Figure 2: Capacity of the reverse-proxy web switch.
As the number of webclient processes increases, the capacity of the
webswitch reaches a maximum of approx. 1450 connections/sec.

The results, shown in Figure 1, indicate the maximum throughput at approximately

1450 requests per second.

It should be noted that each Webstone client process (webclient) corresponds to

a process running on the designated client node where it issues a request, waits for the

result, and after receiving the response issues the next request. Unlike real human

users, there is no “think time” between requests. Therefore, the requests generated by

900

1000

1100

1200

1300

1400

1500

1 3 5 7 9 11

webclient processes

co
nn

ec
tio

ns
/s

ec

CAP
RAND
(24)

Webstone do not represent a number of real users, but are useful in applying loads of

varying intensity to the web server. Additionally, this may apply to cases where clients

are not humans at all, but rather computer systems transacting with servers using the

HTTP interface. We use the throughput metric connections/second, as this gives the

best indication to how well the cluster is servicing requests, especially with dynamic

content where size of the returned message(s) is not necessarily proportional to the

response time.

The switch was tested using both the RAND and CAP algorithms, and the

results show that they perform essentially the same. We expected that the CAP policy

might show slightly lower performance compared to RAND since there is contention

for a lock on the shared memory array containing the index of the “next” back-end

node. The results show that the overhead is insignificant.

4.2 Static Workloads

We tested the CAP, RR and RAND policies using a static workload. For this

test we used a static fileset included with Webstone. These files do not contain HTML

formatting, but Webstone does not differentiate between files formatted as HTML or

plain text. Each file does have the .html extension. Apache is configured to recognize

the .html extension as an HTML formatted file and returns it with the appropriate

content headers. The static fileset consists of a set of text documents from 500 bytes to

5 MB, and is configured with the following probability distribution shown in Table 1.
(25)

Early experiments showed that the five files in the static workload were being

cached, showing zero disk utilization under heavy load. To more accurately simulate a

static workload of a large working set, we copied the files using unique filenames,

keeping the distribution of file sizes the same. Our modified static working set consists

of 2000 files, totalling about 38 megabytes in size. The average response time for all

files was 4 msec for the static workload.

If all the files were considered to be the same resource category, the CAP

distribution would be essentially round robin, so the largest two files, 5 MB and 500

KB, were placed in one category, and the 500, 5KB and 50KB files in another. The

performance data was collected using three trials (Webstone “runs”) of 10 minutes

each. The variance shows good agreement between trials, and so averaged results from

the three trials are presented. The results for the static workload using RAND, RR and

CAP are shown in Figure 3.

File size p(x) Avg Response
Time

500 bytes 0.35 2 msec

5 KB 0.50 3 msec

50 KB 0.14 7 msec

500 KB 0.009 47 msec

5 MB 0.001 500 msec

Table 1: Static Workload
Static files of the various sizes used, the probability that a file
of that size will be requested and the average response time on
a server under light load.
(26)

Figure 3: Static Workload Results
All three policies have similar performance for static workload
within the bounds of the 100 Mbs network bandwidth.

Figure 3 shows that there is no advantage of CAP over RR or the RAND

distribution on our testbed. This is consistent with previous research. In fact, all

algorithms are constrained by available bandwidth, as the server throughput was

measured at 75-80 Mbs for the trial with 10 client processes. This does not include the

extra bandwidth used by the reverse proxy in relaying each request, as each request

creates two connections: one from the client to the web switch, and one from the web

switch to the back-end. CPU and disk utilization was sampled during a separate trial

with 10 client processes showing 5-10% CPU and less than 1% disk utilization on each

Static Workload
4 Server Nodes

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

0 5 10 15 20

Webstone webclients

co
nn

ec
tio

ns
/s

ec

RAND
CAP
RR
(27)

node. For static workload, the system could provide more throughput, but the

bandwidth prevents fully realizing this capability.

4.3 Dynamic Workloads

We tested the system using workloads that included dynamic content. The

performance data was collected using three trials of five minutes each, and we present

the averaged results. The CAP algorithm should provide better performance for

heterogeneous services, so workloads were synthesized to include multiple classes of

requests. To simulate dynamic workload, three CGI programs were created: one

representing CPU lightly intensive dynamic content, one for CPU heavily intensive

dynamic content, and one for disk bound dynamic content. These programs were

created to simulate dynamic workloads on the web server, but do not attempt to model

a particular application. We started with the basic notion of dynamic content requiring

an order of magnitude more processing time than static content. This is represented by

the CPU light service. This program consists of a simple loop that makes math library

calls. The CPU heavy service requires twice the processing time, done by increasing

the number of loop iterations. The Disk service requires a similar amount of time as the

CPU heavy service, but instead of looping through math library calls, it reads a text

file, writes it back to disk, and finally deletes the newly created file. The file handle is

opened using the O_SYNC flag, causing the process to block until the contents are

actually written to disk. Table 2 lists these services with their average response times

on a server under low load. These probabilities were chosen based on work by
(28)

Casalicchio and Colajanni, but since no information is available as to their response

times for a particular resource, this cannot be considered the same dynamic workload

that they used for their experiments.

These were written in C to use the CGI interface, compiled and placed in the

appropriate CGI directories on the back-end nodes. There was not a large concern for

writing them this way, they could have been written using another language such as

Perl just as easily. Recall from Section 4.2 that the static workload had an average

response time of 4 milliseconds as a whole. The average response time for the CPU

light service was written to have a response time of approximately 40 msec, an order

of magnitude greater than the average static workload response time on a server under

low load. The CPU heavy service has an average response time of 100 msec, or 2.5

times greater than the CPU light service. The Disk service has an average response

time of 100 msec, but includes a high degree of disk activity, so it stresses the system in

Service p(x) Avg Response
Time

CPU light 0.5 40 msec

CPU heavy 0.3 100 msec

Disk 0.2 100 msec

Table 2: Dynamic Workload
Shown are the probabilities for a particular
resource when dynamic content is requested, and
the average response time on server under light
load.
(29)

a different way than the former two. These service programs, along with the static

workload were combined to make two different mixtures: 80% static + 20% dynamic,

and 60% static + 40% dynamic.

4.3.1 80% Static, 20% Dynamic Workload

A mix of 80% static and 20% dynamic workload was created using the static

profile discussed in Section 4.2 with the addition of 10% CPU light, 6% CPU heavy

and 4% Disk services. This example tries to approximate a Web Publishing site. The

workload is a reasonable mix of resources requested according to previous research [8],

but does not attempt to precisely model a particular website.The purpose here is to

show effects of distribution algorithms on throughput of systems that offer

heterogeneous services. The performance data was collected using three trials of 5

minutes each (we did not see a significant change in performance measurements

between trials of 10 minutes and those of 5 minutes). The variance shows good

agreement between trials, and averaged results are presented. The results of this

workload are shown in Figure 4.

RR performed similarly to RAND, but CAP clearly performed better than both

of these, but with increasing number of webclients, the benefits of CAP are lost, and the

performance approximates that of RAND and RR. The improvement of CAP vs.

