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ABSTRACT

An abstract of the thesis by Robert M. Jones for the Master of Science in Computer 

Science presented July 12, 2002.

Title: Content Aware Request Distribution for High Performance 

Web Service: A Performance Study

The World Wide Web is becoming a basic infrastructure for a variety of services, and 

the increases in audience size and client network bandwidth create service demands 

that are outpacing server capacity.  Web clusters are one solution to this need for high-

performance, highly available web server systems.  We are interested in load 

distribution techniques, specifically Layer-7 algorithms that are content-aware.  Layer-

7 algorithms allow distribution control based on the specific content requested, which 

is advantageous for a system that offers highly heterogenous services.  We examine the 

performance of the Client Aware Policy (CAP) on a Linux/Apache web cluster 

consisting of a single web switch that directs requests to a pool of dual-processor SMP 

nodes.  We show that the performance advantage of CAP over simple algorithms such 

as random and round-robin is as high as 29% on our testbed consisting of a mixture of 

static and dynamic content.  Under heavily loaded conditions however, the 

performance decreases to the level of random distribution.  In studying SMP vs. 

uniprocessor performance using the same number of processors with CAP distribution, 

we find that SMP dual-processor nodes under moderate workload levels provide 



equivalent throughput as the same number of CPU’s in a uniprocessor cluster.  As 

workload increases to a heavily loaded state however, the SMP cluster shows reduced 

throughput compared to a cluster using uniprocessor nodes.  We show that the web 

cluster’s maximum throughput increases linearly with the addition of more nodes to the 

server pool.  We conclude that CAP is advantageous over random or round-robin 

distribution under certain conditions for highly dynamic workloads, and suggest some 

future enhancements that may improve its performance.
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1 Introduction

The World Wide Web is increasingly being used as a basic infrastructure for a 

variety of Internet services [1] and its user pool is skyrocketing in numbers [2].  

Network bandwidth that is available to clients is increasing at a higher rate than what 

servers based on single machines can support, and this will lead to server-side 

bottlenecks.  A highly reliable, cost-effective web server system is a key solution to 

these demands.  We have surveyed the literature in the area of high-performance web 

service, and conducted a performance study of a prototype Linux / Apache SMP cluster 

under a variety of web service workloads using the content-aware distribution policy 

Client Aware Policy (CAP).  This study includes the difference in performance of 

uniprocessor versus SMP nodes in the context of web service, and the scalability 

measured by the addition of more nodes to the cluster.

1.1 Popular Website Workloads

As an example of what popular web sites are experiencing, Guinness World 

Records has recognized the official web site for the 1998 FIFA World Cup 

(www.france98.com) for setting four different Internet records [6].  The first is "Most 

Visited Web Site for an Event” as the site logged over 1.1 billion hits during the period 

between June 29 and July 12, 1998.  The second record was for the most pages viewed 

in one minute, topping out at 235,356 on June 29, 1998.  The third record is for the 

“most pages viewed in one hour” at over 10 million on June 30,  and fourth is “most 
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pages viewed in 24 hours” at over 73 million (also on June 30, 1998).  Guinness World 

Records has recognized Microsoft’s www.msn.com collection of web sites as holding 

the record for “Most Day-to-Day Visits” when their servers logged 10.5 billion page 

views in March of 2000.  

1.2 Motivation for High-Performance Web Service

Today’s busy web sites must be highly available.  As Internet usage develops 

and changes, there is a growing dependence on having such information readily 

available.  In stark contrast to the early days of the Web, when the idea of the company 

web page was somewhat of a novelty, many Internet services, such as e-commerce, 

have become more and more “mission critical” because the penalty for system failures 

and service loss is greater than ever [1].

Research has shown that users are not willing to tolerate latency times greater 

than 8 to 10 seconds [4], and as traffic increases, the effective web server system must 

be scalable, keeping response times to a minimum.  A system is scalable if the response 

time for individual requests is kept as small as theoretically possible when the number 

of simultaneous HTTP requests  increases, while maintaining a low request drop rate 

and achieving a high peak request rate [5].  Response time is the length of time between 

the moment the client initiates the request and the time all of the information arrives at 

the client.
(2)



1.3 Web Workload Characterization

Web service workload has been found to be self-similar [7],[16] in nature, and 

has a heavy-tailed Pareto request distribution [17].  Self-similar with respect to web 

traffic means that the request patterns are “bursty”, and periods of high and low traffic 

can span multiple time scales, from milliseconds to hours. The Pareto distribution is so-

called heavy tailed in that (in the context of page request probability) smaller files are 

the most commonly requested, but as file size increases, the likelihood of larger pages 

being requested is a slowly decaying function (slower than a Gaussian distribution for 

example).  With this distribution, a small percentage of the requests can use a 

disproportionately large amount of system resources.  The need for highly available 

services requires that the web server system be able to fulfill the requests in an 

acceptable time frame during periods of peak usage, and these are often difficult to 

predict. Keeping a sufficient amount of resources available for effectively handling 

peak usage can be expensive and difficult to justify when those times of heavy demand 

are infrequent. 

1.4 Web Server Architectures

Web server architectures currently in use include single uniprocessor machines, 

single SMP machines, uniprocessor or SMP clusters, and mainframes that can run 

many virtual servers simultaneously.  In this thesis our focus is the use of clusters for 

web service.  Clusters provide a high level of availability and performance, and are able 
(3)



to scale with respect to throughput over time as demand increases.  Another advantage 

is their high work/cost ratio, providing high throughput for a relatively modest price.  

There are subtle differences between one author's version of a cluster and another's, 

however, they often conform to a basic structure, that being a group of 2 or more 

commodity workstations connected together with high speed (100 Mbs or higher) 

interconnects.  An example is shown in Figure 1.

Figure 1: Example Web Cluster. 
Clients issue requests to the same node (Web Switch) and these are 
then redirected to an appropriate back-end node.

These nodes of the cluster can be (but are not always) heterogeneous, and many 

researchers have designed their clusters to support the easy addition or removal of 

heterogeneous nodes as necessary based on demand.  A common architecture places a 
(4)



cluster of nodes behind a public point of contact (the head node, also referred to as the 

dispatcher, distributor, or the web switch).  The clients’ requests are distributed 

transparently, giving the appearance of a single machine.    This type of solution is 

much less expensive than a mainframe or similar “high-end” system composed of a 

similar number of nodes. 

There are many choices for distributing the document store across the nodes of 

the cluster.  The document store is the collection of all resources that the web site can 

serve users, and can be shared among nodes either by a shared file system, such as the 

Network File System (NFS), or by replicating data across the nodes.  Other ideas 

include analysis to precisely mirror the most popular content across all nodes, and 

distribute the rest by static partitioning.  Static partitioning involves dividing up the 

document store so that a particular page or resource is located on a specific machine.

There are many different network topologies for web clusters.  Often the cluster 

has a hierarchical structure, where the cluster maintains a public front-end node, and is 

connected to one or more private back-end nodes.  This provides a single interface for 

all users to request services from the system.  There are also multi-tier topologies 

where the head node may communicate with one or more mid-level nodes, who in turn 

communicate with back-end nodes.  

1.5 Load Distribution and Balancing in Web Clusters

One of the many research areas in the design of web server clusters is that of 

load distribution.  Load distribution solutions deal with balancing the workload among 
(5)



all nodes of the cluster.  Ideally, the nodes will be loaded such that they experience 

similar levels of CPU, disk and network utilization, keeping all nodes equally “busy”.  

A popular approach to this distribution problem is to set up the cluster so that the public 

head node receives each request and directs it to the back-end nodes.  Implementations 

have included Layer 4 switches (referring to the OSI protocol stack network layer), so 

that requests are directed to one of the back-end nodes via IP address modification 

according to some set of metrics, but do not include examination of the actual HTTP 

request [18].  These network level “content-blind” algorithms require server state 

information that must be regularly updated so the switch can make appropriate 

distribution choices, but are efficient and scale well provided they are tuned 

appropriately.  Another approach is to use a Layer 7 switch, which is an application 

level implementation.  This type of switch examines the HTTP request and forwards it 

to an appropriate back-end server.  These algorithms have the advantage of being 

aware of what type of request is being made (e.g. static or dynamic), at the expense of 

extra system resources.  For example, a simple request for a static page with a few 

inline graphic images has a relatively low demand on system resources, while other 

requests that involve transactions with a database management system or those needing 

to use public key encryption for secure transmission can create resource demands that 

cause orders of magnitude greater response times.  This degree of control offered by 

Level-7 algorithms make it a viable alternative to the Layer 4 approach since the site 

operator can easily tailor the architecture to serve specific kinds of requests.  One set of 

servers might handle only static content where much of the document store is cached 
(6)



and can be returned quickly.  Another set of servers may handle disk intensive content.  

If the nodes are heterogeneous, then the less powerful machines might be assigned to 

serve content that requires fewer system resources to deliver.  

1.6 Load Distribution Algorithms

A variety of algorithms have been examined for web switch distribution.  These 

are generally classified as either Layer-4 or Layer-7 as defined in the previous section. 

 Two examples of Layer-4 policies include random (RAND) which chooses a 

back-end node at random, and round-robin (RR) which always chooses the “next” 

back-end node in circular array fashion.  The RR policy can be enhanced with the 

addition of server-state information to give each back-end node a “weight” relative to 

the server’s current load to consider with the RR policy.  This is referred to as weighted 

round-robin (WRR).  These algorithms do not require knowledge of what content is 

being requested, and therefore can be handled at the network layer (IP address).

Two example Layer-7 algorithms are Locality Aware Request Distribution 

(LARD) and Client-Aware Policy (CAP) [8], also referred to as Multi-Class Round 

Robin (MC-RR) [9].  The LARD policy distributes requests based on which back-end 

node likely contains the page in its main memory cache, so the benefits of locality are 

realized.  The CAP policy, developed by Casalicchio and Colajanni, distributes 

requests based on their expected impact on the back-end node’s system resources.  
(7)



Both of these algorithms require that the contents of the request be known to make the 

decision, hence the Layer-7 (application) categorization.  

