
Concurrency

An OS is concurrent software, it might be
doing many things at once.

On a multi-core system events happen
simultaneously

But even with a single CPU we have
concurrency

e.g., Processes overlap their executions with
each other and with I/O

A process can be interrupted between any
two instructions

What’s the problem?

totreads++ takes three instructions:

1. Read from memory into register
2. Increment the register value
3. Write from register back to memory

…and an interrupt can happen between any
two instructions!

Process 1
call read()
…
Read val from memory
<interrupt>
.
.
.
increment val
write val to memory
…

Process 2

call read()
…
read val from memory
increment val
write val to memory
<interrupt>

One Possible Scenario

This is a bug!

It’s called a “data race”, one type of “race
condition”

Concurrent, unprotected read/write of shared
memory

Much more prevalent with multi-core CPUs
An OS is inherently concurrent
It can happen within user processes too
It makes the code “indeterminate” while we

expect this code to be “deterministic”

Here’s a possible (untested) solution

int totreads = 0; // global

int sys_read(void) {

...

suspend_all_interrupts(); // pseudocode

totreads++;

allow_interrupts(); // pseudocode

...

}

Now our three instructions can execute unmolested!

Atomicity, Critical Sections

Disabling interrupts makes our three little
instructions “atomic”

Atomic – “as a unit”, “all or none”

Now we can build “critical sections”, sections
of code in which shared data structures
may be updated and read without data
races

Critical Sections, Mutual Exclusion

One way to support Critical Sections is with
Mutual Exclusion

Mutual Exclusion (mutex): guarantee that if
one schedulable entity (one process, one
thread) is executing within a critical
section, then all others will be prevented
from doing so.

Disabling interrupts is one way to do it!

Issues w Disabling Interrupts

1. doesn’t work on multi-core
2. Some interrupts can’t be masked
3. Must be done in privileged mode
4. It is a blunt instrument
5. Poor performance for user-level processes

Still, it’s a common tactic within OSs.
grep pushcli *.c to see some xv6
examples.

Review

Indeterminate: a program consisting of one
or more race conditions; the output of the
program varies run to run. Non-deterministic.
Usually (but not always) bad.

Mutual Exclusion: a guarantee that only a
single entity can enter a critical section, thus
avoiding race conditions.

Review

Atomic: as a unit. All or none. If a system
can make a critical section atomic then it can
achieve mutual exclusion.

Masking/Disabling Interrupts: one
technique used by computer systems to
achieve atomicity and provide mutual
exclusion for critical sections, thereby
avoiding race conditions and ensuring
deterministic execution.

Threads

What is a thread?
How is it different from a process?
Posix Threads - pthreads

Creating, running, joining and destroying
Locks
Condition Variables (next week)

Lab

Review: Process

Is an instance of a program
Is a Virtualization of a CPU
Has an Address Space
Has a set of open file descriptors
Has a CPU state (e.g., registers)
Has scheduling state (running, ready, …)
Has lots of other state
Is scheduled by OS
Is separated/protected from other processes
…

Threads

Along the way, we discovered that
concurrency was useful within a process
• Signals – software interrupts
• GUIs
• RDBMSs

So we invented threads
• and there were many varieties!

Threads

Is an execution path within a program
Shares an Address Space
Shares a set of open file descriptors
Has a CPU state (e.g., registers)
Has scheduling state (running, ready, …)
Has very little other state
Is scheduled by OS (usually)
Is not protected from threads

User-level vs Kernel-level threads

Historically, many “threads packages” were
developed in user-space. (a.k.a., “LWP”)

Today, usually the kernels schedule them.
Usually, not always.

New Concept: “schedulable entity” which
means “process or thread”

Threads and Processes
Processes can contain threads

All threads within a process share the process’s
address space, file descriptors, resources

Threads have their own stack, registers, scheduling
state

TCB – thread control block

POSIX Threads (pthreads)

A standard threads interface

Can be implemented various ways.

Linux: NPTL (native posix thread lib) came
from RedHat (2003)

simple pthreads example
#include <pthread.h>
…
Main(int argc, char **argv) {
…
pthread_t t1;

= pthread_create(@t1,NULL,(void) *func(), void *arg);
…
pthread_join(thread1, NULL);
…

}

other basic lifecycle operations
void pthread_exit(void *status);
pthread_t pthrad_self(void);
pthread_attr_* // for manipulating thread attributes
int pthread_detach(pthread_t thread);
pthread_cleanup* // various ways to handle thread cleanup

What about critical sections?

Mutex Locks!

pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;
int totReads;

int sys_read(void) {
pthread_mutex_lock(&mutex1);
totReads++; // critical section
pthrad_mutex_unlock(&mutex1);

}

pthread_mutex

How is that implemented?

look inside the implementation to find the use of the
Intel xchg instruction.

xchg: swap the contents of a memory location with a
register value

Not expressable in C so you use assembly

pthread_mutex (pseudo code)
int lockval = 0; // this is global, 0 == “unlocked”

lock() {
register int regval = 1;
while (xchg (lockval, regval)); // spin

}

unlock() {
lockval = 0;

}

other mutex operations
pthread_mutex_destroy()
pthread_mutex_trylock() // avoid spinning
pthread_mutex_timedlock() // time out