RAND is approximately 20% at the 10 webclient process level. CAP performed 16%

better than RR at this point. The performance is essentially the same at 25 webclients.
(30)

Figure 4: 80% Static, 20% Dynamic Workload
The benefits of CAP are realized with higher throughput when
workloads include dynamic content, but degrades to the level of
RAND and RR with an increasing rate of client requests.

4.3.2 60% Static, 40% Dynamic Workload

We increased the dynamic portion of the same workload file set from Section

4.3.1, creating a 60/40 mix, or 60% static and 40% dynamic content. This might

represent a Web Transaction type site, with even heavier demands on system resources

and longer response times than the previous workload. The performance data was

collected using three trials of five minutes each. The results are shown in Figure 5.

80 % S ta tic , 2 0% D y n am ic
4 S e rve r N o d es

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

0.00 5.00 10.00 15.00 20.00 25.00

W e b sto n e w e b clie n ts

co
nn

ec
tio

ns
/s

ec

RA ND
CA P
RR
(31)

As in the previous workload, RR performs somewhat better than RAND, but

CAP performs better than either. The improvement at 8 client processes is 29% (at 10

processes it is 27% percent higher than RAND). Beyond 10 webclient processes, the

server performance levels out. This data combined with the observations of the static

and 80/20 static-dynamic mix suggests that the more dynamic the workload, the more

CAP improves when compared to RAND or RR, but only to a certain point. If the

server is heavily loaded, the performance degrades to the level of both RAND and RR.

Figure 5: 60% Static, 40% Dynamic Workload
Increased level of dynamic content produces an even greater difference in
performance between CAP and the other two algorithms at the 10 webclient
level compared to the 80% static, 20% dynamic mix. With increased number
of webclients, the performance approximates that of RAND and RR.

60% Static, 40% Dynamic Workload
4 Server Nodes

50.00
70.00
90.00

110.00
130.00
150.00
170.00
190.00
210.00

0 5 10 15 20 25

Webstone webclients

co
nn

ec
tio

ns
/s

ec

CAP
RAND
RR
(32)

To investigate the reason behind the relative performance drop of CAP vs.

RAND and RR, we examined CPU and disk utilization of CAP using the 60/40

dynamic workload with 10 webclients and with 14 webclients. These two points

represent the load in which the server has essentially the highest throughput (using 10

webclients) and remains essentially the same with an increased number of webclients

(14). Using iostat, we collected CPU and disk utilization at 15 second intervals on one

of the back-end nodes while running Webstone with the 60/40 workload. The results

are shown in Figure 6. The results show that utilization of CPU and disk resources is

variable and does not lend insight to the reason behind the throughput increase being

essentially flat between 10 and 14 webclients. Network bandwidth used for these

workloads is below 20 Mbs, and so should not be an issue.

An additional test was run to verify that all back-end nodes are providing

similar performance. The CAP algorithm makes the assumption that a particular

request will have the same impact on system resources on every back-end node,

provided they are built to be identical nodes (same hardware and software). We set the

web switch node to direct requests to a single back-end node, and measured the

throughput for each. The results are shown in Figure 7.
(33)

Figure 6: CPU and Disk Utilization Under 60% Static, 40%
Dynamic Workload
Utilization is variable and does not explain the flat throughput
increase when the number of webclients is increased.

60/40 Workload, 14 Webclients

0

20

40

60

80

100

0 2 4 6 8 10 12

Inte rva l (15 sec. each)

%
 U

til
iz

at
io

n

CPU

DISK

60/40 Workload, 10 Webclients

0

20

40

60

80

100

0 2 4 6 8 10 12

Inte rva l (15 sec. each)

%
 U

til
iz

at
io

n

CPU

DISK
(34)

Figure 7: Performance Differences Between Nodes of Identical
Hardware and Software
Nodes consisting of the same mainboard, drives, network cards
and software show notable performance differences.

Figure 7 shows that even nodes built to be identical still can exhibit differences

in performance. We used the most closely matched nodes (3, 5, 6 & 7) as the back-end

servers. Note that the effects of varying performance levels should make CAP worse

relative to RAND and RR, since CAP distributes based on the expected impact on

resources. Nodes that are very closely matched should yield the best performance.

Since the operating system on these nodes has gone through more than one upgrade

since the cluster was built, it may be that a clean install would even out the

performance. The reader should be aware of this possibility in performance difference

among nodes if they decide to implement CAP on their system, since it would be a

good idea to determine individual node performance to aid in selecting which nodes

Single Node Performance

100.00

120.00

140.00

160.00

180.00

1 2 3 4 5 6 7

Back-end Node ID

co
nn

ec
tio

ns
/s

ec
(35)

will serve which class of requests, or troubleshooting an unexpected performance drop

when one node has a significant performance difference from the rest of the pool.

While the performance differences were unexpected, they point to one of the

advantages of the CAP algorithm over RAND and RR for clusters in practice: CAP can

compensate and balance heterogeneous nodes, as long as the set of nodes that will

service a particular class of request is homogeneous. RAND and RR, which do not

examine the content of the request, cannot make these server load-related decisions.

We observed that the performance increase of CAP compared to the other

algorithms is dependent on a certain range in number of webclient processes issuing

requests. Recall that the maximum performance increase for the 60/40 workload was

at 8-10 webclients for 4 back-end nodes.

Figure 8: 60% Static, 40% Dynamic Using 2 Back-end Nodes.
This figure shows how the maximum CAP improvement is seen
with a webclient to back-end node ratio of approximately 5:2.

6 0 % S ta tic , 4 0 % D y n a m ic W o rk lo a d
2 B a c k -E n d N o d e s

5 0 .0 0

6 0 .0 0

7 0 .0 0

8 0 .0 0

9 0 .0 0

10 0 .0 0

11 0 .0 0

0 2 4 6 8 1 0 12

W e b sto n e w e b c l ie n ts

co
nn

ec
tio

ns
/s

ec

C A P
R A N D
(36)

We ran an experiment using the CAP and RAND algorithms with 2 back-end

nodes to examine this behavior (three trials of 5 minutes each). The results are shown

in Figure 8.

This demonstrates that CAP’s improvements in performance are sensitive to

the overall server load, although we cannot immediately apply these numbers to a real

scenario. It would require testing with an actual website to determine the appropriate

number of back-ends to realize the greatest improvement.

4.4 SMP versus Uniprocessor Nodes

We are interested in the utility of SMP nodes in web clusters. To investigate

the performance of SMP versus uniprocessor nodes, we conducted a set of

experiments, contrasting the two modes of operation. The first test was to determine

how much speedup was produced at the web switch by running in Linux SMP mode vs.

UP (uniprocessor) mode. Running the same workload that was used for the switch

capacity test (zero size file), we measured about 800 connections/sec. This is about

55% of the 1450 connections/sec that we measured while running in SMP mode.

We studied the effects of SMP nodes on the back-end servers running a static/

dynamic workload. We had four nodes available for the back-ends, so we ran 4

processors in SMP mode (2 x 2) vs. 4 processors in UP mode (4 x 1). For the SMP test,

we used two of the back-end servers on the 60% static, 40% dynamic workload. For

the UP test, we rebooted the back-ends to run the uniprocessor version of the kernel,
(37)

and ran the same workload using all four back-end nodes. Data was collected for three

trials of 5 minutes each, averaging the results. The results are shown in Figure 9.