1.7 Contributions of this Research

 Our contributions to this area of research include the comparison of CAP 

policy to RAND and RR policies.  Previous work compared CAP to LARD and WRR, 

but did include RAND or RR.  It is of interest to know how an algorithm behaves 

relative to RAND which is truly a baseline for comparison. We are also interested in 

the performance compared to RR, since many current implementations for request 

distribution and load balancing include this policy.  These three algorithms: CAP, RR 

and RAND also share a commonality in that they are relatively simple to implement 

and do not require any back-end node state information, unlike LARD and WRR.

In comparing the CAP, RR and RAND algorithms, our research includes more 

detailed information regarding our workload content than many other published results.  

One major issue we encountered during this study is the lack of information to 

characterize typical workloads, including static/dynamic content probability ratios and 

response times for typical dynamic requests.  In providing a more detailed view of our 

workloads, we hope that future research will have a better notion of realistically 

comparing published results, even if the workloads do not model a particular website.

Our work is incremental to those that investigated the use of Linux/Apache 

based web clusters, as our study uses the next generation versions of this software.  The 

most recent published data we found included prototypes built with Linux 2.2 and 
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Apache 1.3.  The nodes in our testbed are running the newer Linux version 2.4 kernel 

and Apache 2.0 server package utilizing the threaded multi-processing module Worker 

that handles connections with threads rather than processes.  

Another contribution is our use of a prototype with dual-processor nodes.  We 

are interested in the performance improvements realized by using SMP nodes for web 

service.  Our study includes measurements of the cluster with back-end nodes that are 

dual-processor machines running the Linux-SMP kernel.  Previous research in the area 

of content-aware request distribution where the web switch exists as a single layer in 

front of the back-end nodes included studies exclusively on uniprocessor architectures.  

Recently, a research group created a prototype on a Linux 2.4 cluster with dual 

processor nodes [24], but this was a multi-tier approach that differs significantly from 

our performance study.

1.8 Summary of Results

Our research shows the capacity of the reverse-proxy to redirect requests is 

approximately 1450 connections/sec.  We show that CAP policy outperforms the 

RAND and RR policies by as much as 29% under the workloads consisting of mixtures 

of static and dynamic content, but no appreciable improvement is realized for 

workloads consisting of only static content.  We demonstrate that for web service using 

the CAP policy under moderate workloads, the performance gain for dual processor 

SMP nodes is nearly 100% greater compared to using uniprocessor nodes, and the 

increased throughput by the addition of more nodes to the cluster is near linear.  We did 
(9)



observe that under very heavy workloads, the improvement in throughput for a dual-

processor node versus a uniprocessor node is less than 100%.

1.9 Outline of this Paper

The general content of this paper is as follows: Section 2 discusses previous 

work in this area of research including the LARD and CAP policies and example web 

switch implementations.  Section 3 describes our experimental design including the 

testbed architecture we used in our performance measurements and some discussion of 

software details.  Section 4 discusses our experimental method and performance 

results, and we conclude in Section 5 including a discussion of potential future work 

for this area of research.
(10)



2 Related Work

Previous work in the area of content-aware request distribution policies has 

yielded two very different approaches to load balancing.  The first is the policy known 

as Locality-Aware Request Distribution (LARD) [11], and the other is Client-Aware 

Policy (CAP) [8].  The performance of these policies (and others in this area) is 

evaluated in comparison to well-known algorithms such as random (RAND), round-

robin (RR) and weighted round-robin (WRR).  The LARD and WRR policies use state 

information from the back-end nodes for load balancing considerations, while RAND, 

RR and CAP do not.  The random policy (RAND) chooses a back-end server at random 

from the available pool.  The round-robin (RR) policy chooses a back-end with 

subsequent requests going to the “next” server in a circular array fashion.

2.1 Locality Aware Request Distribution Policy (LARD)

The LARD policy’s strategy is locality-based, directing requests to the server that 

contains the information.  The idea is to have the requested content readily available in 

the back-end servers’ main memory caches, minimizing the response time delays 

caused by disk access where possible.  LARD is not purely a locality based strategy.  A 

purely locality based strategy is static partitioning, where the document store is divided 

among all of the back-end nodes.  For example, if the cluster is comprised of 10 back-

end nodes, then each node will contain approximately 1/10th of the document store.  

The difference in LARD compared to static partitioning is the inclusion of server state 
(11)



information.  There is a back-end node threshold load value based on some set of 

metrics.  The metric used by the LARD algorithm is the back-end node’s number of 

open connections.  When the web switch receives the request, an attempt is made to 

direct it to a back-end node based on static partitioning, but if the load value exceeds 

the threshold level, the switch will direct it to a less loaded node, if any exists.  

Choosing when to redirect to an alternate node versus experiencing a small load 

imbalance is decided by tuning parameters that are part of the LARD algorithm: the 

high and low connection threshold values.  The algorithm can be augmented so that 

highly popular pages can be replicated across all nodes, minimizing the chance that one 

node will become overloaded due to repeated requests of the same page, but replicating 

many pages across all nodes defeats the general purpose of maintaining locality.

The amount of state information required by LARD is minimal: the number of 

open connections.  No information such as CPU and/or disk utilization is needed for 

the LARD policy.  One shortfall of this algorithm is that efficient locality is difficult to 

maintain for highly dynamic content in the respect that caching such content can be 

expensive or impossible.  Web traffic is becoming increasingly dynamic, which 

suggests that the effectiveness of a distribution policy based on the LARD algorithm is 

limited.  The performance of LARD is covered in Section 2.5.

2.2 Client Aware Policy (CAP)

The other major content aware distribution algorithm, Client Aware Policy 

(CAP), distributes requests based on the category of the content (e.g. static, dynamic, 
(12)



secure, etc.).  The decision of which back-end will receive the request is determined by 

the expected impact on system resources.  This policy has also been referred to as 

Multi-Class Round Robin (MC-RR) [9].  Like LARD, it is a Layer-7 policy that makes 

decisions based on the content of the actual HTTP request, but the idea is to keep 

requests of each category distributed evenly among the back-end nodes so that each 

server is handling a similar number and variety of workload categories.  Unlike the 

LARD policy that maintains a count of open connections per back-end, CAP does not 

require any server state information.  This makes the implementation simpler than that 

for LARD.  Previous research that studied the performance of this policy is discussed 

in Section 2.5.

2.3 Web Content Workloads

We can categorize existing web sites into three broad categories [9]: Web 

Publishing, Web Transaction and Web Multimedia sites.    Web publishing sites contain 

primarily static and lightly dynamic content, such as static HTML pages and dynamic 

requests that do not make intensive use of resources.  Examples include a static page 

with some inline graphics, or a small CGI process that returns a counter with the 

number of page hits.  These services are primarily CPU bound.  Web transaction sites 

provide dynamic content that requires more complex database queries and other system 

resources, and possibly requires secure, encrypted transmission of sensitive data.  An 

example is a web site that allows personal banking customers to get account 
(13)



information, transfer funds, etc. These sites provide services that are CPU and/or disk 

bound.  Web multimedia sites include content such as streaming audio and video using 

specialized hardware and software.  Our study does not attempt to consider this last 

type of web workload.  For the purposes of this study, we use a synthetic workload 

consisting of static pages, light CPU intensive dynamic content, heavy CPU intensive 

content, and a resource representing a combination of CPU and disk intensive content.  

Web publishing sites contain both static and dynamic content, but the ratio is more 

heavily weighted to static content.  A Web transaction site, in comparison includes a 

higher percentage of dynamic content. 

2.4 Web Switches

A web switch node has the duty of relaying the requests to an appropriate back-

end server, and there are a variety of methods to accomplish this.  Three of them 

include TCP splicing, TCP hand-off and Reverse-Proxy forwarding.

2.4.1 TCP Splicing  

In the TCP splicing approach [12], the web switch receives the connection from 

the client, examines the HTTP header information, then makes a decision to forward 

the TCP packets to an appropriate server.  At this point, the web switch is 

masquerading as the client.  The response from the back-end server returns through the 

web switch and is forwarded to the client.  As long as the connection exists, the packets 

travel up through to the network layer of the protocol stack before they are forwarded 
(14)



to the appropriate end (similar to network address translation, or NAT at this point), 

hence the term “spliced connection.”  This requires modification of the kernel in the 

web switch node, but no changes to the back-end nodes.  All traffic between endpoints 

travels through the web switch.  

2.4.2 TCP Handoff

The TCP handoff mechanism [11] is an improvement on the TCP splicing 

approach, where all the incoming packets from clients pass through the web switch, but 

after passing them on to the appropriate back-end node, the responses are sent back 

using a network connection that does not pass through the web switch, in effect the 

connection is “handed off” to the server so that the reply returns to the client directly. 

This has been shown to be a notable performance improvement over TCP splicing.  

This type of switch requires kernel modification of both the switch and the back-end 

nodes.  

2.4.3 Reverse-Proxy Forwarding

The use of Apache as a reverse-proxy web switch was described by Ralf 

Engelschall [14] and used in development of the CAP policy [8].  This is an adaptation 

of the Apache web server software [15].  In addition to the “core” modules, Apache has 

a module called mod_rewrite that can rewrite the URL string, choosing and replacing 

any portion of it with a series of regular expression type rules that the webmaster can 

create in a configuration file.  The other notable module is mod_proxy which provides 

the request forwarding functionality.  The request’s URL string is modified in 
(15)



mod_rewrite, replacing the host portion of the URL with that of a back-end node.  The 

request is forwarded to that back-end node via the proxy mechanism.  This approach 

requires no kernel modification to implement, however, being a user level application, 

it has a higher overhead than kernel level implementations like TCP splicing or 

handoff.  Research has shown that switches operating at Layer-7 pose scalability 

problems [13] above ten back-end nodes, but for the purpose of studying dispatching 

policies on a small cluster, the reverse-proxy is sufficient.

2.5 CAP and LARD Performance

The CAP authors examined the performance of their algorithm in both 

simulation and prototype trials [8].  In the simulation experiments, LARD 

outperformed CAP and WRR for the static workload due to its effective exploitation of 

locality.  For light dynamic requests the performance of CAP and LARD was about the 

same, both giving better results than WRR.  For heavy dynamic requests, such as in 

Web Transaction sites, CAP clearly outperformed both LARD and WRR.