Figure 9: SMP vs. Uniprocessor nodes (4 CPU’s total)
Although equivalent under lighter loads, 4 uniprocessor nodes
show a higher throughput than 2 dual-processor SMP nodes
under heavy workloads.

The SMP results show a similar throughput compared to the UP runs up

through 4 webclient processes. After that, the UP runs show a greater throughput.

Unlike the SMP system, the uniprocessor system does not have memory or I/O bus

contention between processors. This may explain the higher throughput with the UP 4-

processor system in this area.

SMP vs. UP
4 CPU's (UP 4x1, SMP 2x2)

40.00

60.00

80.00

100.00

120.00

140.00

0 2 4 6 8 10 12

Webstone webclients

co
nn

ec
tio

ns
/s

ec

UP
SMP
(38)

4.5 Scalability

We examined the scalability of a system composed of 1, 2 and 4 back-end

nodes. For this experiment, we used a 90% static / 10% dynamic workload running

trials in SMP mode. The percentage of dynamic content was only 10% of the whole,

but the dynamic services themselves were more CPU and disk intensive than those in

previously discussed workloads, hence the “low” connections/second values. The

results are shown in Figure 10.

Figure 10: Scalability from 1 to 4 back-end nodes
The measured maximum throughput as more nodes are added to
the cluster is nearly linear.

At workloads that result in maximum throughput levels, the results show a

good agreement to the theoretical optimum of realizing nearly twice as much

throughput when you double the number of back-end nodes. The trial using 11 client

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12

client processes

co
nn

ec
tio

ns
/s

ec

4 Nodes
2 Nodes
1 Node
(39)

processes measured the 4-node system at 138 connections/sec, which is 100% higher

than the measured value of 69 connections/sec for 2 nodes, and 390% greater than the

throughput of 35 connections/sec with 1 node.

Our experiments have shown that the performance of CAP is higher than that

of RAND and RR on workloads containing some degree of dynamic content under

light to moderate workloads. As the system becomes heavily loaded, the performance

of CAP approaches that of RR and RAND. Workloads of only static content did not

show appreciable differences, however our experiment was limited by available

bandwidth. We demonstrated the performance of using SMP versus uniprocessor

nodes where the number of CPU’s is constant. The two dual-processor SMP nodes

showed similar performance for lighter workloads, but showed poorer performance

compared to the four uniprocessors under heavy load. The scalability of the cluster at

maximum throughput was shown to be near linear in the performance improvements

realized as additional nodes are added to the cluster.
(40)

5 Conclusions and Future Work

We have examined the content-aware distribution algorithm CAP and its

performance compared to content-blind algorithms such as random and round-robin on

a Linux cluster with SMP nodes. Our results do not completely agree with previous

research of the advantages of CAP policy. While the performance of CAP exceeds

that of RAND and RR under lighter workloads, we observed a reduced advantage of

CAP over RR and RAND when the system is under heavy load.

The performance gains of CAP over RAND and RR improve with an increased

concentration of dynamic workload, so web sites with highly heterogeneous content

should perform better provided there are a sufficient number of back-end nodes. The

algorithm is relatively simple to implement, and combined with its lack of any special

tuning parameters other than content categorization, it is a choice to be considered for

implementation in a web request distributor.

The performance of CAP, according to the most recent information available at

the time of this writing, has not been examined on a Linux 2.4 cluster with SMP nodes

where the request distribution is facilitated by a single web switch in front of the back-

end nodes. We have shown in our experiments that the performance of a 2-way SMP

node is equivalent to two uniprocessor nodes until the system enters a heavily loaded

state. Even considering this effect, the performance increase from uniprocessor to

SMP, combined with the relatively low cost of the additional processor and supporting

mainboard suggest it is a worthwhile upgrade when considering nodes for a web

cluster.
(41)

We have shown the performance increase realized from adding additional

nodes to the cluster. Though the number of back-end nodes we had available was

limited, the performance increase per node at maximum throughput is near linear for

web service.

There is additional work to be done in the context of CAP policy analysis and

development. Our results show that CAP performance is sensitive to the number of

Webstone webclients, where throughput increases up to a certain number of webclients,

then flattens out. It would be interesting to see how the system scales with the addition

of more back-end nodes, and whether or not RAND and RR still exhibit the same

behavior this larger scale.

Still to be determined is the reason behind the degrading performance of CAP

relative to RAND and RR as the number of webclients increases. Examination of disk

and CPU utilization on a single back-end node did not reveal the answer. The system is

likely becoming less balanced as the workload increases, and simultaneous data

collection of all back-end nodes to compare workloads might be used to verify this

possibility. We have shown that nodes built to be identical may still exhibit

performance differences that could have an effect on throughput. The CAP algorithm

assumes that the pool of back-end nodes which handle a particular category of request

is homogeneous. Note that pools of nodes that handle categories exclusive of each

other do not have to be homogeneous.

Another possibility for future work is the combination of CAP with real-time

server state information. The pure CAP algorithm assumes that the server pool is
(42)

homogeneous, as there is no communication between the web switch and the servers as

to the current load each is experiencing. Ideally, it would be helpful to allow the use of

heterogeneous nodes. As future workload increases, the website operator can add more

nodes to the cluster, and the likelihood is that future purchases will result in faster

machines. The problem is that slower machines will become more heavily loaded than

the faster ones, and the resulting imbalance will degrade the potential performance of

the cluster as a whole. Therefore some server state information would be helpful to

allow the use of a heterogeneous server pool. The addition of a daemon process that

samples one or more of CPU, disk and network utilization on each of the server nodes

could relay information on a regular basis to the web switch, allowing for an algorithm

that would be a hybrid of CAP and weighted round-robin (WRR). One package

available from the open source community that uses server state information is the

Linux Virtual Server (LVS) [19], a level-4 distribution package implemented as kernel

loadable modules, released under the GNU General Public License.
(43)

6 References

[1] C. Yang and M. Luo, “Realizing Fault Resilience in Web-Server Clusters”,

Supercomputing 2000: the 13th ACM/IEEE Conference on High Performance

Networking and Computing (SC2000), Dallas, TX, 2000.

[2] K. Kant and P. Mohapatra, “Scalable Internet Servers: Issues and Challenges”,

Performance Evaluation Review, 5-8, September 2000.

[3] A. Iyengar, J. Challenger, D. Dias and P. Dantzig, “High-Performance Web Site

Design Techniques”, IEEE Internet Computing, 17-26, March/April 2000.

[4] V. Cardellini, E. Casalicchio and M. Colajanni, “A Performance Study of

Distributed Architectures for the Quality of Web Services”, Proceedings of the

Hawaii International Conference on System Sciences, Maui, HI, January 2001.

[5] D. Andresen, T. Yang and O. Ibarra, “Toward a Scalable Distributed WWW Server

on Workstation Clusters”, J. Parallel and Distributed Computing 42, 91-100 (1997).

[6] “Guinness World Records 2002”, Time Inc. Home Entertainment, September 2001.

[7] Paul Barford and Mark Crovella, “Generating Representative Web Workloads for

Network and Server Performance Evaluation”, Proceedings of the ACM

SIGMETRICS International Conference on Measurement and Modeling of

Computer Systems, pp. 151-160, July 1998.

[8] Casalicchio and Colajanni, “A Client-Aware Dispatching Algorithm for Web

Clusters Providing Multiple Services”, Proceedings of WWW10, May 2001, Hong

Kong.
(44)

[9] Casalicchio and Colajanni, "Scalable Web Clusters with Static and Dynamic

Contents", Proceedings of the IEEE International Conference on Cluster

Computing (CLUSTER2000), Chemnitz, Germany, December 2000.

[10] Mindcraft Software, http://www.mindcraft.com/webstone.

[11] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel, and E.

Nahum, "Locality-Aware Request Distribution in Cluster-based Network Servers",

Proceedings of the ACM 8th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS-VIII), San Jose, CA,

October 1998.

[12] A. Cohen, S. Rangarajan, and H. Slye, “On the Performance of TCP Splicing for

URL Aware Redirection”, Proceedings USITS ‘99: The 2nd USENIX Symposium

on Internet Technologies & Systems, October 1999.

[13] M. Aron, D. Sanders, P. Druschel, “Scalable Content-Aware Request Distribution

in Cluster-based Network Servers”, Proceedings of USENIX 2000, June 2000.

[14] R.S. Engelschall, “Load Balancing Your Web Site”, Web Techniques Magazine,

Vol. 3, May 1998.

[15] Apache HTTP Server Project, http://httpd.apache.org

[16] Menasce and Almeida, “Capacity Planning for Web Performance”, Prentice-Hall

Publishers, 1998, p. 149.

[17] Pitkow, J., “Summary of WWW Characterizations”, Seventh International World

Wide Web Conference, Brisbane, Australia, April 1998.
(45)

[18] Teo, Y.M. and Ayani, R., “Comparison of Load Balancing Strategies on Cluster-

based Web Servers”, Transactions of the Society for Modeling and Simulation

(accepted for publication), 2001.

[19] Linux Virtual Server Project, http://www.linuxvirtualserver.org

[20] Tweedie, Stephen, “Journaling the Linux ext2fs Filesystem”, Proceeding of the 4th

Annual Linux Expo (Expo ‘98), Durham, NC, 1998.

[21] Song, Levy-Abegnoli, Iyengar and Dias, “Design Alternatives for Scalable Web

Server Accelerators”, Proceedings of IEEE International Symposium on

Performance Analysis of Systems and Software, 2000.

[22] Cherkasova and Karlsson, “Scalable Web Server Cluster Design with Workload-

Aware Request Distribution Strategy WARD”, (not yet published), Hewlett-

Packard Laboratories, Palo Alto, CA, 2000.

[23] Standard Performance Evaluation Corporation, SPECweb99,

http://www.specbench.org/osg/web99/tunings

[24] Andreolini, Colajanni and Morselli, “Performance Study of Dispatching

Algorithms in Multi-tier Web Architectures”, Practical Aspects of Perfomance

Analaysis (PAPA) Workshop, ACM SIGMETRICS ‘02, Marina Del Rey, CA,

2002.
(46)

Appendix A

Source Code and Apache Modifications

(from psu_webswitch.h)

/* *************************************
 psu_webswitch.h

 Globals for shared memory and semaphores
 for use in Apache reverse proxy web switch
 project.

 Robert Jones
 Portland State University
 Portland, OR
 robertj@cs.pdx.edu

*/

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/shm.h>
#include <signal.h>
#define NUMSEGS 3 // Number of shared memory segments. This corresponds
 // to how many classes of requests will be received
 // by the web server for CAP distribution,
 // e.g. static, light dynamic and heavy dynamic would
 // be a NUMSEGS value of 3

int psu_numservers[NUMSEGS] = {4, 4, 4}; /* Number of back-end servers for
 each category, e.g. {1,3,3}
 means 1 node for category 1,
 3 nodes for category 2,
 3 nodes for category 3
 */

int psu_numservers_rr = 4; // Should be the total number of back-end nodes used for RR

/* Struct to store integers in shared memory */
struct shmintarr {
 int shmval[NUMSEGS];
};

union semun { int val; }; // Required for Linux SysV semaphores

int psu_sem_id = 0; // Semaphore handle
int psu_shm_id = 0; // Shared memory segment handle

key_t psu_ipc_key; // uniform key to allow multiple processes to find
 // the same shared memory segment and semaphore
 // array.

char PSU_KEY_CHAR = 'e'; // Additional token used with ftok() call

struct shmintarr *psu_shm_seg; // Pointer to shared memory segment
 // (a set of integers)

struct sembuf psu_sops[NUMSEGS];

// Attach process to shared memory segment
int psu_shm_attach() {
 psu_ipc_key = ftok("/home/webston/shm.c", PSU_KEY_CHAR);
 psu_shm_id = shmget(psu_ipc_key, sizeof(struct shmintarr), 0666);
 if((int)psu_shm_id != -1) {
 // attach to shared memory segment
 psu_shm_seg = (struct shmintarr*)shmat(psu_shm_id, 0, 0);
 if((int)psu_shm_seg == -1) {
 return -1;
 }
(47)

Appendix A: Source Code and Apache Modifications - Continued

 } else {
 return -1;
 }
 return 0;

}

// Get access to semaphore - this is run once per process instantiation
int psu_sem_get() {
 psu_sem_id = semget(psu_ipc_key, NUMSEGS, 0666);
 psu_sops[0].sem_num = 0;
 psu_sops[0].sem_flg = 0;
 return 0;
}

// Get next value in round-robin sequence
// This is a critical section subject o
// race conditions. Use a semaphore to
// get exclusive access to this function.
int psu_rr_next() {
 (*psu_shm_seg).shmval[0] = ((*psu_shm_seg).shmval[0] % psu_numservers_rr) + 1;
 return (*psu_shm_seg).shmval[0];
}

// Get next value in CAP sequence.
// Semaphore should be used to access this
// function to avoid race condition.
int psu_cap_next(int slot) {
 (*psu_shm_seg).shmval[slot-1] = ((*psu_shm_seg).shmval[slot-1] % psu_numservers[slot-1]) + 1;
 return (*psu_shm_seg).shmval[slot-1];
}

**
(from mod_rewrite.h)

...

#define MAPTYPE_RND 1<<4
/* RMJ - Definitions for RR and CAP policiesi */
#define MAPTYPE_RR 1<<5
#define MAPTYPE_CAP 1<<6
...

static char *select_random_value_part(request_rec *r, char *value);

static void rewrite_rand_init(void);

static int rewrite_rand(int l, int h);

/* RMJ - RR and CAP support */

static char *select_rr_value_part(request_rec *r, char *value);

static char *select_cap_value_part(request_rec *r, char *value);

...

**

(from mod_rewrite.c)

...

#include "psu_webswitch.h"

...

 // ************************************

 // **** RMJ - Round Robin Distribution

 // ************************************

 else if (strncmp(a2, "ror:", 4) == 0) {

 new->type = MAPTYPE_RR;

 new->datafile = a2+4;

 new->checkfile = a2+4;
(48)

Appendix A: Source Code and Apache Modifications - Continued

 }

 // ************************************

 // **** RMJ - Client Aware Policy Distribution

 // ************************************

 else if (strncmp(a2, "cap:", 4) == 0) {

 new->type = MAPTYPE_CAP;

 new->datafile = a2+4;

 new->checkfile = a2+4;

 }

 // ************************************

...