In the prototype trials, the authors used a reverse proxy web switch based on the 

Apache software, and found that while CAP and LARD performance for static content 

was about the same, CAP was more effective than LARD for both light and intensive 

dynamic workloads.  Their conclusion is that LARD is appropriate for web publishing 

sites that use mostly static and some light dynamic content, but for modern web 

transaction and commerce sites, a policy like CAP will yield better results.  The authors 
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make another point that CAP is a robust policy in that it does not require any special 

tuning parameters, unlike  the LARD and WRR policies.  If not tuned properly, these 

latter two can yield results worse than that for random distribution.

Many authors have noted the potential bottlenecks in distributing requests at the 

application layer and have proposed alternate architectures.  One group who focused on 

the implementation of the web switch rather than distribution algorithms has 

determined that it depends on the particular website whether to use content based 

routing at the web switch or to use TCP routing (a Level 4 switch) [21].  In the case 

where the back-end nodes are likely to be the bottleneck, they suggest using content-

based routing.  If the content-based switch is likely to be the bottleneck, then use TCP 

routing (such as the splicing or handoff techniques described in Section 2.4).  They 

discuss the performance benefits of implementing these techniques in an embedded 

operating system, yielding higher performance than that of a general purpose O/S.

Another group suggests a strategy known as WARD [22].  The WARD policy 

partitions the working set into a small, frequently requested group called core, which is 

distributed across all nodes, and the group of less requested pages is partitioned similar 

to static partitioning.  Their algorithm includes ward-analysis which computes the 

optimal core size.  It takes into account access patterns and cluster hardware 

characteristics.  Their studies from simulation results describe a large improvement 

over both RR and static partitioning strategies.  It has not yet been implemented on a 

prototype architecture
(17)



3 Experimental Design

The main goal of this study is to show that a content-aware policy such as CAP 

on a prototype Linux / Apache architecture using SMP nodes provides a substantial 

improvement over random and round-robin distribution for workloads that contain 

dynamic content.  A second goal is to demonstrate the utility of SMP nodes for web 

service.  We do this by performing measurements on our prototype cluster using the 

CAP, RR and RAND algorithms, and measure the performance differences between 

dual-processor SMP and uniprocessor nodes.  We used the latest available versions of 

both Linux and Apache to take advantage of their reported increases in performance 

over previous releases.  A third goal is to study the scalability of the cluster, measuring 

the performance as more nodes are added.

3.1 Testbed Architecture

Our testbed for this study is a subset of a forty-eight (48) node Intel Pentium-III 

based cluster (“Wyeast”) located in the Department of Computer Science’s High 

Performance Computing Lab at Portland State University.  This subset consists of 

seven (7) identical machines with the following specifications:

• Dual (2) 866 MHz Intel Pentium III processors on an ECS D6VAA dual-socket 

mainboard

• 512 MB PC133 SDRAM

• 20 GB Hard Disk
(18)



• 3Com 3c905c 10/100 Network Interface

• Linux O/S, kernel 2.4 (RedHat 7.2 distribution)

These nodes are all connected via a Cisco 3548 switch, providing 100 Mbs 

bandwidth between nodes.

3.2 Testbed Software Details

We used the recommended Linux 2.4 kernel tuning parameters as listed for the 

SPECweb99 benchmark [23].  The tuning parameters modify the size of socket input 

and output queues, range of allowable ports, and allowable simultaneous TIME_WAIT 

sockets.  In our tests, these parameters did not have a noticeable effect on our results, 

suggesting we were not stressing the system in the areas that needed these parameters 

changed from the default values.

This version of Linux utilizes a new file system, called EXT3, which is a 

journaling file system now included with RedHat distributions.  The journaling 

component adds transaction-based integrity to the disk, but does not sacrifice 

performance.  A paper describing the early stages of this development is available for 

more information [20].   

To guarantee dedicated use of the network, each testbed client and server is 

located on an interior, private node of the local area network.  One of the machines is 

designated as the web switch, and runs a thin build of Apache 1.3.24 as a reverse proxy.  

The RAND policy is already available in the Apache source code distribution.  We 
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modified the source code to support the RR and CAP policies.  Four of the machines 

are designated servers that each run a general purpose build of Apache 2.0.28.   The last 

two machines are designated clients that have the job of sending requests to the web 

switch.  One of these two has the Webstone [10] version 2.5 package installed, which 

during test runs, executes the webmaster module, which in turn calls the webclient 

module.  The webmaster process starts a number of webclients on both the local 

machine and any other designated client nodes.  We created workload profiles that 

Webstone uses to generate requests.

We did not modify the Webstone executable in any way other than applying a 

patch to make it compatible with the Linux operating system.  The webclient modules 

request pages without any delays.  Some researchers have modified the program to 

include user “think time”, or to make the request arrival times at the server “bursty”.  

Adding think time would make the request profile more authentic, more closely 

modeling real client behavior, but for the purpose of comparing algorithms without 

regard to absolute capacity of our system in “real client” numbers, we feel the lack of 

think time does not prevent the study from producing useful information.  One way to 

look at this is that Webstone is sending the requests at a rate where the arrival rate is as 

high as possible during a burst.  This should make the reported throughput results 

worse, not better.  A more uniform request rate should also increase the reproducibility 

of the results.  If think time been implemented, we would expect to see a higher number 

of client processes to yield the same throughput.  Our study uses the stock version 2.5 

code without modification.
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Each Apache build, except the web switch reverse proxy, utilizes the new 

threaded Multi-Processing Module (MPM) Worker.  The previous major release of 

Apache (1.3) uses a pre-forking model where upon starting the webserver, the master 

process forks off a number of child processes that each handle connections.  If the 

number of connection requests exceed the capacity of the available processes, more 

child processes are spawned according to criteria in the configuration file (usually 

constrained by available RAM).  By contrast, the newer 2.0 version is threaded.  The  

Worker module is designed so that connections are handled by threads rather than 

processes.   Launching the webserver software spawns a number of child processes, 

and each child process then spawns a set number of threads, each of which handles 

connections, realizing the benefits of lower system overhead compared to the non-

threaded pre-forking model.  The number of threads is increased to match the demands 

of increasing connection requests.  

In early experiments we observed with an Apache 2.0.28-based reverse-proxy 

web switch that the switch became overloaded much more quickly than we expected.  

We then tried the previous Apache version, and had much better results.  Some 

modules were completely rewritten for version 2.0, and this may explain the 

performance drop.  

To summarize the portions of our study that included custom or modified 

software, they include: creation of workload dataset files used by Webstone (called 

“filelists”) for request generation (multiple profiles including mixtures of static and 

dynamic content); creation of CPU and disk intensive dynamic service modules (used 
(21)



by Apache), that represent dynamic requests; modification of the mod_rewrite module 

in Apache 1.3 to implement the Round Robin and CAP algorithms; building a 

specialized reverse-proxy version of Apache 1.3 using a customized run-time 

configuration file and back-end node distribution maps; writing small scripts to aid in 

reducing data and to gather CPU and disk utilization information, and the application 

of Linux 2.4 kernel tuning parameters to all back-end nodes of the cluster. 
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4 Experimental results

In this section we detail our results for the performance of CAP, RAND and RR 

on workloads consisting of various mixtures of static and dynamic content.  We then 

describe the performance benefits of using SMP versus uniprocessor nodes, and the 

measured increase in performance as more nodes are added to the cluster.

We chose to measure performance using the metric connections per second.  

The literature shows this is a common metric used by many researchers in the area of 

cluster based web service.  We also could have chosen network bandwidth throughput 

as megabits per second, or request response time.  We did not choose network 

bandwidth as this does not accurately reflect the server throughput when dynamic 

requests make up a significant portion of the content.  While static file response times 

are relative to their file size, dynamic requests can take orders of magnitude longer to 

service, yet the amount of data sent through the network with the result can be much 

smaller, and so have no such relationship to their response time. We did not use 

response time since the stock Webstone software only provides 1) aggregate minimum, 

maximum and mean response times for all requests, and 2) minimum, maximum and 

mean response times for individual requests.  We made no modifications to the 

software.  Webstone could be modified to generate more useful aggregate response 

time information, such as “number of requests with a response time less than or equal 

to X”, however in the scope of this study, we are satisfied with the information 

provided by connections per second.
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4.1 Capacity of the Reverse-Proxy Web Switch

To determine the capacity of the web switch to forward requests to the back-

end nodes, we configured Webstone to request pages of zero size.  This way we could 

measure the performance of the switch with a minimum amount of data transfer, 

eliminating our 100 Mbs bandwidth as a potential bottleneck.  

  

Figure 2: Capacity of the reverse-proxy web switch.  
As the number of webclient processes increases, the capacity of the 
webswitch reaches a maximum of approx. 1450 connections/sec.

The results, shown in Figure 1, indicate the maximum throughput at approximately 

1450 requests per second.

It should be noted that each Webstone client process (webclient) corresponds to 

a process running on the designated client node where it issues a request, waits for the 

result, and after receiving the response issues the next request.  Unlike real human 

users, there is no “think time” between requests.  Therefore, the requests generated by 
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Webstone do not represent a number of real users, but are useful in applying loads of 

varying intensity to the web server.  Additionally, this may apply to cases where clients 

are not humans at all, but rather computer systems transacting with servers using the 

HTTP interface.  We use the throughput metric connections/second, as this gives the 

best indication to how well the cluster is servicing requests, especially with dynamic 

content where size of the returned message(s) is not necessarily proportional to the 

response time.   

The switch was tested using both the RAND and CAP algorithms, and the 

results show that they perform essentially the same.  We expected that the CAP policy 

might show slightly lower performance compared to RAND since there is contention 

for a lock on the shared memory array containing the index of the “next” back-end 

node.  The results show that the overhead is insignificant.