// ************************************

// RMJ - Round Robin support

// ************************************

static char *select_rr_value_part(request_rec *r, char *value)

{

 char *buf;

 int n, i, k;

 /* count number of distinct values */

 for (n = 1, i = 0; value[i] != '\0'; i++) {

 if (value[i] == '|') {

 n++;

 }

 }

 /* when only one value we have no option to choose */

 if (n == 1) {

 return value;

 }

 /* Index is determined here */

 if(psu_shm_id == 0) {

 rewritelog(r, 5, "RR attaching to shared memory segment");

 psu_shm_attach();

 }

 if(psu_sem_id == 0) {

 psu_sem_get();

 }

 // get lock

 rewritelog(r, 5, "RR acquiring lock");

 psu_sops[0].sem_op = -1; // negative == acquire lock

 psu_sops[0].sem_num = 0; // always zero for RR

 semop(psu_sem_id, psu_sops, 1);

 rewritelog(r, 5, "RR lock acquired");

 // Critical section

 k = psu_rr_next();

 rewritelog(r, 5, "RR releasing lock");
(49)

Appendix A: Source Code and Apache Modifications - Continued

 // Release lock

 psu_sops[0].sem_op = 1;

 semop(psu_sem_id, psu_sops, 1);

 rewritelog(r, 5, "RR lock released");

 /* and grep it out */

 for (n = 1, i = 0; value[i] != '\0'; i++) {

 if (n == k) {

 break;

 }

 if (value[i] == '|') {

 n++;

 }

 }

 buf = ap_pstrdup(r->pool, &value[i]);

 for (i = 0; buf[i] != '\0' && buf[i] != '|'; i++)

 ;

 buf[i] = '\0';

 return buf;

}

// ************************************

// RMJ - Client Aware Policy (CAP) support

// ************************************

static char *select_cap_value_part(request_rec *r, char *value)

{

 char *buf;

 int n, i, k;

 int category;

 int rc;

 /* count number of distinct values */

 for (n = 1, i = 0; value[i] != '\0'; i++) {

 if (value[i] == '|') {

 n++;

 }

 }

 /* The last value is the category of the request

 store as an int

 */

 category = (int)value[i-1] - 48; // e.g. '2' is ASCII 50 decimal

 rewritelog(r,5, "category = %d", category);

 /* when only one value we have no option to choose */

 if (n == 1) {

 return value;

 }

 /* Index is determined here */

 if(psu_shm_id == 0) {

 rc = psu_shm_attach();

 if(rc == -1) {
(50)

Appendix A: Source Code and Apache Modifications - Continued

 rewritelog(r,5, "error attaching to shared memory");

 exit(-1);

 }

 }

 if(psu_sem_id == 0) {

 psu_sem_get();

 }

 // get lock

 psu_sops[0].sem_op = -1;

 psu_sops[0].sem_num = category - 1; // lock corresponding to our category

 rewritelog(r, 5, "Attempting to acquire lock for category %d", category);

 semop(psu_sem_id, psu_sops, 1);

 rewritelog(r, 5, "Lock acquired");

 // Critical section

 k = psu_cap_next(category); // get the number of the next server based on

 // the category of request we are serving

 rewritelog(r,5,"next server index based on category %d is %d", category, k);

 psu_sops[0].sem_op = 1; // positive == release lock

 semop(psu_sem_id, psu_sops, 1);

 /* and grep it out */

 for (n = 1, i = 0; value[i] != '\0'; i++) {

 if (n == k) {

 break;

 }

 if (value[i] == '|') {

 n++;

 }

 }

 buf = ap_pstrdup(r->pool, &value[i]);

 for (i = 0; buf[i] != '\0' && buf[i] != '|'; i++)

 ;

 buf[i] = '\0';

 return buf;

}

...
(51)

Appendix B

Apache Run-Time Configuration Files

(httpd.conf.cap)

##

httpd.conf.cap -- Apache 1.3 configuration for Reverse Proxy Usage

Robert Jones

Portland State University

robertj@cs.pdx.edu

Modified from an example written by Ralf Engleschall

##

User webston

Group PSUPerf

Listen 80

ServerName 192.168.0.134

StartServers 25

MaxClients 256

MaxRequestsPerChild 10000

server operation parameters

KeepAlive on

MaxKeepAliveRequests 100

KeepAliveTimeout 15

Timeout 60

IdentityCheck off

HostnameLookups off

paths to runtime files

PidFile /home/webston/rproxy13/bin/httpd.pid

LockFile /home/webston/rproxy13/bin/httpd.lock

ErrorLog /home/webston/rproxy13/logs/error_log

unused paths

ServerRoot /home/webston/rproxy13

DocumentRoot /tmp

AccessConfig /dev/null

ResourceConfig /dev/null

speed up and secure processing

<Directory />

Options -FollowSymLinks -SymLinksIfOwnerMatch

AllowOverride None

</Directory>

enable the URL rewriting engine

RewriteEngine on

RewriteLog /home/webston/rproxy13/logs/rewrite_log

RewriteLogLevel 0

define a rewriting map with value-lists where

mod_rewrite randomly chooses a particular value

RewriteMap server cap:/home/webston/rproxy13/conf/servermap.cap
(52)

Appendix B: Apache Run-Time Configuration Files - Continued

(httpd.conf.cap - continued)

and make sure no one uses our proxy except ourself

RewriteRule ^/rproxy-status.* - [L]

RewriteRule ^(http|ftp)://.* - [F]

Now choose the possible servers for particular URL types

#

RewriteRule ^/(.*load\.cgi.*)$ to://${server:disk}/$1 [S=5]

RewriteRule ^/(.*5m.*)$ to://${server:dynamic}/$1 [S=4]

RewriteRule ^/(.*500k.*)$ to://${server:dynamic}/$1 [S=3]

RewriteRule ^/(.*\.html)$ to://${server:static}/$1 [S=2]

RewriteRule ^/(.*\.cgi)$ to://${server:dynamic}/$1 [S=1]

RewriteRule ^/(.*)$ to://${server:static}/$1

and delegate the generated URL by passing it

through the proxy module

RewriteRule ^to://([^/]+)/(.*) http://$1/$2 [E=SERVER:$1,P,L]

and make really sure all other stuff is forbidden

when it should survive the above rules...

RewriteRule .* - [F]

enable the Proxy module without caching

ProxyRequests on

NoCache *

setup URL reverse mapping for redirect reponses

ProxyPassReverse / http://192.168.0.140

ProxyPassReverse / http://192.168.0.145

ProxyPassReverse / http://192.168.0.146

ProxyPassReverse / http://192.168.0.147

(53)

Appendix B: Apache Run-Time Configuration Files - Continued

(servermap.rand)

#

servermap for RAND policy

#

Apache mod_rewrite selection table

#

Robert Jones

Portland State University

11/5/01 File created Robert Jones

#

Entry format:

entries should be in the form of

category_name URL1 | URL2 | ... | URLn

where category_name is the name of the category, and should

correspond to the RewriteRule entries in httpd.conf.