4.2 Static Workloads

We tested the CAP, RR and RAND policies using a static workload.  For this 

test we used a static fileset included with Webstone.  These files do not contain HTML 

formatting, but Webstone does not differentiate between files formatted as HTML or 

plain text.  Each file does have the .html extension.  Apache is configured to recognize 

the .html extension as an HTML formatted file and returns it with the appropriate 

content headers.  The static fileset consists of a set of text documents from 500 bytes to 

5 MB, and is configured with the following probability distribution shown in Table 1.
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Early experiments showed that the five files in the static workload were being 

cached, showing zero disk utilization under heavy load.  To more accurately simulate a 

static workload of a large working set, we copied the files using unique filenames, 

keeping the distribution of file sizes the same.  Our modified static working set consists 

of 2000 files, totalling about 38 megabytes in size.  The average response time for all 

files was 4 msec for the static workload.

If all the files were considered to be the same resource category, the CAP 

distribution would be essentially round robin, so the largest two files, 5 MB and 500 

KB, were placed in one category, and the 500, 5KB and 50KB files in another.  The 

performance data was collected using three trials (Webstone “runs”) of 10 minutes 

each.  The variance shows good agreement between trials, and so averaged results from 

the three trials are presented.  The results for the static workload using RAND, RR and 

CAP are shown in Figure 3.

File size p(x) Avg Response 
Time

500 bytes 0.35 2 msec

5 KB 0.50 3 msec

50 KB 0.14 7 msec

500 KB 0.009 47 msec

5 MB 0.001 500 msec

Table 1: Static Workload
Static files of the various sizes used, the probability that a file 
of that size will be requested and the average response time on 
a server under light load.
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Figure 3: Static Workload Results  
All three policies have similar performance for static workload 
within the bounds of the 100 Mbs network bandwidth.

Figure 3 shows that there is no advantage of CAP over RR or the RAND 

distribution on our testbed.  This is consistent with previous research. In fact, all 

algorithms are constrained by available bandwidth, as the server throughput was 

measured at 75-80 Mbs for the trial with 10 client processes.  This does not include the 

extra bandwidth used by the reverse proxy in relaying each request, as each request 

creates two connections: one from the client to the web switch, and one from the web 

switch to the back-end.  CPU and disk utilization was sampled during a separate trial 

with 10 client processes showing 5-10% CPU and less than 1% disk utilization on each 
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node.  For static workload, the system could provide more throughput, but the 

bandwidth prevents fully realizing this capability.

4.3 Dynamic Workloads

We tested the system using workloads that included dynamic content.  The 

performance data was collected using three trials of five minutes each, and we present 

the averaged results. The CAP algorithm should provide better performance for 

heterogeneous services, so workloads were synthesized to include multiple classes of 

requests.  To simulate dynamic workload, three CGI programs were created: one 

representing CPU lightly intensive dynamic content, one for CPU heavily intensive 

dynamic content, and one for disk bound dynamic content.  These programs were 

created to simulate dynamic workloads on the web server, but do not attempt to model 

a particular application.  We started with the basic notion of dynamic content requiring 

an order of magnitude more processing time than static content.  This is represented by 

the CPU light service.  This program consists of a simple loop that makes math library 

calls.  The CPU heavy service requires twice the processing time, done by increasing 

the number of loop iterations.  The Disk service requires a similar amount of time as the 

CPU heavy service, but instead of looping through math library calls, it reads a text 

file, writes it back to disk, and finally deletes the newly created file.  The file handle is 

opened using the O_SYNC flag, causing the process to block until the contents are 

actually written to disk.  Table 2 lists these services with their average response times 

on a server under low load.  These probabilities were chosen based on work by 
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Casalicchio and Colajanni, but since no information is available as to their response 

times for a particular resource, this cannot be considered the same dynamic workload 

that they used for their experiments.

These were written in C to use the CGI interface, compiled and placed in the 

appropriate CGI directories on the back-end nodes.  There was not a large concern for 

writing them this way, they could have been written using another language such as 

Perl just as easily.  Recall from Section 4.2 that the static workload had an average 

response time of 4 milliseconds as a whole.  The average response time for the CPU 

light service was written to have a response time of approximately 40 msec,  an order 

of magnitude greater than the average static workload response time on a server under 

low load.  The CPU heavy service has an average response time of 100 msec, or 2.5 

times greater than the CPU light service.  The Disk service has an average response 

time of 100 msec, but includes a high degree of disk activity, so it stresses the system in 

Service p(x) Avg Response 
Time

CPU light 0.5 40 msec

CPU heavy 0.3 100 msec

Disk 0.2 100 msec

Table 2: Dynamic Workload
Shown are the probabilities for a particular 
resource when dynamic content is requested, and 
the average response time on server under light 
load.
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a different way than the former two.  These service programs, along with the static 

workload were combined to make two different mixtures: 80% static + 20% dynamic, 

and 60% static + 40% dynamic.

4.3.1 80% Static, 20% Dynamic Workload

A mix of 80% static and 20% dynamic workload was created using the static 

profile discussed in Section 4.2 with the addition of  10% CPU light, 6% CPU heavy 

and 4% Disk services.  This example tries to approximate a Web Publishing site.  The 

workload is a reasonable mix of resources requested according to previous research [8], 

but does not attempt to precisely model a particular website.The purpose here is to 

show effects of distribution algorithms on throughput of systems that offer 

heterogeneous services.  The performance data was collected using three trials of 5 

minutes each (we did not see a significant change in performance measurements 

between trials of 10 minutes and those of 5 minutes).  The variance shows good 

agreement between trials, and averaged results are presented.  The results of this 

workload are shown in Figure 4.

RR performed similarly to RAND, but CAP clearly performed better than both 

of these, but with increasing number of webclients, the benefits of CAP are lost, and the 

performance approximates that of RAND and RR. The improvement of CAP vs. 

RAND is approximately 20% at the 10 webclient process level.  CAP performed 16% 

better than RR at this point. The performance is essentially the same at 25 webclients.
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Figure 4: 80% Static, 20% Dynamic Workload
The benefits of CAP are realized with higher throughput when 
workloads include dynamic content, but degrades to the level of 
RAND and RR with an increasing rate of client requests.

4.3.2 60% Static, 40% Dynamic Workload

We increased the dynamic portion of the same workload file set from Section 

4.3.1, creating a 60/40 mix, or 60% static and 40% dynamic content.  This might 

represent a Web Transaction type site, with even heavier demands on system resources 

and longer response times than the previous workload.  The performance data was 

collected using three trials of five minutes each. The results are shown in Figure 5.  
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As in the previous workload, RR performs somewhat better than RAND, but 

CAP performs better than either.  The improvement at 8 client processes is 29% (at 10 

processes it is 27% percent higher than RAND).  Beyond 10 webclient processes, the 

server performance levels out.  This data combined with the observations of the static 

and 80/20 static-dynamic mix suggests that the more dynamic the workload, the more 

CAP improves when compared to RAND or RR, but only to a certain point.  If the 

server is heavily loaded, the performance degrades to the level of both RAND and RR.

Figure 5: 60% Static, 40% Dynamic Workload
Increased level of dynamic content produces an even greater difference in 
performance between CAP and the other two algorithms at the 10 webclient 
level compared to the 80% static, 20% dynamic mix.  With increased number 
of webclients, the performance approximates that of RAND and RR.
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To investigate the reason behind the relative performance drop of CAP vs. 

RAND and RR, we examined CPU and disk utilization of CAP using the 60/40 

dynamic workload with 10 webclients and with 14 webclients.  These two points 

represent the load in which the server has essentially the highest throughput (using 10 

webclients) and remains essentially the same with an increased number of webclients 

(14).  Using iostat, we collected CPU and disk utilization at 15 second intervals on one 

of the back-end nodes while running Webstone with the 60/40 workload.  The results 

are shown in Figure 6. The results show that utilization of CPU and disk resources is 

variable and does not lend insight to the reason behind the throughput increase being 

essentially flat between 10 and 14 webclients.  Network bandwidth used for these 

workloads is below 20 Mbs, and so should not be an issue.  

An additional test was run to verify that all back-end nodes are providing 

similar performance.  The CAP algorithm makes the assumption that a particular 

request will have the same impact on system resources on every back-end node, 

provided they are built to be identical nodes (same hardware and software).  We set the 

web switch node to direct requests to a single back-end node, and measured the 

throughput for each.  The results are shown in Figure 7.
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Figure 6: CPU and Disk Utilization Under 60% Static, 40% 
Dynamic Workload
Utilization is variable and does not explain the flat throughput 
increase when the number of webclients is increased.
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Figure 7: Performance Differences Between Nodes of Identical 
Hardware and Software
Nodes consisting of the same mainboard, drives, network cards 
and software show notable performance differences.

Figure 7 shows that even nodes built to be identical still can exhibit differences 

in performance.  We used the most closely matched nodes (3, 5, 6 & 7) as the back-end 

servers.  Note that the effects of varying performance levels should make CAP worse 

relative to RAND and RR, since CAP distributes based on the expected impact on 

resources.  Nodes that are very closely matched should yield the best performance.  

Since the operating system on these nodes has gone through more than one upgrade 

since the cluster was built, it may be that a clean install would even out the 

performance.  The reader should be aware of this possibility in performance difference 

among nodes if they decide to implement CAP on their system, since it would be a 

good idea to determine individual node performance to aid in selecting which nodes 
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will serve which class of requests, or troubleshooting an unexpected performance drop 

when one node has a significant performance difference from the rest of the pool.  

While the performance differences were unexpected, they point to one of the 

advantages of the CAP algorithm over RAND and RR for clusters in practice: CAP can 

compensate and balance heterogeneous nodes, as long as the set of nodes that will 

service a particular class of request is homogeneous.  RAND and RR, which do not 

examine the content of the request, cannot make these server load-related decisions.

We observed that the performance increase of CAP compared to the other 

algorithms is dependent on a certain range in number of webclient processes issuing 

requests.  Recall that the maximum performance increase for the 60/40 workload was 

at 8-10 webclients for 4 back-end nodes.  