Integer is 1 for the first category, 2 for the 2nd, etc.

#

URL1, URL2, etc. are the URL's for the real servers used

for that category. Note that you may want to assign different

categories to different real servers, e.g. a dedicated server

might be used only for heavy dynamic requests.

#

Note: You must change the entry in httpd.conf to specify

the algorithm. This is just a server map file. The

ServerMap entry must use the appropriate key:

e.g. ServerMap server rnd:......

cap:......

Note that RR policy is simply a 1-category CAP policy.

#

##

Unlike the CAP and RR servermap files, RAND does not have an

entry at the end of the line specifying a category

static 192.168.0.140|192.168.0.145|192.168.0.146|192.168.0.147

(servermap.rr)

...

One category only for RR - it's called static, but it is used for

all categories

static 192.168.0.140|192.168.0.145|192.168.0.146|192.168.0.147|1

(servermap.cap)

...

static 192.168.0.140|192.168.0.145|192.168.0.146|192.168.0.147|1

dynamic 192.168.0.147|192.168.0.140|192.168.0.145|192.168.0.146|2

disk 192.168.0.146|192.168.0.147|192.168.0.140|192.168.0.145|3
(54)

Appendix C

Webstone 2.5 Run-Time Configuration Files

(filelist.standard)

@(#)filelist.standard 1.3

Filelist for WebStone 2.5 Standard Run Rules, same as filelist.sample

/file500.html 350 #500

/file5k.html 500 #5125

/file50k.html 140 #51250

/file500k.html 9 #512500

/file5m.html 1 #5248000

**

(filelist.6040.large)

...static files not listed - same ratio as in filelist.standard...

There are 2000 static files, so we need 1333 weight units for a 60/40 mix.

/cgi-bin/cpu_light.cgi 667

/cgi-bin/cpu_med.cgi 400 # This is the ‘cpu heavy’ service in the thesis

/cgi-bin/disk_load.cgi?file=/home/webston/apache/htdocs/file50k.html 266

(filelist.8020.large)

...static files not listed - same ratio as in filelist.standard...

There are 2000 static files, so we need 500 weight units for an 80/20 mix.

/cgi-bin/cpu_light.cgi 250

/cgi-bin/cpu_med.cgi 150 # ‘cpu heavy’

/cgi-bin/disk_load.cgi?file=/home/webston/apache/htdocs/file50k.html 100

**
(55)

Appendix C: Webstone 2.5 Run-Time Configuration Files - Continued

(from testbed - condensed to options we modified)

BENCHMARK PARAMETERS -- EDIT THESE AS REQUIRED

Webstone will start running with MINCLIENTS number of processes or threads.

It will run for TIMEPERRUN minutes. When that run is finished then the

number of clients will be incremented by CLIENTINCR and another test will

be performed. This will continue until we hit MAXCLIENTS number of clients.

This entire set of steps will be performed for ITERATIONS number of cycles.

ITERATIONS="3"

MINCLIENTS="2"

MAXCLIENTS="20"

CLIENTINCR="2"

TIMEPERRUN="5"

This is the host name or IP number of the web server that we will be

testing. If you use a host name then be sure your client machines

can resolve that name.

SERVER="192.168.0.134"

Port 80 is the default web server port. If your web server is running

on another port then you can change this value.

PORTNO=80

RCP is the command used to copy a file to and from one of the client

systems or the web server. For UNIX these can be "rcp" and "rsh" and

you may have to enable these commands for the machines involved.

The RCP is used to retrieve configuration files from the web server

and to distribute test files to the web clients. If these are left

empty then WebStone won't attempt to distribute the webclient binary

and filelist to the clients and you will have to do it by hand before

running WebStone.

RCP=/usr/bin/rcp

RSH=/usr/bin/rsh
(56)

Appendix C: Webstone 2.5 Run-Time Configuration Files - Continued

(testbed - continued)

A space-separated list of client machines to use for testing the web

server. You can use IP addresses or host names. If you use host

names then be sure that the webmaster machine can resolve them. It

will try to do an rexec to each of these systems in order to start

the webclient program.

CLIENTS="192.168.0.135 192.168.0.144"

These are the user name and password for a user on the client systems.

The webmaster program will do an rexec to a client system using this

name and password in order to start the webclient program.

CLIENTACCOUNT=webston

CLIENTPASSWORD=********

Set this to "true" if we want to use the same random seed during every

run. Doing this will make test results more reproducible.

FIXED_RANDOM_SEED=true

Scratch directory on the client system.

TMPDIR=/tmp

Full pathname to the webclient program, on the client system.

CLIENTPROGFILE=/tmp/webclient

Set this to 1 to turn on debugging output.

DEBUG=0
(57)

Appendix D

Raw Data for Charts
Figure 2

Figure 3

C A P Z e ro T e s t
2 c lie n ts
4 b a c k -e n d s

file 0 k .h tm l 1 0 0 %
C lie n ts C A P R A N D

2 9 6 2 .1 1 9 5 0 .1 5 v a lu e s in c o n n /s e c
3 1 2 4 1 .1 7 1 2 2 7 .1 2
4 1 3 6 6 .2 2 1 3 6 0 .4 1
5 1 4 2 1 .9 1 1 4 2 2 .0 1
6 1 4 4 2 .9 9 1 4 4 6 .3 6
7 1 4 4 4 .6 7 1 4 5 0 .6 1
8 1 4 4 7 .7 2 1 4 4 9 .2 2
9 1 4 4 5 .6 8 1 4 4 8 .5 3

1 0 1 4 4 4 .8 9 1 4 4 7 .4 6

S ta t ic W o rk lo a d
F ile s c o p ie d (2 0 0 0 f ile s to ta l)
3 ite ra t io n s , 1 0 m in . ru n t im e

R A N D # P ro c s R u n 1 R u n 2 R u n 3 A v g S td D e v
1 2 3 7 .1 9 2 3 7 .5 2 2 3 7 .7 4 2 3 7 .4 8 0 .2 8
5 4 5 1 .8 8 4 5 2 .1 2 4 5 2 .3 1 4 5 2 .1 0 0 .2 2
9 4 8 3 .5 4 4 8 3 .4 3 4 8 3 .2 6 4 8 3 .4 1 0 .1 4

1 3 4 9 6 .1 3 4 9 6 .1 8 4 9 5 .9 4 4 9 6 .0 8 0 .1 3
1 7 5 0 7 .0 0 5 1 3 .0 8 5 1 1 .7 0 5 1 0 .5 9 3 .1 9
2 1 5 1 6 .1 8 5 1 5 .7 5 5 1 4 .7 4 5 1 5 .5 6 0 .7 4

C A P 1 2 3 1 .4 6 2 3 2 .1 9 2 3 2 .1 3 2 3 1 .9 3 0 .4 1
5 4 4 7 .2 4 4 7 .3 4 4 4 6 .6 5 4 4 7 .0 6 0 .3 6
9 4 7 7 .4 1 4 7 7 .9 9 4 7 7 .1 6 4 7 7 .5 2 0 .4 3