  

Figure 8: 60% Static, 40% Dynamic Using 2 Back-end Nodes. 
This figure shows how the maximum CAP improvement is seen 
with a webclient to back-end node ratio of approximately 5:2.
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We ran an experiment using the CAP and RAND algorithms with 2 back-end 

nodes to examine this behavior (three trials of 5 minutes each).  The results are shown 

in Figure 8.

This demonstrates that CAP’s improvements in performance are sensitive to 

the overall server load, although we cannot immediately apply these numbers to a real 

scenario.  It would require testing with an actual website to determine the appropriate 

number of back-ends to realize the greatest improvement.

4.4 SMP versus Uniprocessor Nodes

We are interested in the utility of SMP nodes in web clusters.  To investigate 

the performance of SMP versus uniprocessor nodes, we conducted a set of 

experiments, contrasting the two modes of operation.  The first test was to determine 

how much speedup was produced at the web switch by running in Linux SMP mode vs. 

UP (uniprocessor) mode.  Running the same workload that was used for the switch 

capacity test (zero size file), we measured about 800 connections/sec.  This is about 

55% of the 1450 connections/sec that we measured while running in SMP mode.

We studied the effects of SMP nodes on the back-end servers running a static/

dynamic workload.  We had four nodes available for the back-ends, so we ran 4 

processors in SMP mode (2 x 2) vs. 4 processors in UP mode (4 x 1).  For the SMP test, 

we used two of the back-end servers on the 60% static, 40% dynamic workload.  For 

the UP test, we rebooted the back-ends to run the uniprocessor version of the kernel, 
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and ran the same workload using all four back-end nodes.  Data was collected for three 

trials of 5 minutes each, averaging the results.  The results are shown in Figure 9.

Figure 9: SMP vs. Uniprocessor nodes (4 CPU’s total)
Although equivalent under lighter loads, 4 uniprocessor nodes 
show a higher throughput than 2 dual-processor SMP nodes 
under heavy workloads.

The SMP results show a similar throughput compared to the UP runs up 

through 4 webclient processes.  After that, the UP runs show a greater throughput.  

Unlike the SMP system, the uniprocessor system does not have memory or I/O bus 

contention between processors.  This may explain the higher throughput with the UP 4-

processor system in this area.
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4.5 Scalability

We examined the scalability of a system composed of 1, 2 and 4 back-end 

nodes.  For this experiment, we used a 90% static / 10% dynamic workload running 

trials in SMP mode.  The percentage of dynamic content was only 10% of the whole, 

but the dynamic services themselves were more CPU and disk intensive than those in 

previously discussed workloads, hence the “low” connections/second values.  The 

results are shown in Figure 10.

Figure 10: Scalability from 1 to 4 back-end nodes
The measured maximum throughput as more nodes are added to 
the cluster is nearly linear.

At workloads that result in maximum throughput levels, the results show a 

good agreement to the theoretical optimum of realizing nearly twice as much 

throughput when you double the number of back-end nodes.  The trial using 11 client 

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12

client processes

co
nn

ec
tio

ns
/s

ec

4 Nodes
2 Nodes
1 Node
(39)



processes measured the 4-node system at 138 connections/sec, which is 100% higher 

than the measured value of 69 connections/sec for 2 nodes, and 390% greater than the 

throughput of 35 connections/sec with 1 node.

Our experiments  have shown that the performance of CAP is higher than that 

of RAND and RR on workloads containing some degree of dynamic content under 

light to moderate workloads.  As the system becomes heavily loaded, the performance 

of CAP approaches that of RR and RAND.  Workloads of only static content did not 

show appreciable differences, however our experiment was limited by available 

bandwidth.  We demonstrated the performance of using SMP versus uniprocessor 

nodes where the number of CPU’s is constant.  The two dual-processor SMP nodes 

showed similar performance for lighter workloads, but showed poorer performance 

compared to the four uniprocessors under heavy load.  The scalability of the cluster at 

maximum throughput was shown to be near linear in the performance improvements 

realized as additional nodes are added to the cluster.
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5 Conclusions and Future Work

We have examined the content-aware distribution algorithm CAP and its 

performance compared to content-blind algorithms such as random and round-robin on 

a Linux cluster with SMP nodes.  Our results do not completely agree with previous 

research of the advantages of CAP policy.   While the performance of CAP exceeds 

that of RAND and RR under lighter workloads, we observed a reduced advantage of 

CAP over RR and RAND when the system is under heavy load.  

The performance gains of CAP over RAND and RR improve with an increased 

concentration of dynamic workload, so web sites with highly heterogeneous content 

should perform better provided there are a sufficient number of back-end nodes.  The 

algorithm is relatively simple to implement, and combined with its lack of any special 

tuning parameters other than content categorization, it is a choice to be considered for 

implementation in a web request distributor.

The performance of CAP, according to the most recent information available at 

the time of this writing, has not been examined on a Linux 2.4 cluster with SMP nodes 

where the request distribution is facilitated by a single web switch in front of the back-

end nodes.  We have shown in our experiments that the performance of a 2-way SMP 

node is equivalent to two uniprocessor nodes until the system enters a heavily loaded 

state.  Even considering this effect, the performance increase from uniprocessor to 

SMP, combined with the relatively low cost of the additional processor and supporting 

mainboard suggest it is a worthwhile upgrade when considering nodes for a web 

cluster.  
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We have shown the performance increase realized from adding additional 

nodes to the cluster.  Though the number of back-end nodes we had available was 

limited, the performance increase per node at maximum throughput is near linear for 

web service.

There is additional work to be done in the context of CAP policy analysis and 

development.  Our results show that CAP performance is sensitive to the number of 

Webstone webclients, where throughput increases up to a certain number of webclients, 

then flattens out.  It would be interesting to see how the system scales with the addition 

of more back-end nodes, and whether or not RAND and RR still exhibit the same 

behavior this larger scale.  

Still to be determined is the reason behind the degrading performance of CAP 

relative to RAND and RR as the number of webclients increases.  Examination of disk 

and CPU utilization on a single back-end node did not reveal the answer.  The system is 

likely becoming less balanced as the workload increases, and simultaneous data 

collection of all back-end nodes to compare workloads might be used to verify this 

possibility.  We have shown that nodes built to be identical may still exhibit 

performance differences that could have an effect on throughput.  The CAP algorithm 

assumes that the pool of back-end nodes which handle a particular category of request 

is homogeneous.  Note that pools of nodes that handle categories exclusive of each 

other do not have to be homogeneous.

Another possibility for future work is the combination of CAP with real-time 

server state information.  The pure CAP algorithm assumes that the server pool is 
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homogeneous, as there is no communication between the web switch and the servers as 

to the current load each is experiencing.  Ideally, it would be helpful to allow the use of 

heterogeneous nodes.  As future workload increases, the website operator can add more 

nodes to the cluster, and the likelihood is that future purchases will result in faster 

machines.  The problem is that slower machines will become more heavily loaded than 

the faster ones, and the resulting imbalance will degrade the potential performance of 

the cluster as a whole.  Therefore some server state information would be helpful to 

allow the use of a heterogeneous server pool.  The addition of a daemon process that 

samples one or more of CPU, disk and network utilization on each of the server nodes 

could relay information on a regular basis to the web switch, allowing for an algorithm 

that  would be a hybrid of CAP and weighted round-robin (WRR).  One package 

available from the open source community that uses server state information is the 

Linux Virtual Server (LVS) [19], a level-4 distribution package implemented as kernel 

loadable modules, released under the GNU General Public License.
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Appendix A

Source Code and Apache Modifications

(from psu_webswitch.h)

/* *************************************
   psu_webswitch.h
  
   Globals for shared memory and semaphores
   for use in Apache reverse proxy web switch
   project.
  
   Robert Jones
   Portland State University
   Portland, OR
   robertj@cs.pdx.edu
   
   ***************************************
*/

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/shm.h>
#include <signal.h>
#define NUMSEGS 3  // Number of shared memory segments.  This corresponds
                   //   to how many classes of requests will be received
                   //   by the web server for CAP distribution, 
                   //   e.g. static, light dynamic and heavy dynamic would
                   //        be a NUMSEGS value of 3

int psu_numservers[NUMSEGS] = {4, 4, 4}; /* Number of back-end servers for
                                            each category, e.g. {1,3,3}
                                            means 1 node for category 1, 
                                                  3 nodes for category 2, 
                                                  3 nodes for category 3
                                         */

int psu_numservers_rr = 4; // Should be the total number of back-end nodes used for RR

/* Struct to store integers in shared memory */
struct shmintarr {
    int shmval[NUMSEGS];
};

union semun { int val; };  // Required for Linux SysV semaphores

int psu_sem_id = 0;    // Semaphore handle
int psu_shm_id = 0;    // Shared memory segment handle

key_t psu_ipc_key;     // uniform key to allow multiple processes to find
                       //    the same shared memory segment and semaphore
                       //    array.

char PSU_KEY_CHAR = 'e';  // Additional token used with ftok() call

struct shmintarr *psu_shm_seg;      // Pointer to shared memory segment
                                    //   (a set of integers)

struct sembuf psu_sops[NUMSEGS];

// Attach process to shared memory segment
int psu_shm_attach() {
    psu_ipc_key = ftok("/home/webston/shm.c", PSU_KEY_CHAR);
    psu_shm_id = shmget(psu_ipc_key, sizeof(struct shmintarr), 0666);
    if((int)psu_shm_id != -1) {
        // attach to shared memory segment
        psu_shm_seg = (struct shmintarr*)shmat(psu_shm_id, 0, 0);
        if((int)psu_shm_seg == -1) {
    return -1;
        }
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   } else {
        return -1;
    }
    return 0;

}    

// Get access to semaphore - this is run once per process instantiation
int psu_sem_get() {
    psu_sem_id = semget(psu_ipc_key, NUMSEGS, 0666);
    psu_sops[0].sem_num = 0; 
    psu_sops[0].sem_flg = 0;
    return 0;
}
   
// Get next value in round-robin sequence
//    This is a critical section subject o
//    race conditions.  Use a semaphore to
//    get exclusive access to this function.
int psu_rr_next() {
    (*psu_shm_seg).shmval[0] = ((*psu_shm_seg).shmval[0] % psu_numservers_rr) + 1; 
    return (*psu_shm_seg).shmval[0];
}

// Get next value in CAP sequence.
//   Semaphore should be used to access this
//   function to avoid race condition.
int psu_cap_next(int slot) {
    (*psu_shm_seg).shmval[slot-1] = ((*psu_shm_seg).shmval[slot-1] % psu_numservers[slot-1]) + 1;
    return (*psu_shm_seg).shmval[slot-1];
}

**************************************************************************************************
(from mod_rewrite.h)

...