1 3 4 9 1 .8 5 4 9 1 .7 2 4 9 2 .6 9 4 9 2 .0 9 0 .5 3
1 7 5 0 9 .9 5 0 8 .6 7 5 0 7 .3 5 0 8 .6 2 1 .3 0
2 1 5 1 1 .0 4 5 1 0 .7 6 5 1 1 .4 3 5 1 1 .0 8 0 .3 4

R R 1 2 3 6 .7 2 2 3 7 .3 8 2 3 7 .3 6 2 3 7 .1 5 0 .3 8
5 4 4 9 .4 1 4 5 0 .0 5 4 4 9 .4 6 4 4 9 .6 4 0 .3 6
9 4 8 1 .9 9 4 8 2 .3 8 4 8 1 .9 1 4 8 2 .0 9 0 .2 5

1 3 4 9 4 .6 7 4 9 5 .3 8 4 9 4 .9 7 4 9 5 .0 1 0 .3 6
1 7 5 1 2 .0 7 5 1 1 .9 7 5 1 2 .3 5 1 2 .1 1 0 .1 7
2 1 5 1 5 .4 7 5 1 4 .3 5 5 1 4 .5 4 5 1 4 .7 9 0 .6 0
(58)

Appendix D: Raw Data for Charts - Continued
Figure 4

8020 m ix

dynam ic m ix is 80% filelist.standard,
10% cpu_light.cgi, 6% cpu_m ed.cgi, and 4% disk_load.cgi (50k file as param eter)

RAND #clients run1 run2 run3 avg StdDev
020629_1620 2 103.50 104.19 103.69 103.79 0.36

4 180.58 178.54 180.27 179.80 1.10
6 233.07 231.18 233.16 232.47 1.12
8 266.36 264.15 267.50 266.00 1.70

10 293.80 289.28 289.92 291.00 2.45
020629_2214 12 307.49 312.77 314.77 311.68 3.76

14 328.52 320.54 317.59 322.22 5.65
16 339.54 340.28 336.85 338.89 1.81
18 353.98 346.28 351.9 350.72 3.98
20 356.62 366.43 359.43 360.83 5.05

020630_1425 25 381.63 376.93 377.52 378.69 2.56

CAP
020629_1748 2 105.09 105.81 105.63 105.51 0.37

4 198.47 198.65 198.57 198.56 0.09
6 270.00 270.13 269.99 270.04 0.08
8 315.23 318.01 316.51 316.58 1.39

10 348.89 347.24 348.92 348.35 0.96
020629_1940 12 369.58 368.92 366.92 368.47 1.39

14 381.26 377.74 383.72 380.91 3.01
16 384.53 383.74 382.67 383.65 0.93
18 388.02 389.80 392.37 390.06 2.19
20 391.37 395.46 399.15 395.33 3.89

020630_1447 25 377.48 378.14 383.89 379.84 3.53

RR
020701_0934 2 95.35 104.91 104.28 101.51 5.35

4 184.76 187.03 186.65 186.15 1.22
6 240.55 240.46 240.3 240.44 0.13
8 272.03 273.96 269.24 271.74 2.37

10 302.1 298.77 298.48 299.78 2.01
12 302.22 296.05 322.28 306.85 13.71
14 334.29 335.32 335.16 334.92 0.55
16 339.06 337.86 343.19 340.04 2.80
18 348.54 362.99 359.17 356.90 7.49
20 366.25 360.8 360.25 362.43 3.32
22 372.52 370.43 379.04 374.00 4.49
24 380.05 379.45 373.35 377.62 3.71
(59)

Appendix D: Raw Data for Charts - Continued
Figure 5

6 0 4 0 M ix
F ile s a re o f s a m e p ro f ile a s w o rk s h e e t 8 0 2 0 f (8 0 /2 0 M ix)

C A P # c lie n ts ru n 1 ru n 2 ru n 3 A v g S td D e v
0 2 0 6 3 0 _ 2 1 0 2 2 5 9 .5 3 5 9 .5 5 5 9 .6 8 5 9 .5 9 0 .0 8

4 1 1 4 .9 4 1 1 4 .7 5 1 1 5 .0 2 1 1 4 .9 0 0 .1 4
6 1 6 1 .9 3 1 6 2 .4 5 1 6 1 .9 2 1 6 2 .1 0 0 .3 0
8 1 9 1 .2 1 1 9 1 .4 7 1 9 2 .1 7 1 9 1 .6 2 0 .5 0

1 0 2 0 4 .4 3 2 0 5 .0 4 2 0 6 .2 5 2 0 5 .2 4 0 .9 3
1 2 2 0 3 .4 7 2 0 1 .3 4 2 0 5 .6 9 2 0 3 .5 0 2 .1 8
1 4 2 0 5 .5 7 2 0 8 .0 3 2 0 1 .9 6 2 0 5 .1 9 3 .0 5
1 6 2 0 4 .7 9 2 0 6 .4 7 2 0 9 .9 8 2 0 7 .0 8 2 .6 5
1 8 2 0 8 .0 6 2 0 6 .3 2 2 0 5 .0 3 2 0 6 .4 7 1 .5 2
2 0 2 1 3 .0 3 2 0 7 .3 4 2 1 1 .3 2 2 1 0 .5 6 2 .9 2
2 2 2 1 2 .3 1 2 1 0 .8 7 2 0 9 .4 6 2 1 0 .8 8 1 .4 3
2 4 2 0 9 .1 8 2 1 0 .0 1 2 1 0 .0 4 2 0 9 .7 4 0 .4 9

R A N D
0 2 0 6 3 0 _ 1 5 0 9 2 5 8 .1 0 5 8 .0 3 5 8 .5 4 5 8 .2 2 0 .2 8

4 1 0 1 .3 7 1 0 0 .5 3 1 0 1 .2 6 1 0 1 .0 5 0 .4 6
6 1 3 1 .7 9 1 3 0 .6 9 1 3 1 .3 7 1 3 1 .2 8 0 .5 6
8 1 4 7 .4 7 1 4 8 .2 8 1 4 9 .5 3 1 4 8 .4 3 1 .0 4

1 0 1 6 2 .1 4 1 6 1 .1 0 1 6 0 .2 8 1 6 1 .1 7 0 .9 3
1 2 1 7 3 .0 5 1 7 2 .8 4 1 6 9 .7 5 1 7 1 .8 8 1 .8 5
1 4 1 8 2 .5 2 1 7 6 .9 5 1 8 3 .8 2 1 8 1 .1 0 3 .6 5
1 6 1 8 7 .1 5 1 8 4 .5 4 1 8 8 .5 0 1 8 6 .7 3 2 .0 1
1 8 1 8 4 .2 3 1 8 6 .1 9 1 9 0 .5 0 1 8 6 .9 7 3 .2 1
2 0 1 9 4 .6 9 1 8 9 .9 2 1 9 1 .3 4 1 9 1 .9 8 2 .4 5
2 2 1 9 3 .8 0 1 9 6 .2 1 1 9 3 .8 4 1 9 4 .6 2 1 .3 8
2 4 1 9 6 .7 9 1 9 9 .7 2 2 0 1 .9 5 1 9 9 .4 9 2 .5 9