#define MAPTYPE_RND 1<<4
/* RMJ - Definitions for RR and CAP policiesi */
#define MAPTYPE_RR 1<<5
#define MAPTYPE_CAP 1<<6
...

static char *select_random_value_part(request_rec *r, char *value);

static void  rewrite_rand_init(void);

static int   rewrite_rand(int l, int h);

/* RMJ - RR and CAP support */

static char *select_rr_value_part(request_rec *r, char *value);

static char *select_cap_value_part(request_rec *r, char *value);

...

**************************************************************************************************

(from mod_rewrite.c)

...

#include "psu_webswitch.h"

...

    // ************************************

    // **** RMJ - Round Robin Distribution

    // ************************************

    else if (strncmp(a2, "ror:", 4) == 0) {

        new->type      = MAPTYPE_RR;

        new->datafile  = a2+4;

        new->checkfile = a2+4;
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    }    

    // ************************************

    // **** RMJ - Client Aware Policy Distribution

    // ************************************

    else if (strncmp(a2, "cap:", 4) == 0) {

        new->type      = MAPTYPE_CAP;

        new->datafile  = a2+4;

        new->checkfile = a2+4;

    }

    // ************************************

...

// ************************************

// RMJ - Round Robin support

// ************************************

static char *select_rr_value_part(request_rec *r, char *value)

{

    char *buf;

    int n, i, k;

    /*  count number of distinct values  */

    for (n = 1, i = 0; value[i] != '\0'; i++) {

        if (value[i] == '|') {

            n++;

        }

    }

    /*  when only one value we have no option to choose  */

    if (n == 1) {

        return value;

    }

    /* Index is determined here  */

    if(psu_shm_id == 0) {

        rewritelog(r, 5, "RR attaching to shared memory segment");

        psu_shm_attach();

    }

    if(psu_sem_id == 0) {

        psu_sem_get();

    }

    // get lock

    rewritelog(r, 5, "RR acquiring lock");

    psu_sops[0].sem_op = -1;  // negative == acquire lock

    psu_sops[0].sem_num = 0;  // always zero for RR

    semop(psu_sem_id, psu_sops, 1);

    

    rewritelog(r, 5, "RR lock acquired");

    // Critical section

    k = psu_rr_next(); 

    

    rewritelog(r, 5, "RR releasing lock");
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    // Release lock

    psu_sops[0].sem_op = 1;

    semop(psu_sem_id, psu_sops, 1);

    rewritelog(r, 5, "RR lock released");    

    /*  and grep it out  */

    for (n = 1, i = 0; value[i] != '\0'; i++) {

        if (n == k) {

            break;

        }

        if (value[i] == '|') {

            n++;

        }

    }

    buf = ap_pstrdup(r->pool, &value[i]);

    for (i = 0; buf[i] != '\0' && buf[i] != '|'; i++)

        ;

    buf[i] = '\0';

    return buf;

}

// ************************************

// RMJ - Client Aware Policy (CAP) support

// ************************************

static char *select_cap_value_part(request_rec *r, char *value)

{

    char *buf;

    int n, i, k;

    int category;

    int rc;

    /*  count number of distinct values  */

    for (n = 1, i = 0; value[i] != '\0'; i++) {

        if (value[i] == '|') {

            n++;

        }

    }

    /* The last value is the category of the request

       store as an int 

    */

    category = (int)value[i-1] - 48; // e.g. '2' is ASCII 50 decimal

    rewritelog(r,5, "category = %d", category);

 

    /*  when only one value we have no option to choose  */

    if (n == 1) {

        return value;

    }

    /* Index is determined here  */

    if(psu_shm_id == 0) {

        rc = psu_shm_attach();

        if(rc == -1) {
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    rewritelog(r,5, "error attaching to shared memory");

            exit(-1);

        

        }

    }

    if(psu_sem_id == 0) {

        psu_sem_get();

    }

    // get lock

    psu_sops[0].sem_op = -1;

    psu_sops[0].sem_num = category - 1;  // lock corresponding to our category

    rewritelog(r, 5, "Attempting to acquire lock for category %d", category);

    semop(psu_sem_id, psu_sops, 1);

    rewritelog(r, 5, "Lock acquired");

    // Critical section

    k = psu_cap_next(category);  // get the number of the next server based on

                                 //   the category of request we are serving 

    

    rewritelog(r,5,"next server index based on category %d is %d", category, k);

    psu_sops[0].sem_op = 1;  // positive == release lock

    semop(psu_sem_id, psu_sops, 1);

    

    /*  and grep it out  */

    for (n = 1, i = 0; value[i] != '\0'; i++) {

        if (n == k) {

            break;

        }

        if (value[i] == '|') {

            n++;

        }

    }

    buf = ap_pstrdup(r->pool, &value[i]);

    for (i = 0; buf[i] != '\0' && buf[i] != '|'; i++)

        ;

    buf[i] = '\0';

    return buf;

}

...
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Apache Run-Time Configuration Files

(httpd.conf.cap)

##

##  httpd.conf.cap -- Apache 1.3 configuration for Reverse Proxy Usage

##  Robert Jones

##  Portland State University

##  robertj@cs.pdx.edu

##  Modified from an example written by Ralf Engleschall

##

User webston

Group PSUPerf

Listen                80

ServerName            192.168.0.134

StartServers          25

MaxClients            256

MaxRequestsPerChild   10000

#   server operation parameters

KeepAlive            on

MaxKeepAliveRequests 100

KeepAliveTimeout     15

Timeout              60

IdentityCheck        off

HostnameLookups      off

#   paths to runtime files

PidFile       /home/webston/rproxy13/bin/httpd.pid

LockFile      /home/webston/rproxy13/bin/httpd.lock

ErrorLog      /home/webston/rproxy13/logs/error_log

#   unused paths

ServerRoot           /home/webston/rproxy13

DocumentRoot         /tmp

AccessConfig         /dev/null

ResourceConfig       /dev/null

#   speed up and secure processing

<Directory />

Options -FollowSymLinks -SymLinksIfOwnerMatch

AllowOverride None

</Directory>

#   enable the URL rewriting engine

RewriteEngine        on

RewriteLog /home/webston/rproxy13/logs/rewrite_log

RewriteLogLevel     0 

#   define a rewriting map with value-lists where

#   mod_rewrite randomly chooses a particular value

RewriteMap server cap:/home/webston/rproxy13/conf/servermap.cap
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(httpd.conf.cap - continued)

#   and make sure no one uses our proxy except ourself

RewriteRule    ^/rproxy-status.*     -   [L]

RewriteRule    ^(http|ftp)://.*      -   [F]

#   Now choose the possible servers for particular URL types

#

RewriteRule    ^/(.*load\.cgi.*)$        to://${server:disk}/$1    [S=5]

RewriteRule    ^/(.*5m.*)$               to://${server:dynamic}/$1 [S=4]

RewriteRule    ^/(.*500k.*)$             to://${server:dynamic}/$1 [S=3]

RewriteRule    ^/(.*\.html)$             to://${server:static}/$1  [S=2]

RewriteRule    ^/(.*\.cgi)$              to://${server:dynamic}/$1 [S=1]

RewriteRule    ^/(.*)$                   to://${server:static}/$1

#  and delegate the generated URL by passing it

#   through the proxy module

RewriteRule    ^to://([^/]+)/(.*)   http://$1/$2 [E=SERVER:$1,P,L]

#   and make really sure all other stuff is forbidden

#   when it should survive the above rules...

RewriteRule    .*                    -              [F]

#   enable the Proxy module without caching

ProxyRequests        on

NoCache              *

#   setup URL reverse mapping for redirect reponses

ProxyPassReverse / http://192.168.0.140

ProxyPassReverse / http://192.168.0.145

ProxyPassReverse / http://192.168.0.146

ProxyPassReverse / http://192.168.0.147

***************************************************************************************************
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(servermap.rand)

#

# servermap for RAND policy

#

# Apache mod_rewrite selection table

#

# Robert Jones

# Portland State University

# 

# 11/5/01 File created                                Robert Jones

#

# Entry format:

#    entries should be in the form of 

#       category_name URL1 | URL2 | ... | URLn

#    

#         where category_name is the name of the category, and should

#         correspond to the RewriteRule entries in httpd.conf.

#         

#         Integer is 1 for the first category, 2 for the 2nd, etc.

#

#         URL1, URL2, etc. are the URL's for the real servers used

#         for that category.  Note that you may want to assign different

#         categories to different real servers, e.g. a dedicated server

#         might be used only for heavy dynamic requests.

#

#         Note: You must change the entry in httpd.conf to specify 

#               the algorithm.  This is just a server map file.  The

#               ServerMap entry must use the appropriate key:

#                   e.g. ServerMap server rnd:......

#                                         cap:......

#               Note that RR policy is simply a 1-category CAP policy.

#

######################################################################

# Unlike the CAP and RR servermap files, RAND does not have an

#    entry at the end of the line specifying a category #

 

static  192.168.0.140|192.168.0.145|192.168.0.146|192.168.0.147

***************************************************************************************************

(servermap.rr)

...

# One category only for RR - it's called static, but it is used for

#     all categories

static  192.168.0.140|192.168.0.145|192.168.0.146|192.168.0.147|1

***************************************************************************************************

(servermap.cap)

...

static  192.168.0.140|192.168.0.145|192.168.0.146|192.168.0.147|1

dynamic 192.168.0.147|192.168.0.140|192.168.0.145|192.168.0.146|2

disk    192.168.0.146|192.168.0.147|192.168.0.140|192.168.0.145|3
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Webstone 2.5 Run-Time Configuration Files

(filelist.standard)

# @(#)filelist.standard 1.3

# Filelist for WebStone 2.5 Standard Run Rules, same as filelist.sample

/file500.html 350 #500

/file5k.html 500 #5125

/file50k.html 140 #51250

/file500k.html 9 #512500

/file5m.html 1 #5248000

************************************************************************

(filelist.6040.large)

...static files not listed - same ratio as in filelist.standard...

# There are 2000 static files, so we need 1333 weight units for a 60/40 mix.

/cgi-bin/cpu_light.cgi 667 

/cgi-bin/cpu_med.cgi   400 # This is the ‘cpu heavy’ service in the thesis

/cgi-bin/disk_load.cgi?file=/home/webston/apache/htdocs/file50k.html 266

*************************************************************************

(filelist.8020.large)

...static files not listed - same ratio as in filelist.standard...

# There are 2000 static files, so we need 500 weight units for an 80/20 mix.

/cgi-bin/cpu_light.cgi    250

/cgi-bin/cpu_med.cgi      150 # ‘cpu heavy’ 

/cgi-bin/disk_load.cgi?file=/home/webston/apache/htdocs/file50k.html 100 

**************************************************************************
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(from testbed - condensed to options we modified)

### BENCHMARK PARAMETERS -- EDIT THESE AS REQUIRED

# Webstone will start running with MINCLIENTS number of processes or threads.

# It will run for TIMEPERRUN minutes.  When that run is finished then the

# number of clients will be incremented by CLIENTINCR and another test will

# be performed.  This will continue until we hit MAXCLIENTS number of clients.

# This entire set of steps will be performed for ITERATIONS number of cycles.

ITERATIONS="3"

MINCLIENTS="2"

MAXCLIENTS="20"

CLIENTINCR="2"

TIMEPERRUN="5"

# This is the host name or IP number of the web server that we will be

# testing.  If you use a host name then be sure your client machines

# can resolve that name.

SERVER="192.168.0.134"

# Port 80 is the default web server port.  If your web server is running

# on another port then you can change this value.

PORTNO=80

# RCP is the command used to copy a file to and from one of the client 

# systems or the web server.  For UNIX these can be "rcp" and "rsh" and

# you may have to enable these commands for the machines involved. 

# The RCP is used to retrieve configuration files from the web server

# and to distribute test files to the web clients.  If these are left

# empty then WebStone won't attempt to distribute the webclient binary

# and filelist to the clients and you will have to do it by hand before 

# running WebStone.

RCP=/usr/bin/rcp

RSH=/usr/bin/rsh
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(testbed - continued)

# A space-separated list of client machines to use for testing the web

# server.  You can use IP addresses or host names.  If you use host

# names then be sure that the webmaster machine can resolve them.  It

# will try to do an rexec to each of these systems in order to start

# the webclient program.

CLIENTS="192.168.0.135 192.168.0.144"

# These are the user name and password for a user on the client systems.

# The webmaster program will do an rexec to a client system using this

# name and password in order to start the webclient program.

CLIENTACCOUNT=webston

CLIENTPASSWORD=********

# Set this to "true" if we want to use the same random seed during every

# run.  Doing this will make test results more reproducible.

FIXED_RANDOM_SEED=true

# Scratch directory on the client system.

TMPDIR=/tmp

# Full pathname to the webclient program, on the client system.

CLIENTPROGFILE=/tmp/webclient

# Set this to 1 to turn on debugging output.

DEBUG=0
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Raw Data for Charts
Figure 2

Figure 3

C A P  Z e ro  T e s t
2  c lie n ts
4  b a c k -e n d s

file 0 k .h tm l 1 0 0 %
C lie n ts C A P R A N D

2 9 6 2 .1 1 9 5 0 .1 5 v a lu e s  in  c o n n /s e c
3 1 2 4 1 .1 7 1 2 2 7 .1 2
4 1 3 6 6 .2 2 1 3 6 0 .4 1
5 1 4 2 1 .9 1 1 4 2 2 .0 1
6 1 4 4 2 .9 9 1 4 4 6 .3 6
7 1 4 4 4 .6 7 1 4 5 0 .6 1
8 1 4 4 7 .7 2 1 4 4 9 .2 2
9 1 4 4 5 .6 8 1 4 4 8 .5 3

1 0 1 4 4 4 .8 9 1 4 4 7 .4 6

S ta t ic  W o rk lo a d
F ile s  c o p ie d  (2 0 0 0  f ile s  to ta l)
3  ite ra t io n s , 1 0  m in . ru n  t im e

R A N D # P ro c s R u n 1 R u n 2 R u n 3 A v g S td D e v
1 2 3 7 .1 9 2 3 7 .5 2 2 3 7 .7 4 2 3 7 .4 8 0 .2 8
5 4 5 1 .8 8 4 5 2 .1 2 4 5 2 .3 1 4 5 2 .1 0 0 .2 2
9 4 8 3 .5 4 4 8 3 .4 3 4 8 3 .2 6 4 8 3 .4 1 0 .1 4

1 3 4 9 6 .1 3 4 9 6 .1 8 4 9 5 .9 4 4 9 6 .0 8 0 .1 3
1 7 5 0 7 .0 0 5 1 3 .0 8 5 1 1 .7 0 5 1 0 .5 9 3 .1 9
2 1 5 1 6 .1 8 5 1 5 .7 5 5 1 4 .7 4 5 1 5 .5 6 0 .7 4

C A P 1 2 3 1 .4 6 2 3 2 .1 9 2 3 2 .1 3 2 3 1 .9 3 0 .4 1
5 4 4 7 .2 4 4 7 .3 4 4 4 6 .6 5 4 4 7 .0 6 0 .3 6
9 4 7 7 .4 1 4 7 7 .9 9 4 7 7 .1 6 4 7 7 .5 2 0 .4 3

1 3 4 9 1 .8 5 4 9 1 .7 2 4 9 2 .6 9 4 9 2 .0 9 0 .5 3
1 7 5 0 9 .9 5 0 8 .6 7 5 0 7 .3 5 0 8 .6 2 1 .3 0
2 1 5 1 1 .0 4 5 1 0 .7 6 5 1 1 .4 3 5 1 1 .0 8 0 .3 4

R R 1 2 3 6 .7 2 2 3 7 .3 8 2 3 7 .3 6 2 3 7 .1 5 0 .3 8
5 4 4 9 .4 1 4 5 0 .0 5 4 4 9 .4 6 4 4 9 .6 4 0 .3 6
9 4 8 1 .9 9 4 8 2 .3 8 4 8 1 .9 1 4 8 2 .0 9 0 .2 5

1 3 4 9 4 .6 7 4 9 5 .3 8 4 9 4 .9 7 4 9 5 .0 1 0 .3 6
1 7 5 1 2 .0 7 5 1 1 .9 7 5 1 2 .3 5 1 2 .1 1 0 .1 7
2 1 5 1 5 .4 7 5 1 4 .3 5 5 1 4 .5 4 5 1 4 .7 9 0 .6 0
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Figure 4

8020 m ix

dynam ic m ix is 80%  filelist.standard, 
10%  cpu_light.cgi, 6%  cpu_m ed.cgi, and 4%  disk_load.cgi (50k file as param eter)

RAND #clients run1 run2 run3 avg StdDev
020629_1620 2 103.50 104.19 103.69 103.79 0.36

4 180.58 178.54 180.27 179.80 1.10
6 233.07 231.18 233.16 232.47 1.12
8 266.36 264.15 267.50 266.00 1.70

10 293.80 289.28 289.92 291.00 2.45
020629_2214 12 307.49 312.77 314.77 311.68 3.76

14 328.52 320.54 317.59 322.22 5.65
16 339.54 340.28 336.85 338.89 1.81
18 353.98 346.28 351.9 350.72 3.98
20 356.62 366.43 359.43 360.83 5.05

020630_1425 25 381.63 376.93 377.52 378.69 2.56

CAP
020629_1748 2 105.09 105.81 105.63 105.51 0.37

4 198.47 198.65 198.57 198.56 0.09
6 270.00 270.13 269.99 270.04 0.08
8 315.23 318.01 316.51 316.58 1.39

10 348.89 347.24 348.92 348.35 0.96
020629_1940 12 369.58 368.92 366.92 368.47 1.39

14 381.26 377.74 383.72 380.91 3.01
16 384.53 383.74 382.67 383.65 0.93
18 388.02 389.80 392.37 390.06 2.19
20 391.37 395.46 399.15 395.33 3.89

020630_1447 25 377.48 378.14 383.89 379.84 3.53

RR
020701_0934 2 95.35 104.91 104.28 101.51 5.35

4 184.76 187.03 186.65 186.15 1.22
6 240.55 240.46 240.3 240.44 0.13
8 272.03 273.96 269.24 271.74 2.37

10 302.1 298.77 298.48 299.78 2.01
12 302.22 296.05 322.28 306.85 13.71
14 334.29 335.32 335.16 334.92 0.55
16 339.06 337.86 343.19 340.04 2.80
18 348.54 362.99 359.17 356.90 7.49
20 366.25 360.8 360.25 362.43 3.32
22 372.52 370.43 379.04 374.00 4.49
24 380.05 379.45 373.35 377.62 3.71
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Figure 5

6 0 4 0  M ix
F ile s  a re  o f s a m e  p ro f ile  a s  w o rk s h e e t 8 0 2 0 f (8 0 /2 0  M ix )

C A P # c lie n ts ru n 1 ru n 2 ru n 3 A v g S td D e v
0 2 0 6 3 0 _ 2 1 0 2 2 5 9 .5 3 5 9 .5 5 5 9 .6 8 5 9 .5 9 0 .0 8

4 1 1 4 .9 4 1 1 4 .7 5 1 1 5 .0 2 1 1 4 .9 0 0 .1 4
6 1 6 1 .9 3 1 6 2 .4 5 1 6 1 .9 2 1 6 2 .1 0 0 .3 0
8 1 9 1 .2 1 1 9 1 .4 7 1 9 2 .1 7 1 9 1 .6 2 0 .5 0