R R
0 2 0 7 0 1 _ 0 1 4 7 2 5 9 .0 6 5 9 .0 8 5 9 .1 2 5 9 .0 9 0 .0 3

4 1 0 6 .2 2 1 0 7 .4 5 1 0 4 .3 1 1 0 5 .9 9 1 .5 8
6 1 3 9 .0 8 1 3 9 .5 1 1 3 8 .5 6 1 3 9 .0 5 0 .4 8
8 1 6 0 .4 5 1 5 5 .8 7 1 5 4 .9 4 1 5 7 .0 9 2 .9 5

1 0 1 6 8 .6 8 1 6 8 .6 4 1 6 8 .4 3 1 6 8 .5 8 0 .1 3
1 2 1 7 8 .8 5 1 8 1 .0 7 1 8 0 .2 2 1 8 0 .0 5 1 .1 2
1 4 1 8 5 .1 4 1 8 2 .3 8 1 8 2 .8 7 1 8 3 .4 6 1 .4 7
1 6 1 8 6 .4 9 1 8 8 .9 8 1 8 9 .0 8 1 8 8 .1 8 1 .4 7
1 8 1 9 5 .3 9 1 9 0 .0 8 1 8 8 .3 1 1 9 1 .2 6 3 .6 8
2 0 1 9 7 .6 7 1 9 7 .9 1 1 9 4 .3 3 1 9 6 .6 4 2 .0 0
2 2 1 9 9 .4 2 1 9 7 .4 8 1 9 2 1 9 6 .3 0 3 .8 5
2 4 2 0 2 .1 1 2 0 1 .2 9 2 0 0 .7 9 2 0 1 .4 0 0 .6 7
(60)

Appendix D: Raw Data for Charts - Continued
Figure 6

Figure 7

U t il iz a t io n a t 1 0 c l ie n ts o n W y e a s t4 0 - C A P
N o . C P U D IS K

1 6 4 .9 3 5 7 .4 7
2 6 5 6 6 .5 3
3 6 7 .5 5 5 .2
4 5 3 .9 8 6 .5 3
5 6 9 .3 7 4 6 .4
6 6 6 .4 3 5 2 .3 3
7 6 6 .4 6 6 .4 7
8 6 9 .3 3 5 3 .7 3
9 6 6 .5 3 6 0 .4

1 0 6 7 5 7 .4 7
1 1 6 7 .5 7 3 7 .9 3

U t i l iz a t io n a t 1 4 c l ie n ts o n W y e a s t4 0 - C A P
N o . C P U D IS K

1 6 4 .5 7 4 4 .4 7
2 6 6 .1 4 8 .4
3 6 0 .1 3 5 1 .4
4 5 1 .5 3 4 7 .0 7
5 5 0 .6 3 4 4
6 6 6 .3 3 6 2 .4 7
7 6 5 .5 7 7 0 .8 7
8 6 7 .8 7 5 5 .2 7
9 6 3 .2 5 5 .7 3

1 0 6 6 .0 3 4 6 .9 3
1 1 6 4 .8 7 5 5 .9 3

Single Server
80% dynam ic
20% static
3 m in. run tim e
8 client processes

Node# Run1 Run2 Run3 Avg StdDev
34 123 120 124 122.33 2.08
35 124 120 124 122.67 2.31
40 146 152 151 149.67 3.21
44 116 119 117 117.33 1.53
45 146 150 154 150.00 4.00
46 166 166 174 168.67 4.62
47 169 166 163 166.00 3.00
(61)

Appendix D: Raw Data for Charts - Continued
Figure 8

Figure 9

Figure 10

6 0 4 0 M ix o n 2 N o d e s - S a m e w o rk lo a d p ro file a s 6 0 4 0 d a n d 8 0 2 0 e

C A P # p ro c s ru n 1 ru n 2 ru n 3 a v g s td e v
0 2 0 7 0 1 _ 2 3 5 3 2 5 9 .0 3 5 9 .1 6 5 9 .1 0 5 9 .1 0 0 .0 7

4 9 5 .8 7 9 5 .2 1 9 6 .0 6 9 5 .7 1 0 .4 5
6 1 0 1 .3 8 1 0 2 .9 5 1 0 0 .4 2 1 0 1 .5 8 1 .2 8
8 1 0 1 .2 2 9 9 .5 0 9 8 .8 5 9 9 .8 6 1 .2 2

1 0 1 0 1 .9 7 1 0 0 .7 0 9 9 .4 2 1 0 0 .7 0 1 .2 8

R A N D 2 5 6 .2 6 5 6 .4 8 5 5 .5 4 5 6 .0 9 0 .4 9
0 2 0 7 0 2 _ 0 1 1 4 4 8 0 .0 4 8 0 .7 7 7 9 .4 4 8 0 .0 8 0 .6 7

6 9 0 .7 8 9 .6 2 8 9 .7 2 9 0 .0 1 0 .6 0
8 9 3 .7 1 9 3 .7 9 3 .6 9 9 3 .7 0 0 .0 1

1 0 9 4 .5 7 9 6 .9 9 9 3 .9 1 9 5 .1 6 1 .6 2

S M P v s U P
c lie n ts ru n 1 ru n 2 ru n 3 a vg s td e v

U P x 4 0 2 0 7 0 3 _ 0 6 5 2 2 5 6 .9 3 5 6 .7 1 5 7 .4 8 5 7 .0 4 0 .4 0
0 2 0 7 0 3 _ 0 6 5 7 4 9 0 .7 2 9 1 .1 8 9 1 .5 2 9 1 .1 4 0 .4 0
0 2 0 7 0 3 _ 0 7 0 2 6 1 1 1 .4 2 1 1 1 .8 2 1 1 1 .8 2 1 1 1 .6 9 0 .2 3
0 2 0 7 0 3 _ 0 7 0 7 8 1 2 4 .3 1 1 2 4 .0 0 1 2 4 .3 7 1 2 4 .2 3 0 .2 0
0 2 0 7 0 3 _ 0 7 1 3 1 0 1 3 3 .7 9 1 3 2 .8 8 1 3 2 .9 6 1 3 3 .2 1 0 .5 0

S M P x 2 0 2 0 7 0 3 _ 0 8 5 9 2 5 3 .5 8 5 9 .2 1 5 9 .1 2 5 7 .3 0 3 .2 2
0 2 0 7 0 3 _ 0 9 0 4 4 9 3 .3 7 9 5 .8 3 9 4 .3 3 9 4 .5 1 1 .2 4
0 2 0 7 0 3 _ 0 9 0 9 6 1 0 2 .9 0 1 0 0 .7 1 1 0 2 .0 3 1 0 1 .8 8 1 .1 0
0 2 0 7 0 3 _ 0 9 1 4 8 9 7 .9 1 9 9 .5 2 1 0 2 .2 9 9 9 .9 1 2 .2 2
0 2 0 7 0 3 _ 0 9 1 9 1 0 1 0 0 .7 4 9 9 .2 6 9 9 .9 8 9 9 .9 9 0 .7 4

Test fo r Scalab ility from 1 to 4 nodes

C AP (R R)
90/10 W ork load

#Proc 4 N odes 2 N odes 1 N ode
1 17 17 17
3 51 51 35
5 85 69 35
7 118 69 35
9 137 69 35

11 138 69 35
(62)