1 0 2 0 4 .4 3 2 0 5 .0 4 2 0 6 .2 5 2 0 5 .2 4 0 .9 3
1 2 2 0 3 .4 7 2 0 1 .3 4 2 0 5 .6 9 2 0 3 .5 0 2 .1 8
1 4 2 0 5 .5 7 2 0 8 .0 3 2 0 1 .9 6 2 0 5 .1 9 3 .0 5
1 6 2 0 4 .7 9 2 0 6 .4 7 2 0 9 .9 8 2 0 7 .0 8 2 .6 5
1 8 2 0 8 .0 6 2 0 6 .3 2 2 0 5 .0 3 2 0 6 .4 7 1 .5 2
2 0 2 1 3 .0 3 2 0 7 .3 4 2 1 1 .3 2 2 1 0 .5 6 2 .9 2
2 2 2 1 2 .3 1 2 1 0 .8 7 2 0 9 .4 6 2 1 0 .8 8 1 .4 3
2 4 2 0 9 .1 8 2 1 0 .0 1 2 1 0 .0 4 2 0 9 .7 4 0 .4 9

R A N D
0 2 0 6 3 0 _ 1 5 0 9 2 5 8 .1 0 5 8 .0 3 5 8 .5 4 5 8 .2 2 0 .2 8

4 1 0 1 .3 7 1 0 0 .5 3 1 0 1 .2 6 1 0 1 .0 5 0 .4 6
6 1 3 1 .7 9 1 3 0 .6 9 1 3 1 .3 7 1 3 1 .2 8 0 .5 6
8 1 4 7 .4 7 1 4 8 .2 8 1 4 9 .5 3 1 4 8 .4 3 1 .0 4

1 0 1 6 2 .1 4 1 6 1 .1 0 1 6 0 .2 8 1 6 1 .1 7 0 .9 3
1 2 1 7 3 .0 5 1 7 2 .8 4 1 6 9 .7 5 1 7 1 .8 8 1 .8 5
1 4 1 8 2 .5 2 1 7 6 .9 5 1 8 3 .8 2 1 8 1 .1 0 3 .6 5
1 6 1 8 7 .1 5 1 8 4 .5 4 1 8 8 .5 0 1 8 6 .7 3 2 .0 1
1 8 1 8 4 .2 3 1 8 6 .1 9 1 9 0 .5 0 1 8 6 .9 7 3 .2 1
2 0 1 9 4 .6 9 1 8 9 .9 2 1 9 1 .3 4 1 9 1 .9 8 2 .4 5
2 2 1 9 3 .8 0 1 9 6 .2 1 1 9 3 .8 4 1 9 4 .6 2 1 .3 8
2 4 1 9 6 .7 9 1 9 9 .7 2 2 0 1 .9 5 1 9 9 .4 9 2 .5 9

R R
0 2 0 7 0 1 _ 0 1 4 7 2 5 9 .0 6 5 9 .0 8 5 9 .1 2 5 9 .0 9 0 .0 3

4 1 0 6 .2 2 1 0 7 .4 5 1 0 4 .3 1 1 0 5 .9 9 1 .5 8
6 1 3 9 .0 8 1 3 9 .5 1 1 3 8 .5 6 1 3 9 .0 5 0 .4 8
8 1 6 0 .4 5 1 5 5 .8 7 1 5 4 .9 4 1 5 7 .0 9 2 .9 5

1 0 1 6 8 .6 8 1 6 8 .6 4 1 6 8 .4 3 1 6 8 .5 8 0 .1 3
1 2 1 7 8 .8 5 1 8 1 .0 7 1 8 0 .2 2 1 8 0 .0 5 1 .1 2
1 4 1 8 5 .1 4 1 8 2 .3 8 1 8 2 .8 7 1 8 3 .4 6 1 .4 7
1 6 1 8 6 .4 9 1 8 8 .9 8 1 8 9 .0 8 1 8 8 .1 8 1 .4 7
1 8 1 9 5 .3 9 1 9 0 .0 8 1 8 8 .3 1 1 9 1 .2 6 3 .6 8
2 0 1 9 7 .6 7 1 9 7 .9 1 1 9 4 .3 3 1 9 6 .6 4 2 .0 0
2 2 1 9 9 .4 2 1 9 7 .4 8 1 9 2 1 9 6 .3 0 3 .8 5
2 4 2 0 2 .1 1 2 0 1 .2 9 2 0 0 .7 9 2 0 1 .4 0 0 .6 7
(60)



Appendix D: Raw Data for Charts - Continued
Figure 6

Figure 7

U t il iz a t io n  a t  1 0  c l ie n ts  o n  W y e a s t4 0  -  C A P
N o . C P U D IS K

1 6 4 .9 3 5 7 .4 7
2 6 5 6 6 .5 3
3 6 7 .5 5 5 .2
4 5 3 .9 8 6 .5 3
5 6 9 .3 7 4 6 .4
6 6 6 .4 3 5 2 .3 3
7 6 6 .4 6 6 .4 7
8 6 9 .3 3 5 3 .7 3
9 6 6 .5 3 6 0 .4

1 0 6 7 5 7 .4 7
1 1 6 7 .5 7 3 7 .9 3

U t i l iz a t io n  a t  1 4  c l ie n ts  o n  W y e a s t4 0  -  C A P
N o . C P U D IS K

1 6 4 .5 7 4 4 .4 7
2 6 6 .1 4 8 .4
3 6 0 .1 3 5 1 .4
4 5 1 .5 3 4 7 .0 7
5 5 0 .6 3 4 4
6 6 6 .3 3 6 2 .4 7
7 6 5 .5 7 7 0 .8 7
8 6 7 .8 7 5 5 .2 7
9 6 3 .2 5 5 .7 3

1 0 6 6 .0 3 4 6 .9 3
1 1 6 4 .8 7 5 5 .9 3

Single Server
80%  dynam ic
20%  static
3 m in. run tim e
8 client processes

Node# Run1 Run2 Run3 Avg StdDev
34 123 120 124 122.33 2.08
35 124 120 124 122.67 2.31
40 146 152 151 149.67 3.21
44 116 119 117 117.33 1.53
45 146 150 154 150.00 4.00
46 166 166 174 168.67 4.62
47 169 166 163 166.00 3.00
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Appendix D: Raw Data for Charts - Continued
Figure 8

Figure 9

Figure 10

6 0 4 0  M ix  o n  2  N o d e s  -  S a m e  w o rk lo a d  p ro file  a s  6 0 4 0 d  a n d  8 0 2 0 e

C A P # p ro c s ru n 1 ru n 2 ru n 3 a v g s td e v
0 2 0 7 0 1 _ 2 3 5 3        2 5 9 .0 3 5 9 .1 6 5 9 .1 0 5 9 .1 0 0 .0 7

4 9 5 .8 7 9 5 .2 1 9 6 .0 6 9 5 .7 1 0 .4 5
6 1 0 1 .3 8 1 0 2 .9 5 1 0 0 .4 2 1 0 1 .5 8 1 .2 8
8 1 0 1 .2 2 9 9 .5 0 9 8 .8 5 9 9 .8 6 1 .2 2

1 0 1 0 1 .9 7 1 0 0 .7 0 9 9 .4 2 1 0 0 .7 0 1 .2 8

R A N D 2 5 6 .2 6 5 6 .4 8 5 5 .5 4 5 6 .0 9 0 .4 9
0 2 0 7 0 2 _ 0 1 1 4 4 8 0 .0 4 8 0 .7 7 7 9 .4 4 8 0 .0 8 0 .6 7

6 9 0 .7 8 9 .6 2 8 9 .7 2 9 0 .0 1 0 .6 0
8 9 3 .7 1 9 3 .7 9 3 .6 9 9 3 .7 0 0 .0 1

1 0 9 4 .5 7 9 6 .9 9 9 3 .9 1 9 5 .1 6 1 .6 2

S M P  v s  U P
# c lie n ts ru n 1 ru n 2 ru n 3 a vg s td e v

U P  x  4 0 2 0 7 0 3 _ 0 6 5 2 2 5 6 .9 3 5 6 .7 1 5 7 .4 8 5 7 .0 4 0 .4 0
0 2 0 7 0 3 _ 0 6 5 7 4 9 0 .7 2 9 1 .1 8 9 1 .5 2 9 1 .1 4 0 .4 0
0 2 0 7 0 3 _ 0 7 0 2 6 1 1 1 .4 2 1 1 1 .8 2 1 1 1 .8 2 1 1 1 .6 9 0 .2 3
0 2 0 7 0 3 _ 0 7 0 7 8 1 2 4 .3 1 1 2 4 .0 0 1 2 4 .3 7 1 2 4 .2 3 0 .2 0
0 2 0 7 0 3 _ 0 7 1 3 1 0 1 3 3 .7 9 1 3 2 .8 8 1 3 2 .9 6 1 3 3 .2 1 0 .5 0

S M P  x  2 0 2 0 7 0 3 _ 0 8 5 9 2 5 3 .5 8 5 9 .2 1 5 9 .1 2 5 7 .3 0 3 .2 2
0 2 0 7 0 3 _ 0 9 0 4 4 9 3 .3 7 9 5 .8 3 9 4 .3 3 9 4 .5 1 1 .2 4
0 2 0 7 0 3 _ 0 9 0 9 6 1 0 2 .9 0 1 0 0 .7 1 1 0 2 .0 3 1 0 1 .8 8 1 .1 0
0 2 0 7 0 3 _ 0 9 1 4 8 9 7 .9 1 9 9 .5 2 1 0 2 .2 9 9 9 .9 1 2 .2 2
0 2 0 7 0 3 _ 0 9 1 9 1 0 1 0 0 .7 4 9 9 .2 6 9 9 .9 8 9 9 .9 9 0 .7 4

Test fo r Scalab ility  from  1 to  4  nodes

C AP (R R )
90/10 W ork load

#Proc 4 N odes 2 N odes 1 N ode
1 17 17 17
3 51 51 35
5 85 69 35
7 118 69 35
9 137 69 35

11 138 69 35
(62)


